1
|
Sorrentino FS, Di Terlizzi P, De Rosa F, Salati C, Spadea L, Gagliano C, Musa M, Zeppieri M. New frontiers in retinal transplantation. World J Transplant 2024; 14:97690. [PMID: 39697450 PMCID: PMC11438945 DOI: 10.5500/wjt.v14.i4.97690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/20/2024] Open
Abstract
New frontiers about retinal cell transplantation for retinal degenerative diseases start from the idea that acting on stem cells can help regenerate retinal layers and establish new synapses among retinal cells. Deficiency or alterations of synaptic input and neurotrophic factors result in trans-neuronal degeneration of the inner retinal cells. Thus, the disruption of photoreceptors takes place. However, even in advanced forms of retinal degeneration, a good percentage of the ganglion cells and the inner nuclear layer neurons remain intact. This phenomenon provides evidence for obtaining retinal circuitry through the transplantation of photoreceptors into the subretinal region. The eye is regarded as an optimal organ for cell transplantation because of its immunological privilege and the relatively small number of cells collaborating to carry out visual activities. The eyeball's immunological privilege, characterized by the suppression of delayed-type hypersensitivity responses in ocular tissues, is responsible for the low rate of graft rejection in transplant patients. The main discoveries highlight the capacity of embryonic stem cells (ESCs) and induced pluripotent stem cells to regenerate damaged retinal regions. Recent progress has shown significant enhancements in transplant procedures and results. The research also explores the ethical ramifications linked to the utilization of stem cells, emphasizing the ongoing issue surrounding ESCs. The analysis centers on recent breakthroughs, including the fabrication of three-dimensional retinal organoids and the innovation of scaffolding for cell transportation. Moreover, researchers are currently assessing the possibility of CRISPR and other advanced gene editing technologies to enhance the outcomes of retinal transplantation. The widespread use of universally recognized safe surgical and imaging methods enables retinal transplantation and monitoring of transplanted cell growth toward the correct location. Currently, most therapy approaches are in the first phases of development and necessitate further research, including both pre-clinical and clinical trials, to attain favorable visual results for individuals suffering from retinal degenerative illnesses.
Collapse
Affiliation(s)
| | - Patrick Di Terlizzi
- Department of Surgical Sciences, Unit of Ophthalmology, Ospedale Maggiore, Bologna 40100, Italy
| | - Francesco De Rosa
- Department of Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”, Meldola 47014, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna "Kore", Enna 94100, Italy
- Eye Clinic, Catania University San Marco Hospital, Catania 95121, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin 300283, Nigeria
- Department of Ophthalmology, Centre for Sight Africa, Nkpor, Onitsha 434112, Nigeria
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
2
|
Giannasi C, Cadelano F, Della Morte E, Baserga C, Mazzucato C, Niada S, Baj A. Unlocking the Therapeutic Potential of Adipose-Derived Stem Cell Secretome in Oral and Maxillofacial Medicine: A Composition-Based Perspective. BIOLOGY 2024; 13:1016. [PMCID: PMC11673083 DOI: 10.3390/biology13121016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025]
Abstract
The secretome of adipose-derived stem cells (ADSCs) holds significant promise for oral and maxillofacial medicine due to its rich composition of growth factors, cytokines, and other soluble or vesicle-embedded bioactive mediators that promote tissue regeneration and immunomodulation. Potential applications include enhancing wound healing, reducing inflammation, and stimulating the regeneration of hard and soft tissues. This could lead to improved outcomes in procedures such as bone grafting, soft tissue reconstruction, and the treatment of oral and facial defects. By harnessing the regenerative properties of ADSC secretome, clinicians may be able to achieve more effective tissue repair, ultimately benefiting patient recovery and quality of life. The adipose-derived stem cell (ADSC) secretome is widely studied for its immunomodulatory and regenerative properties, yet its potential in maxillofacial medicine remains largely underexplored. This review takes a composition-driven approach, beginning with a list of chemokines, cytokines, receptors, and inflammatory and growth factors quantified in the ADSC secretome to infer its potential applications in this medical field. First, a review of the literature confirmed the presence of 107 bioactive factors in the secretome of ADSCs or other types of mesenchymal stem cells. This list was then analyzed using the Search Tool for Retrieval of Interacting Genes/Proteins (STRING) software, revealing 844 enriched biological processes. From these, key processes were categorized into three major clinical application areas: immunoregulation (73 factors), bone regeneration (13 factors), and wound healing and soft tissue regeneration (27 factors), with several factors relevant to more than one area. The most relevant molecules were discussed in the context of existing literature to explore their therapeutic potential based on available evidence. Among these, TGFB1, IL10, and CSF2 have been shown to modulate immune and inflammatory responses, while OPG, IL6, HGF, and TIMP1 contribute to bone regeneration and tissue repair. Although the ADSC secretome holds great promise in oral and maxillofacial medicine, further research is needed to optimize its application and validate its clinical efficacy.
Collapse
Affiliation(s)
- Chiara Giannasi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy; (F.C.); (A.B.)
- IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.B.); (C.M.)
| | - Francesca Cadelano
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy; (F.C.); (A.B.)
- IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.B.); (C.M.)
| | - Elena Della Morte
- IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.B.); (C.M.)
| | - Camilla Baserga
- IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.B.); (C.M.)
| | - Camilla Mazzucato
- IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.B.); (C.M.)
| | - Stefania Niada
- IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.B.); (C.M.)
| | - Alessandro Baj
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy; (F.C.); (A.B.)
- IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.B.); (C.M.)
| |
Collapse
|
3
|
Liu H, Lu S, Chen M, Gao N, Yang Y, Hu H, Ren Q, Liu X, Chen H, Zhu Q, Li S, Su J. Towards Stem/Progenitor Cell-Based Therapies for Retinal Degeneration. Stem Cell Rev Rep 2024; 20:1459-1479. [PMID: 38809490 DOI: 10.1007/s12015-024-10740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Retinal degeneration (RD) is a leading cause of blindness worldwide and includes conditions such as retinitis pigmentosa (RP), age-related macular degeneration (AMD), and Stargardt's disease (STGD). These diseases result in the permanent loss of vision due to the progressive and irreversible degeneration of retinal cells, including photoreceptors (PR) and the retinal pigment epithelium (RPE). The adult human retina has limited abilities to regenerate and repair itself, making it challenging to achieve complete self-replenishment and functional repair of retinal cells. Currently, there is no effective clinical treatment for RD. Stem cell therapy, which involves transplanting exogenous stem cells such as retinal progenitor cells (RPCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs), or activating endogenous stem cells like Müller Glia (MG) cells, holds great promise for regenerating and repairing retinal cells in the treatment of RD. Several preclinical and clinical studies have shown the potential of stem cell-based therapies for RD. However, the clinical translation of these therapies for the reconstruction of substantial vision still faces significant challenges. This review provides a comprehensive overview of stem/progenitor cell-based therapy strategies for RD, summarizes recent advances in preclinical studies and clinical trials, and highlights the major challenges in using stem/progenitor cell-based therapies for RD.
Collapse
Affiliation(s)
- Hui Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shuaiyan Lu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ming Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Na Gao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuhe Yang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Huijuan Hu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qing Ren
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoyu Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hongxu Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qunyan Zhu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325011, China
| | - Shasha Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325001, China.
| | - Jianzhong Su
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325011, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325001, China.
| |
Collapse
|
4
|
Andrés-Iglesias C, Fernandez-Bueno I, Pastor-Idoate S, Coco-Martin RM, Pastor JC. Ala ®sil chemical characterization and toxicity evaluation: an example of the need for the Medical Device Regulation 2017/745. Front Pharmacol 2024; 14:1310463. [PMID: 38283844 PMCID: PMC10811781 DOI: 10.3389/fphar.2023.1310463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction: Ala®sil infusion was on the market for clinical use under the Medical Devices Directive (MDD) 93/42/EEC as an irrigating solution based on polydimethylsiloxane (PDMS). The product was withdrawn in 2016, and to the best of our knowledge, it did not cause any health damage. Methods: A bibliographic review and experimental analysis were conducted to evaluate whether this CE-marked product could have been used in patients under the current Medical Device Regulation (MDR) 2017/745. Analytical results from gas chromatography-mass spectrometry (GC-MS) and matrixassisted laser desorption ionization (MALDI) were performed. Citotoxicity studies were also carried out. Results: Only one study related to Ala®sil clinical use was found, describing a pilot series of five patients. The authors rated the product as not helpful in three out of the five cases for internal searching of retinal breaks and in four out of the five cases for drainage of subretinal fluid. No other scientific papers or documentation was found regarding Ala®sil's safety. Nevertheless, the product was introduced in the market after achieving the CE marking. GC-MS and MALDI showed that the polymer has a low molecular weight of 1,000 g/mol. Several linear and cyclic low-molecular-weight components (LMWCs) were identified as impurities ranging from L3 to D8, with a molecular weight below 600 g/mol. The Ala®sil sample was found to be cytotoxic after 24 h of cell culture but non-cytotoxic after 72 h, probably due to the cellular regeneration capacity of an immortalized cell line. Tissular cytotoxicity revealed an increased apoptosis rate but without morphological modifications. Discussion: Although Ala®sil cannot be classified as cytotoxic, this substance appears to increase retinal cell death processes. This study supports the notion that the MDDwas not functioning adequately to ensure the safety of medical devices. However, the current MDR 2017/745 imposes stricter standards to prevent the commercialization of medical devices without high-quality preclinical and clinical information, as well as precise clinical verification for their use, information not available for Ala®sil infusion.
Collapse
Affiliation(s)
- Cristina Andrés-Iglesias
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Retina Group, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Ivan Fernandez-Bueno
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Retina Group, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III, Madrid, Spain
| | - Salvador Pastor-Idoate
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Retina Group, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III, Madrid, Spain
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Rosa M. Coco-Martin
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Retina Group, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III, Madrid, Spain
| | - J. Carlos Pastor
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Retina Group, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
He Y, Yang S, Liu P, Li K, Jin K, Becker R, Zhang J, Lin C, Xia J, Ma Z, Ma Z, Zhong R, Lee LP, Huang TJ. Acoustofluidic Interfaces for the Mechanobiological Secretome of MSCs. Nat Commun 2023; 14:7639. [PMID: 37993431 PMCID: PMC10665559 DOI: 10.1038/s41467-023-43239-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
While mesenchymal stem cells (MSCs) have gained enormous attention due to their unique properties of self-renewal, colony formation, and differentiation potential, the MSC secretome has become attractive due to its roles in immunomodulation, anti-inflammatory activity, angiogenesis, and anti-apoptosis. However, the precise stimulation and efficient production of the MSC secretome for therapeutic applications are challenging problems to solve. Here, we report on Acoustofluidic Interfaces for the Mechanobiological Secretome of MSCs: AIMS. We create an acoustofluidic mechanobiological environment to form reproducible three-dimensional MSC aggregates, which produce the MSC secretome with high efficiency. We confirm the increased MSC secretome is due to improved cell-cell interactions using AIMS: the key mediator N-cadherin was up-regulated while functional blocking of N-cadherin resulted in no enhancement of the secretome. After being primed by IFN-γ, the secretome profile of the MSC aggregates contains more anti-inflammatory cytokines and can be used to inhibit the pro-inflammatory response of M1 phenotype macrophages, suppress T cell activation, and support B cell functions. As such, the MSC secretome can be modified for personalized secretome-based therapies. AIMS acts as a powerful tool for improving the MSC secretome and precisely tuning the secretory profile to develop new treatments in translational medicine.
Collapse
Affiliation(s)
- Ye He
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Shujie Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Pengzhan Liu
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ke Li
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ke Jin
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ryan Becker
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jinxin Zhang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Chuanchuan Lin
- Department of Blood Transfusion, Irradiation Biology Laboratory, Xinqiao Hospital, Chongqing, 400037, China
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Zhehan Ma
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Zhiteng Ma
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ruoyu Zhong
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Luke P Lee
- Harvard Medical School, Harvard University, Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea.
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Korea.
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
6
|
Bouche Djatche WH, Zhu H, Ma W, Li Y, Li Z, Zhao H, Liu Z, Qiao H. Potential of mesenchymal stem cell-derived conditioned medium/secretome as a therapeutic option for ocular diseases. Regen Med 2023; 18:795-807. [PMID: 37702008 DOI: 10.2217/rme-2023-0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Research has shown that the therapeutic effect of mesenchymal stem cells (MSCs) is partially due to its secreted factors as opposed to the implantation of the cells into the treated tissue or tissue replacement. MSC secretome, especially in the form of conditioned medium (MSC-CM) is now being explored as an alternative to MSCs transplantation. Despite the observed benefits of MSC-CM, only a few clinical trials have evaluated it and other secretome components in the treatment of eye diseases. This review provides insight into the potential therapeutic use of MSC-CM in eye conditions, such as corneal diseases, dry eye, glaucoma, retinal diseases and uveitis. We discuss the current evidence, some limitations, and the progress that remains to be achieved before clinical translation becomes possible.
Collapse
Affiliation(s)
| | - Huimin Zhu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Wenlei Ma
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Yue Li
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Ziang Li
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Hong Zhao
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhizhen Liu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Hua Qiao
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
7
|
Pastor JC, Pastor-Idoate S, López-Paniagua M, Para M, Blazquez F, Murgui E, García V, Coco-Martín RM. Intravitreal allogeneic mesenchymal stem cells: a non-randomized phase II clinical trial for acute non-arteritic optic neuropathy. Stem Cell Res Ther 2023; 14:261. [PMID: 37735668 PMCID: PMC10512539 DOI: 10.1186/s13287-023-03500-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND An effective treatment for acute non-arteritic ischemic optic neuropathy (NA-AION) has not been known or proven yet. Previous studies have suggested a neuroprotective effect of allogeneic bone marrow-derived mesenchymal stem cells. This study aims to report the results of a clinical trial on patients with acute non-arteritic optic neuropathy (NA-AION) treated with an intravitreal injection of allogeneic bone marrow-derived mesenchymal stem cells (BM-MSCs) (MSV®). METHODS We conducted a prospective, non-randomized, clinical phase-II study (Eudra CT number 2016-003029-40; ClinicalTrials.gov Registry NCT03173638) that included 5 patients with acute unilateral NA-AION diagnosed within 2 weeks after symptom onset and who received an intravitreal injection of allogeneic BM-MSCs (0.05 ml; cell concentration: 1.5 × 106cells/mL). The patients underwent regular ophthalmological examinations and were followed for one year. RESULTS In this trial, allogeneic BM-MSCs appeared to be safe as no patients developed signs of acute nor chronic intraocular inflammation or a significant change in intraocular pressure, although an epiretinal membrane was developed in one patient. A retrolental aggregate formed shortly after the injection spontaneously disappeared within a few weeks in another phakic patient, leaving a subcapsular cataract. Visual improvement was noted in 4 patients, and amplitudes of P100 on the visually evoked potentials recordings increased in three patients. The retinal nerve fiber layer and macular ganglion cell layer thicknesses significantly decreased during the follow-up. CONCLUSIONS Besides the development of an epiretinal membrane in one patient, the intravitreal application of allogeneic BM-MSCs appeared to be intraocularly well tolerated. Consequently, not only NA-AION but also BM-MSCs deserve more clinical investigational resources and a larger randomized multicenter trial that would provide stronger evidence both about safety and the potential therapeutic efficacy of intravitreally injected allogeneic BM-MSCs in acute NA-AION. TRIAL REGISTRATION Safety Assessment of Intravitreal Mesenchymal Stem Cells for Acute Non-Arteritic Anterior Ischemic Optic Neuropathy (NEUROSTEM). NCT03173638. Registered June 02, 2017 https://clinicaltrials.gov/ct2/show/NCT03173638 .
Collapse
Affiliation(s)
- Jose C Pastor
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
- Hospital Clínico Universitario, Valladolid, Spain
| | - Salvador Pastor-Idoate
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain.
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain.
- Hospital Clínico Universitario, Valladolid, Spain.
| | - Marina López-Paniagua
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Para
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
| | - Francisco Blazquez
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Murgui
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
| | - Verónica García
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
- Citospin S.L., Valladolid, Spain
| | - Rosa M Coco-Martín
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Donato L, Scimone C, Alibrandi S, Scalinci SZ, Mordà D, Rinaldi C, D'Angelo R, Sidoti A. Human retinal secretome: A cross-link between mesenchymal and retinal cells. World J Stem Cells 2023; 15:665-686. [PMID: 37545752 PMCID: PMC10401416 DOI: 10.4252/wjsc.v15.i7.665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/17/2023] [Accepted: 04/10/2023] [Indexed: 07/25/2023] Open
Abstract
In recent years, mesenchymal stem cells (MSC) have been considered the most effective source for regenerative medicine, especially due to released soluble paracrine bioactive components and extracellular vesicles. These factors, collectively called the secretome, play crucial roles in immunomodulation and in improving survival and regeneration capabilities of injured tissue. Recently, there has been a growing interest in the secretome released by retinal cytotypes, especially retinal pigment epithelium and Müller glia cells. The latter trophic factors represent the key to preserving morphofunctional integrity of the retina, regulating biological pathways involved in survival, function and responding to injury. Furthermore, these factors can play a pivotal role in onset and progression of retinal diseases after damage of cell secretory function. In this review, we delineated the importance of cross-talk between MSCs and retinal cells, focusing on common/induced secreted factors, during experimental therapy for retinal diseases. The cross-link between the MSC and retinal cell secretomes suggests that the MSC secretome can modulate the retinal cell secretome and vice versa. For example, the MSC secretome can protect retinal cells from degeneration by reducing oxidative stress, autophagy and programmed cell death. Conversely, the retinal cell secretome can influence the MSC secretome by inducing changes in MSC gene expression and phenotype.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Palermo 90139, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Palermo 90139, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Palermo 90139, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98125, Italy
| | | | - Domenico Mordà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Palermo 90139, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
| |
Collapse
|
9
|
Zhang C, Xiao J, Fa L, Jiang F, Jiang H, Zhou L, Xu Z. Advances in the applications of mesenchymal stem cell-conditioned medium in ocular diseases. Exp Eye Res 2023:109560. [PMID: 37385531 DOI: 10.1016/j.exer.2023.109560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/06/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Mesenchymal stem cell-conditioned medium (MSC-CM), also known as secretome, is secreted by MSC and contains a variety of bioactive factors with anti-inflammatory, anti-apoptotic, neuroprotection, and proliferation effects. Increasing evidence proved that MSC-CM plays an important role in various diseases, including skin, bone, muscle, and dental diseases. However, the role of MSC-CM in ocular diseases is not quite clear, Therefore, this article reviewed the composition, biological functions, preparation, and characterization of MSC-CM and summarized current research advances in different sources of MSC-CM in corneal and retinal diseases, including dry eye, corneal epithelial damage, chemical corneal injury, retinitis pigmentosa (RP), anterior ischemic optic neuropathy (AION), diabetic retinopathy (DR), and other retinal degenerative changes. For these diseases, MSC-CM can promote cell proliferation, reduce inflammation and vascular leakage, inhibit retinal cell degeneration and apoptosis, protect corneal and retinal structures, and further improves visual function. Hence, we summarize the production, composition and biological functions of MSC-CM and focus on describing its mechanisms in the treatment of ocular diseases. Furthermore, we look at the unexplored mechanisms and further research directions for MSC-CM based therapy in ocular diseases.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jing Xiao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Luzhong Fa
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Fanwen Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hui Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lin Zhou
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
10
|
Mesenchymal Stromal Cells-Derived Extracellular Vesicles Regulate Dendritic Cell Functions in Dry Eye Disease. Cells 2022; 12:cells12010033. [PMID: 36611828 PMCID: PMC9818747 DOI: 10.3390/cells12010033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
We explored the therapeutic efficacy of Mesenchymal stromal cells-derived extracellular vesicles (MSC-EVs) and its inhibition of the functions of dendritic cells (DCs) in dry eye disease (DED). MSC-EVs were isolated from the culture supernatants of mesenchymal stromal cells (MSCs) and characterized. In vitro, human corneal epithelial cells (HCECs) were cultured in hyperosmotic medium to simulate the DED hyperosmotic environment and treated with MSC-EVs. Cell viability was assessed, and the expression of inflammatory cytokines was quantified. Next, we induced DED in female C57BL/6 mice and divided the mice into groups treated with either MSC-EVs or phosphate buffer solution (PBS) eye drops. Disease severity was assessed; mRNA expression of inflammatory cytokines was analyzed by RT-PCR; and Th17 cells were detected by flow cytometry. Lastly, we evaluated DCs by immunofluorescence and flow cytometric analysis to assess its amounts and maturation. MSC-EVs showed protective effects on HCECs under hyperosmotic stress in vitro, suppressing the expression of inflammatory cytokines. In vivo, mice topically treated with MSC-Evs presented reduced DED disease severity compared to PBS-treated mice. MSC-Evs downregulated the expression of inflammatory cytokines, including TNF-α, IL-6, and IL-1β, as well as the frequency of Th17 cells. Further investigation showed that MSC-EVs suppressed the increase of amounts and the maturation of DCs in DED. Changes of morphological characters of DCs were also inhibited by MSC-EVs. Our study revealed that MSC-EVs suppressed ocular surface inflammation by inhibiting DCs activation-mediated Th17 immune responses, explicating the therapeutic potential of MSC-EVs in DED and other ocular surface diseases.
Collapse
|
11
|
Karamali F, Behtaj S, Babaei-Abraki S, Hadady H, Atefi A, Savoj S, Soroushzadeh S, Najafian S, Nasr Esfahani MH, Klassen H. Potential therapeutic strategies for photoreceptor degeneration: the path to restore vision. J Transl Med 2022; 20:572. [PMID: 36476500 PMCID: PMC9727916 DOI: 10.1186/s12967-022-03738-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
Photoreceptors (PRs), as the most abundant and light-sensing cells of the neuroretina, are responsible for converting light into electrical signals that can be interpreted by the brain. PR degeneration, including morphological and functional impairment of these cells, causes significant diminution of the retina's ability to detect light, with consequent loss of vision. Recent findings in ocular regenerative medicine have opened promising avenues to apply neuroprotective therapy, gene therapy, cell replacement therapy, and visual prostheses to the challenge of restoring vision. However, successful visual restoration in the clinical setting requires application of these therapeutic approaches at the appropriate stage of the retinal degeneration. In this review, firstly, we discuss the mechanisms of PR degeneration by focusing on the molecular mechanisms underlying cell death. Subsequently, innovations, recent developments, and promising treatments based on the stage of disorder progression are further explored. Then, the challenges to be addressed before implementation of these therapies in clinical practice are considered. Finally, potential solutions to overcome the current limitations of this growing research area are suggested. Overall, the majority of current treatment modalities are still at an early stage of development and require extensive additional studies, both pre-clinical and clinical, before full restoration of visual function in PR degeneration diseases can be realized.
Collapse
Affiliation(s)
- Fereshteh Karamali
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sanaz Behtaj
- grid.1022.10000 0004 0437 5432Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia ,grid.1022.10000 0004 0437 5432Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia
| | - Shahnaz Babaei-Abraki
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hanieh Hadady
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Atefeh Atefi
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Soraya Savoj
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sareh Soroushzadeh
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Samaneh Najafian
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Henry Klassen
- grid.266093.80000 0001 0668 7243Gavin Herbert Eye Institute, Irvine, CA USA
| |
Collapse
|
12
|
Errede M, Annese T, Petrosino V, Longo G, Girolamo F, de Trizio I, d'Amati A, Uccelli A, Kerlero de Rosbo N, Virgintino D. Microglia-derived CCL2 has a prime role in neocortex neuroinflammation. Fluids Barriers CNS 2022; 19:68. [PMID: 36042496 PMCID: PMC9429625 DOI: 10.1186/s12987-022-00365-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022] Open
Abstract
Background In myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), several areas of demyelination are detectable in mouse cerebral cortex, where neuroinflammation events are associated with scarce inflammatory infiltrates and blood–brain barrier (BBB) impairment. In this condition, the administration of mesenchymal stem cells (MSCs) controls neuroinflammation, attenuating astrogliosis and promoting the acquisition of stem cell traits by astrocytes. To contribute to the understanding of the mechanisms involved in the pathogenesis of EAE in gray matter and in the reverting effects of MSC treatment, the neocortex of EAE-affected mice was investigated by analyzing the cellular source(s) of chemokine CCL2, a molecule involved in immune cell recruitment and BBB-microvessel leakage. Methods The study was carried out by immunohistochemistry (IHC) and dual RNAscope IHC/in situ hybridization methods, using astrocyte, NG2-glia, macrophage/microglia, and microglia elective markers combined with CCL2. Results The results showed that in EAE-affected mice, hypertrophic microglia are the primary source of CCL2, surround the cortex neurons and the damaged BBB microvessels. In EAE-affected mice treated with MSCs, microgliosis appeared diminished very soon (6 h) after treatment, an observation that was long-lasting (tested after 10 days). This was associated with a reduced CCL2 expression and with apparently preserved/restored BBB features. In conclusion, the hallmark of EAE in the mouse neocortex is a condition of microgliosis characterized by high levels of CCL2 expression. Conclusions This finding supports relevant pathogenetic and clinical aspects of the human disease, while the demonstrated early control of neuroinflammation and BBB permeability exerted by treatment with MSCs may have important therapeutic implications. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00365-5.
Collapse
Affiliation(s)
- Mariella Errede
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Piazza Giulio Cesare, Policlinics, 70124, Bari, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Piazza Giulio Cesare, Policlinics, 70124, Bari, Italy.,Department of Medicine and Surgery, LUM University, Casamassima Bari, Italy
| | - Valentina Petrosino
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Giovanna Longo
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Piazza Giulio Cesare, Policlinics, 70124, Bari, Italy
| | - Francesco Girolamo
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Piazza Giulio Cesare, Policlinics, 70124, Bari, Italy
| | - Ignazio de Trizio
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Piazza Giulio Cesare, Policlinics, 70124, Bari, Italy
| | - Antonio d'Amati
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Piazza Giulio Cesare, Policlinics, 70124, Bari, Italy.,Department of Emergency and Organ Transplantation, Pathology Section, University of Bari School of Medicine, Bari, Italy
| | - Antonio Uccelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Nicole Kerlero de Rosbo
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,TomaLab, Institute of Nanotechnology, Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Piazza Giulio Cesare, Policlinics, 70124, Bari, Italy.
| |
Collapse
|
13
|
Ramalingam M, Jeong HS, Hwang J, Cho HH, Kim BC, Kim E, Jang S. Autophagy Signaling by Neural-Induced Human Adipose Tissue-Derived Stem Cell-Conditioned Medium during Rotenone-Induced Toxicity in SH-SY5Y Cells. Int J Mol Sci 2022; 23:ijms23084193. [PMID: 35457010 PMCID: PMC9031864 DOI: 10.3390/ijms23084193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 12/04/2022] Open
Abstract
Rotenone (ROT) inhibits mitochondrial complex I, leading to reactive oxygen species formation, which causes neurodegeneration and alpha-synuclein (α-syn) aggregation and, consequently, Parkinson’s disease. We previously found that a neurogenic differentiated human adipose tissue-derived stem cell-conditioned medium (NI-hADSC-CM) was protective against ROT-induced toxicity in SH-SY5Y cells. In the present study, ROT significantly decreased the phospho (p)-mTORC1/total (t)-mTOR, p-mTORC2/t-mTOR, and p-/t-ULK1 ratios and the ATG13 level by increasing the DEPTOR level and p-/t-AMPK ratio. Moreover, ROT increased the p-/t-Akt ratio and glycogen synthase kinase-3β (GSK3β) activity by decreasing the p-/t-ERK1/2 ratios and beclin-1 level. ROT also promoted the lipidation of LC3B-I to LC3B-II by inducing autophagosome formation in Triton X-100-soluble and -insoluble cell lysate fractions. Additionally, the levels of ATG3, 5, 7, and 12 were decreased, along with those of lysosomal LAMP1, LAMP2, and TFEB, leading to lysosomal dysfunction. However, NI-hADSC-CM treatment increased the p-mTORC1, p-mTORC2, p-ULK1, p-Akt, p-ERK1/2, ATG13, and beclin-1 levels and decreased the p-AMPK level and GSK3β activity in response to ROT-induced toxicity. Additionally, NI-hADSC-CM restored the LC3B-I level, increased the p62 level, and normalized the ATG and lysosomal protein amounts to control levels. Autophagy array revealed that the secreted proteins in NI-hADSC-CM could be crucial in the neuroprotection. Taken together, our results showed that the neuroprotective effects of NI-hADSC-CM on the autophagy signaling pathways could alleviate the aggregation of α-syn in Parkinson’s disease and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Mahesh Ramalingam
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Korea; (H.-S.J.); (J.H.)
- Correspondence: (M.R.); (S.J.)
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Korea; (H.-S.J.); (J.H.)
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Korea; (H.-S.J.); (J.H.)
| | - Hyong-Ho Cho
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju 61469, Korea;
| | - Byeong C. Kim
- Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju 61469, Korea;
| | - Eungpil Kim
- Jeonnam Biopharmaceutical Research Center, Hwasun 58141, Korea;
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Korea; (H.-S.J.); (J.H.)
- Correspondence: (M.R.); (S.J.)
| |
Collapse
|
14
|
Usategui-Martín R, Puertas-Neyra K, Galindo-Cabello N, Hernández-Rodríguez LA, González-Pérez F, Rodríguez-Cabello JC, González-Sarmiento R, Pastor JC, Fernandez-Bueno I. Retinal Neuroprotective Effect of Mesenchymal Stem Cells Secretome Through Modulation of Oxidative Stress, Autophagy, and Programmed Cell Death. Invest Ophthalmol Vis Sci 2022; 63:27. [PMID: 35486068 PMCID: PMC9055551 DOI: 10.1167/iovs.63.4.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Purpose Degenerative mechanisms of retinal neurodegenerative diseases (RND) share common cellular and molecular signalization pathways. Curative treatment does not exist and cell-based therapy, through the paracrine properties of mesenchymal stem cells (MSC), is a potential unspecific treatment for RND. This study aimed to evaluate the neuroprotective capability of human bone marrow (bm) MSC secretome and its potential to modulate retinal responses to neurodegeneration. Methods An in vitro model of spontaneous retinal neurodegeneration was used to compare three days of monocultured neuroretina (NR), NR cocultured with bmMSC, and NR cultured with bmMSC secretome. We evaluated retinal morphology markers (Lectin peanut agglutinin, rhodopsin, protein kinase C α isoform, neuronal-specific nuclear protein, glial fibrillary acidic protein, TdT-mediated dUTP nick-end labeling, and vimentin) and proteins involved in apoptosis (apoptosis-inductor factor, caspase-3), necroptosis (MLKL), and autophagy (p62). Besides, we analyzed the relative mRNA expression through qPCR of genes involved in apoptosis (BAX, BCL2, CASP3, CASP8, CASP9), necroptosis (MLKL, RIPK1, RIPK3), autophagy (ATG7, BCLIN1, LC3B, mTOR, SQSTM1), oxidative stress (COX2, CYBA, CYBB, GPX6, SOD1, TXN2, TXNRD1) and inflammation (IL1, IL6, IL10, TGFb1, TNFa). Results The bmMSC secretome preserves retinal morphology, limits pro-apoptotic- and pro-necroptotic-related gene and protein expression, modulates autophagy-related genes and proteins, and stimulates the activation of antioxidant-associated genes. Conclusions The neuroprotective ability of the bmMSC secretome is associated with activation of antioxidant machinery, modulation of autophagy, and inhibition of apoptosis and necroptosis during retinal degeneration. The neuroprotective effect of bmMSC secretomes in the presence/absence of MSC looks similar. Our current results reinforce the hypothesis that the human bmMSC secretome slows retinal neurodegeneration and may be a therapeutic option for treating RND.
Collapse
Affiliation(s)
- Ricardo Usategui-Martín
- Instituto Universitario de Oftalmobiología Aplicada, Retina Group, Universidad de Valladolid, Valladolid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain.,Red Temática de Investigación Cooperativa en Salud, Oftared, Instituto de Salud Carlos III, Valladolid, Spain.,RetiBrain (RED2018-102499-T), Ministerio de Ciencia, Innovación y Universidades, Valladolid, Spain
| | - Kevin Puertas-Neyra
- Instituto Universitario de Oftalmobiología Aplicada, Retina Group, Universidad de Valladolid, Valladolid, Spain
| | - Nadia Galindo-Cabello
- Instituto Universitario de Oftalmobiología Aplicada, Retina Group, Universidad de Valladolid, Valladolid, Spain.,Postgraduate Unit, Faculty of Biological Sciences, National University of San Marcos, Lima, Peru
| | | | - Fernando González-Pérez
- Group for Advanced Materials and Nanobiotechnology (GIR BIOFORGE), CIBER-BBN, Edificio LUCIA, Universidad de Valladolid, Paseo Belén 19, Valladolid, Spain
| | - José Carlos Rodríguez-Cabello
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain.,Group for Advanced Materials and Nanobiotechnology (GIR BIOFORGE), CIBER-BBN, Edificio LUCIA, Universidad de Valladolid, Paseo Belén 19, Valladolid, Spain
| | - Rogelio González-Sarmiento
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, Salamanca, Spain.,Institute of Molecular and Cellular Biology of Cancer, University of Salamanca-CSIC, Salamanca, Spain
| | - José Carlos Pastor
- Instituto Universitario de Oftalmobiología Aplicada, Retina Group, Universidad de Valladolid, Valladolid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain.,Red Temática de Investigación Cooperativa en Salud, Oftared, Instituto de Salud Carlos III, Valladolid, Spain.,RetiBrain (RED2018-102499-T), Ministerio de Ciencia, Innovación y Universidades, Valladolid, Spain
| | - Ivan Fernandez-Bueno
- Instituto Universitario de Oftalmobiología Aplicada, Retina Group, Universidad de Valladolid, Valladolid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain.,Red Temática de Investigación Cooperativa en Salud, Oftared, Instituto de Salud Carlos III, Valladolid, Spain.,RetiBrain (RED2018-102499-T), Ministerio de Ciencia, Innovación y Universidades, Valladolid, Spain
| |
Collapse
|
15
|
Dezfuly AR, Safaee A, Amirpour N, Kazemi M, Ramezani A, Jafarinia M, Dehghani A, Salehi H. Therapeutic effects of human adipose mesenchymal stem cells and their paracrine agents on sodium iodate induced retinal degeneration in rats. Life Sci 2022; 300:120570. [DOI: 10.1016/j.lfs.2022.120570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/09/2022] [Accepted: 04/18/2022] [Indexed: 11/24/2022]
|
16
|
Bonilla-Pons SÀ, Nakagawa S, Bahima EG, Fernández-Blanco Á, Pesaresi M, D'Antin JC, Sebastian-Perez R, Greco D, Domínguez-Sala E, Gómez-Riera R, Compte RIB, Dierssen M, Pulido NM, Cosma MP. Müller glia fused with adult stem cells undergo neural differentiation in human retinal models. EBioMedicine 2022; 77:103914. [PMID: 35278743 PMCID: PMC8917309 DOI: 10.1016/j.ebiom.2022.103914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Background Visual impairments are a critical medical hurdle to be addressed in modern society. Müller glia (MG) have regenerative potential in the retina in lower vertebrates, but not in mammals. However, in mice, in vivo cell fusion between MG and adult stem cells forms hybrids that can partially regenerate ablated neurons. Methods We used organotypic cultures of human retina and preparations of dissociated cells to test the hypothesis that cell fusion between human MG and adult stem cells can induce neuronal regeneration in human systems. Moreover, we established a microinjection system for transplanting human retinal organoids to demonstrate hybrid differentiation. Findings We first found that cell fusion occurs between MG and adult stem cells, in organotypic cultures of human retina as well as in cell cultures. Next, we showed that the resulting hybrids can differentiate and acquire a proto-neural electrophysiology profile when the Wnt/beta-catenin pathway is activated in the adult stem cells prior fusion. Finally, we demonstrated the engraftment and differentiation of these hybrids into human retinal organoids. Interpretation We show fusion between human MG and adult stem cells, and demonstrate that the resulting hybrid cells can differentiate towards neural fate in human model systems. Our results suggest that cell fusion-mediated therapy is a potential regenerative approach for treating human retinal dystrophies. Funding This work was supported by La Caixa Health (HR17-00231), Velux Stiftung (976a) and the Ministerio de Ciencia e Innovación, (BFU2017-86760-P) (AEI/FEDER, UE), AGAUR (2017 SGR 689, 2017 SGR 926).
Collapse
Affiliation(s)
- Sergi Àngel Bonilla-Pons
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat de Barcelona (UB), Barcelona, Spain
| | - Shoma Nakagawa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Elena Garreta Bahima
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Álvaro Fernández-Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Martina Pesaresi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Justin Christopher D'Antin
- Centro de Oftalmología Barraquer, Barcelona, Spain; Institut Universitari Barraquer, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Ruben Sebastian-Perez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Daniela Greco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Eduardo Domínguez-Sala
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Raúl Gómez-Riera
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Rafael Ignacio Barraquer Compte
- Centro de Oftalmología Barraquer, Barcelona, Spain; Institut Universitari Barraquer, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Biomedical Research Networking Centre On Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
| | - Nuria Montserrat Pulido
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell an Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China.
| |
Collapse
|
17
|
Puertas-Neyra K, Galindo-Cabello N, Hernández-Rodríguez LA, González-Pérez F, Rodríguez-Cabello JC, González-Sarmiento R, Pastor JC, Usategui-Martín R, Fernandez-Bueno I. Programmed Cell Death and Autophagy in an in vitro Model of Spontaneous Neuroretinal Degeneration. Front Neuroanat 2022; 16:812487. [PMID: 35221932 PMCID: PMC8873173 DOI: 10.3389/fnana.2022.812487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/18/2022] [Indexed: 11/15/2022] Open
Abstract
Retinal neurodegenerative diseases are the leading causes of visual impairment and irreversible blindness worldwide. Although the retinal response to injury remains closely similar between different retinal neurodegenerative diseases, available therapeutic alternatives are only palliative, too expensive, or very specific, such as gene therapy. In that sense, the development of broad-spectrum neuroprotective therapies seems to be an excellent option. In this regard, it is essential to identify molecular targets involved in retinal degeneration, such as cell death mechanisms. Apoptosis has been considered as the primary cell death mechanism during retinal degeneration; however, recent studies have demonstrated that the only use of anti-apoptotic drugs is not enough to confer good neuroprotection in terms of cell viability and preservation. For that reason, the interrelationship that exists between apoptosis and other cell death mechanisms needs to be characterized deeply to design future therapeutic options that simultaneously block the main cell death pathways. In that sense, the study aimed to characterize the programmed cell death (in terms of apoptosis and necroptosis) and autophagy response and modulation in retinal neurodegenerative diseases, using an in vitro model of spontaneous retinal neurodegeneration. For that purpose, we measured the mRNA relative expression through qPCR of a selected pool of genes involved in apoptosis (BAX, BCL2, CASP3, CASP8, and CASP9), necroptosis (MLKL, RIPK1, and RIPK3), and autophagy (ATG7, BCLIN1, LC3B, mTOR, and SQSTM1); besides, the immunoexpression of their encoding proteins (Casp3, MLKL, RIPK1, LC3B, and p62) were analyzed using immunohistochemistry. Our results showed an increase of pro-apoptotic and pro-necroptotic related genes and proteins during in vitro retinal neurodegeneration. Besides, we describe for the first time the modulation between programmed cell death mechanisms and autophagy in an in vitro retinal neurodegeneration model. This study reinforces the idea that cell death mechanisms are closely interconnected and provides new information about molecular signaling and autophagy along the retinal degeneration process.
Collapse
Affiliation(s)
- Kevin Puertas-Neyra
- Retina Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
| | - Nadia Galindo-Cabello
- Retina Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
- Postgraduate Unit, Faculty of Biological Sciences, National University of San Marcos, Lima, Peru
| | | | - Fernando González-Pérez
- Group for Advanced Materials and Nanobiotechnology (GIR BIOFORGE), CIBER-BBN, Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
| | - José Carlos Rodríguez-Cabello
- Group for Advanced Materials and Nanobiotechnology (GIR BIOFORGE), CIBER-BBN, Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
| | - Rogelio González-Sarmiento
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain
| | - José Carlos Pastor
- Retina Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Oftared, Instituto de Salud Carlos III, Valladolid, Spain
- RetiBrain (RED2018-102499-T), Ministerio de Ciencia, Innovación y Universidades, Valladolid, Spain
| | - Ricardo Usategui-Martín
- Retina Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Oftared, Instituto de Salud Carlos III, Valladolid, Spain
- RetiBrain (RED2018-102499-T), Ministerio de Ciencia, Innovación y Universidades, Valladolid, Spain
- Ricardo Usategui-Martín,
| | - Ivan Fernandez-Bueno
- Retina Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Oftared, Instituto de Salud Carlos III, Valladolid, Spain
- RetiBrain (RED2018-102499-T), Ministerio de Ciencia, Innovación y Universidades, Valladolid, Spain
- *Correspondence: Ivan Fernandez-Bueno,
| |
Collapse
|
18
|
Jin N, Sha W, Gao L. Shaping the Microglia in Retinal Degenerative Diseases Using Stem Cell Therapy: Practice and Prospects. Front Cell Dev Biol 2021; 9:741368. [PMID: 34966736 PMCID: PMC8710684 DOI: 10.3389/fcell.2021.741368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Retinal degenerative disease (RDD) refers to a group of diseases with retinal degeneration that cause vision loss and affect people's daily lives. Various therapies have been proposed, among which stem cell therapy (SCT) holds great promise for the treatment of RDDs. Microglia are immune cells in the retina that have two activation phenotypes, namely, pro-inflammatory M1 and anti-inflammatory M2 phenotypes. These cells play an important role in the pathological progression of RDDs, especially in terms of retinal inflammation. Recent studies have extensively investigated the therapeutic potential of stem cell therapy in treating RDDs, including the immunomodulatory effects targeting microglia. In this review, we substantially summarized the characteristics of RDDs and microglia, discussed the microglial changes and phenotypic transformation of M1 microglia to M2 microglia after SCT, and proposed future directions for SCT in treating RDDs.
Collapse
Affiliation(s)
- Ni Jin
- Senior Department of Ophthalmology, The Third Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China.,Department of Endocrinology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Weiwei Sha
- Department of Endocrinology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lixiong Gao
- Senior Department of Ophthalmology, The Third Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
19
|
Adak S, Magdalene D, Deshmukh S, Das D, Jaganathan BG. A Review on Mesenchymal Stem Cells for Treatment of Retinal Diseases. Stem Cell Rev Rep 2021; 17:1154-1173. [PMID: 33410097 PMCID: PMC7787584 DOI: 10.1007/s12015-020-10090-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Mesenchymal Stem Cells (MSCs) have been studied extensively for the treatment of several retinal diseases. The therapeutic potential of MSCs lies in its ability to differentiate into multiple lineages and secretome enriched with immunomodulatory, anti-angiogenic and neurotrophic factors. Several studies have reported the role of MSCs in repair and regeneration of the damaged retina where the secreted factors from MSCs prevent retinal degeneration, improve retinal morphology and function. MSCs also donate mitochondria to rescue the function of retinal cells and exosomes secreted by MSCs were found to have anti-apoptotic and anti-inflammatory effects. Based on several promising results obtained from the preclinical studies, several clinical trials were initiated to explore the potential advantages of MSCs for the treatment of retinal diseases. This review summarizes the various properties of MSCs that help to repair and restore the damaged retinal cells and its potential for the treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Sanjucta Adak
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Damaris Magdalene
- Department of Strabismus, Sri Sankaradeva Nethralaya Hospital, Guwahati, Assam, India
| | - Saurabh Deshmukh
- Department of Strabismus, Sri Sankaradeva Nethralaya Hospital, Guwahati, Assam, India
| | - Dipankar Das
- Department of Pathology, Sri Sankaradeva Nethralaya Hospital, Guwahati, Assam, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
20
|
Mannino G, Russo C, Longo A, Anfuso CD, Lupo G, Lo Furno D, Giuffrida R, Giurdanella G. Potential therapeutic applications of mesenchymal stem cells for the treatment of eye diseases. World J Stem Cells 2021; 13:632-644. [PMID: 34249232 PMCID: PMC8246249 DOI: 10.4252/wjsc.v13.i6.632] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/07/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cell-based treatments have been extensively explored in the last few decades to develop therapeutic strategies aimed at providing effective alternatives for those human pathologies in which surgical or pharmacological therapies produce limited effects. Among stem cells of different sources, mesenchymal stem cells (MSCs) offer several advantages, such as the absence of ethical concerns, easy harvesting, low immunogenicity and reduced tumorigenesis risks. Other than a multipotent differentiation ability, MSCs can release extracellular vesicles conveying proteins, mRNA and microRNA. Thanks to these properties, new therapeutic approaches have been designed for the treatment of various pathologies, including ocular diseases. In this review, the use of different MSCs and different administration strategies are described for the treatment of diabetic retinopathy, glaucoma, and retinitis pigmentosa. In a large number of investigations, positive results have been obtained by in vitro experiments and by MSC administration in animal models. Most authors agree that beneficial effects are likely related to MSC paracrine activity. Based on these considerations, many clinical trials have already been carried out. Overall, although some adverse effects have been described, promising outcomes are reported. It can be assumed that in the near future, safer and more effective protocols will be developed for more numerous clinical applications to improve the quality of life of patients affected by eye diseases.
Collapse
Affiliation(s)
- Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Anna Longo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Giovanni Giurdanella
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| |
Collapse
|
21
|
Coco-Martin RM, Pastor-Idoate S, Pastor JC. Cell Replacement Therapy for Retinal and Optic Nerve Diseases: Cell Sources, Clinical Trials and Challenges. Pharmaceutics 2021; 13:pharmaceutics13060865. [PMID: 34208272 PMCID: PMC8230855 DOI: 10.3390/pharmaceutics13060865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022] Open
Abstract
The aim of this review was to provide an update on the potential of cell therapies to restore or replace damaged and/or lost cells in retinal degenerative and optic nerve diseases, describing the available cell sources and the challenges involved in such treatments when these techniques are applied in real clinical practice. Sources include human fetal retinal stem cells, allogenic cadaveric human cells, adult hippocampal neural stem cells, human CNS stem cells, ciliary pigmented epithelial cells, limbal stem cells, retinal progenitor cells (RPCs), human pluripotent stem cells (PSCs) (including both human embryonic stem cells (ESCs) and human induced pluripotent stem cells (iPSCs)) and mesenchymal stem cells (MSCs). Of these, RPCs, PSCs and MSCs have already entered early-stage clinical trials since they can all differentiate into RPE, photoreceptors or ganglion cells, and have demonstrated safety, while showing some indicators of efficacy. Stem/progenitor cell therapies for retinal diseases still have some drawbacks, such as the inhibition of proliferation and/or differentiation in vitro (with the exception of RPE) and the limited long-term survival and functioning of grafts in vivo. Some other issues remain to be solved concerning the clinical translation of cell-based therapy, including (1) the ability to enrich for specific retinal subtypes; (2) cell survival; (3) cell delivery, which may need to incorporate a scaffold to induce correct cell polarization, which increases the size of the retinotomy in surgery and, therefore, the chance of severe complications; (4) the need to induce a localized retinal detachment to perform the subretinal placement of the transplanted cell; (5) the evaluation of the risk of tumor formation caused by the undifferentiated stem cells and prolific progenitor cells. Despite these challenges, stem/progenitor cells represent the most promising strategy for retinal and optic nerve disease treatment in the near future, and therapeutics assisted by gene techniques, neuroprotective compounds and artificial devices can be applied to fulfil clinical needs.
Collapse
Affiliation(s)
- Rosa M. Coco-Martin
- Instituto de Oftalmobiologia Aplicada (IOBA), Medical School, Universidad de Valladolid, 47011 Valladolid, Spain; (S.P.-I.); (J.C.P.)
- National Institute of Health Carlos III (ISCIII), (RETICS) Cooperative Health Network for Research in Ophthalmology (Oftared), 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-983423559
| | - Salvador Pastor-Idoate
- Instituto de Oftalmobiologia Aplicada (IOBA), Medical School, Universidad de Valladolid, 47011 Valladolid, Spain; (S.P.-I.); (J.C.P.)
- National Institute of Health Carlos III (ISCIII), (RETICS) Cooperative Health Network for Research in Ophthalmology (Oftared), 28040 Madrid, Spain
- Department of Ophthalmology, Hospital Clinico Universitario of Valladolid, 47003 Valladolid, Spain
| | - Jose Carlos Pastor
- Instituto de Oftalmobiologia Aplicada (IOBA), Medical School, Universidad de Valladolid, 47011 Valladolid, Spain; (S.P.-I.); (J.C.P.)
- National Institute of Health Carlos III (ISCIII), (RETICS) Cooperative Health Network for Research in Ophthalmology (Oftared), 28040 Madrid, Spain
- Department of Ophthalmology, Hospital Clinico Universitario of Valladolid, 47003 Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Fundacion del Instituto de Estudios de Ciencias de la Salud de Castilla y León (ICSCYL), 42002 Soria, Spain
| |
Collapse
|
22
|
Extracellular Vesicles from Human Adipose-Derived Mesenchymal Stem Cells: A Review of Common Cargos. Stem Cell Rev Rep 2021; 18:854-901. [PMID: 33904115 PMCID: PMC8942954 DOI: 10.1007/s12015-021-10155-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 12/14/2022]
Abstract
In recent years, the interest in adipose tissue mesenchymal cell–derived extracellular vesicles (AT-MSC-EVs) has increasingly grown. Numerous articles support the potential of human AT-MSC-EVs as a new therapeutic option for treatment of diverse diseases in the musculoskeletal and cardiovascular systems, kidney, skin, and immune system, among others. This approach makes use of the molecules transported inside of EVs, which play an important role in cell communication and in transmission of macromolecules. However, to our knowledge, there is no database where essential information about AT-MSC-EVs cargo molecules is gathered for easy reference. The aim of this study is to describe the different molecules reported so far in AT-MSC- EVs, their main molecular functions, and biological processes in which they are involved. Recently, the presence of 591 proteins and 604 microRNAs (miRNAs) has been described in human AT-MSC-EVs. The main molecular function enabled by both proteins and miRNAs present in human AT-MSC-EVs is the binding function. Signal transduction and gene silencing are the biological processes in which a greater number of proteins and miRNAs from human AT-MSC-EVs are involved, respectively. In this review we highlight the therapeutics effects of AT-MSC-EVs related with their participation in relevant biological processes including inflammation, angiogenesis, cell proliferation, apoptosis and migration, among others.
Collapse
|
23
|
Noueihed B, Rivera JC, Dabouz R, Abram P, Omri S, Lahaie I, Chemtob S. Mesenchymal Stromal Cells Promote Retinal Vascular Repair by Modulating Sema3E and IL-17A in a Model of Ischemic Retinopathy. Front Cell Dev Biol 2021; 9:630645. [PMID: 33553187 PMCID: PMC7859341 DOI: 10.3389/fcell.2021.630645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Ischemic retinopathies (IRs), such as retinopathy of prematurity and diabetic retinopathy, are characterized by an initial phase of microvascular degeneration that results in retinal ischemia, followed by exaggerated pathologic neovascularization (NV). Mesenchymal stromal cells (MSCs) have potent pro-angiogenic and anti-inflammatory properties associated with tissue repair and regeneration, and in this regard exert protection to neurons in ischemic and degenerative conditions; however, the exact mechanisms underlying these functions remain largely unknown. Class III Semaphorins (A–G) are particularly implicated in regulating neural blood supply (as well as neurogenesis) by suppressing angiogenesis and affecting myeloid cell function; this is the case for distinct neuropillin-activating Sema3A as well as PlexinD1-activating Sema3E; but during IR the former Sema3A increases while Sema3E decreases. We investigated whether retinal vascular repair actions of MSCs are exerted by normalizing Semaphorin and downstream cytokines in IR. Intravitreal administration of MSCs or their secretome (MSCs-conditioned media [MSCs-CM]) significantly curtailed vasoobliteration as well as aberrant preretinal NV in a model of oxygen-induced retinopathy (OIR). The vascular repair effects of MSCs-CM in the ischemic retina were associated with restored levels of Sema3E. Vascular benefits of MSCs-CM were reversed by anti-Sema3E; while intravitreal injection of anti-angiogenic recombinant Sema3E (rSema3E) in OIR-subjected mice reproduced effects of MSCs-CM by inhibiting as expected preretinal NV but also by decreasing vasoobliteration. To explain these opposing vascular effects of Sema3E we found in OIR high retinal levels, respectively, of the pro- and anti-angiogenic IL-17A and Sema3A-regulating IL-1β; IL-17A positively affected expression of IL-1β. rSema3E decreased concentrations of these myeloid cell-derived pro-inflammatory cytokines in vitro and in vivo. Importantly, IL-17A suppression by MSCs-CM was abrogated by anti-Sema3E neutralizing antibody. Collectively, our findings provide novel evidence by which MSCs inhibit aberrant NV and diminish vasoobliteration (promoting revascularization) in retinopathy by restoring (at least in part) neuronal Sema3E levels that reduce pathological levels of IL-17A (and in turn other proinflammatory factors) in myeloid cells. The ability of MSCs to generate a microenvironment permissive for vascular regeneration by controlling the production of neuronal factors involved in immunomodulatory activities is a promising opportunity for stem cell therapy in ocular degenerative diseases.
Collapse
Affiliation(s)
- Baraa Noueihed
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - José Carlos Rivera
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Rabah Dabouz
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Pénélope Abram
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Samy Omri
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Isabelle Lahaie
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Sylvain Chemtob
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| |
Collapse
|
24
|
Tuekprakhon A, Sangkitporn S, Trinavarat A, Pawestri AR, Vamvanij V, Ruangchainikom M, Luksanapruksa P, Pongpaksupasin P, Khorchai A, Dambua A, Boonchu P, Yodtup C, Uiprasertkul M, Sangkitporn S, Atchaneeyasakul LO. Intravitreal autologous mesenchymal stem cell transplantation: a non-randomized phase I clinical trial in patients with retinitis pigmentosa. Stem Cell Res Ther 2021; 12:52. [PMID: 33422139 PMCID: PMC7796606 DOI: 10.1186/s13287-020-02122-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Background Retinitis pigmentosa (RP) is a progressive inherited retinal disease with great interest for finding effective treatment modalities. Stem cell-based therapy is one of the promising candidates. We aimed to investigate the safety, feasibility, and short-term efficacy of intravitreal injection of bone marrow-derived mesenchymal stem cells (BM-MSCs) in participants with advanced stage RP. Methods This non-randomized phase I clinical trial enrolled 14 participants, categorized into three groups based on a single dose intravitreal BM-MSC injection of 1 × 106, 5 × 106, or 1 × 107 cells. We evaluated signs of inflammation and other adverse events (AEs). We also assessed the best corrected visual acuity (BCVA), visual field (VF), central subfield thickness (CST), and subjective experiences. Results During the 12-month period, we noticed several mild and transient AEs. Interestingly, we found statistically significant improvements in the BCVA compared to baseline, although they returned to the baseline at 12 months. The VF and CST were stable, indicating no remarkable disease progression. We followed 12 participants beyond the study period, ranging from 1.5 to 7 years, and observed one severe but manageable AE at year 3. Conclusion Intravitreal injection of BM-MSCs appears to be safe and potentially effective. All adverse events during the 12-month period required observation without any intervention. For the long-term follow-up, only one participant needed surgical treatment for a serious adverse event and the vision was restored. An enrollment of larger number of participants with less advanced RP and long-term follow-up is required to evaluate the safety and efficacy of this intervention. Trial registration ClinicalTrials.gov, NCT01531348. Registered on February 10, 2012 Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02122-7.
Collapse
Affiliation(s)
- Aekkachai Tuekprakhon
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Siripakorn Sangkitporn
- Stem cell and Regenerative Medicine Center, Department of Medical Sciences, Ministry of Public Health, National Institute of Health, 88/7 Tivanon Road, Muang, Nonthaburi, 11000, Thailand
| | - Adisak Trinavarat
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | | | - Visit Vamvanij
- Department of Orthopaedic Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Monchai Ruangchainikom
- Department of Orthopaedic Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Panya Luksanapruksa
- Department of Orthopaedic Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Phitchapa Pongpaksupasin
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand.,Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Areerat Khorchai
- Stem cell and Regenerative Medicine Center, Department of Medical Sciences, Ministry of Public Health, National Institute of Health, 88/7 Tivanon Road, Muang, Nonthaburi, 11000, Thailand
| | - Acharaporn Dambua
- Stem cell and Regenerative Medicine Center, Department of Medical Sciences, Ministry of Public Health, National Institute of Health, 88/7 Tivanon Road, Muang, Nonthaburi, 11000, Thailand
| | - Patcharaporn Boonchu
- Stem cell and Regenerative Medicine Center, Department of Medical Sciences, Ministry of Public Health, National Institute of Health, 88/7 Tivanon Road, Muang, Nonthaburi, 11000, Thailand
| | - Chonlada Yodtup
- Stem cell and Regenerative Medicine Center, Department of Medical Sciences, Ministry of Public Health, National Institute of Health, 88/7 Tivanon Road, Muang, Nonthaburi, 11000, Thailand
| | - Mongkol Uiprasertkul
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Somchai Sangkitporn
- Stem cell and Regenerative Medicine Center, Department of Medical Sciences, Ministry of Public Health, National Institute of Health, 88/7 Tivanon Road, Muang, Nonthaburi, 11000, Thailand.
| | - La-Ongsri Atchaneeyasakul
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand.
| |
Collapse
|
25
|
Tezel T, Ruff A. Retinal cell transplantation in retinitis pigmentosa. Taiwan J Ophthalmol 2021; 11:336-347. [PMID: 35070661 PMCID: PMC8757529 DOI: 10.4103/tjo.tjo_48_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/10/2021] [Indexed: 11/25/2022] Open
Abstract
Retinitis pigmentosa is the most common hereditary retinal disease. Dietary supplements, neuroprotective agents, cytokines, and lately, prosthetic devices, gene therapy, and optogenetics have been employed to slow down the retinal degeneration or improve light perception. Completing retinal circuitry by transplanting photoreceptors has always been an appealing idea in retinitis pigmentosa. Recent developments in stem cell technology, retinal imaging techniques, tissue engineering, and transplantation techniques have brought us closer to accomplish this goal. The eye is an ideal organ for cell transplantation due to a low number of cells required to restore vision, availability of safe surgical and imaging techniques to transplant and track the cells in vivo, and partial immune privilege provided by the subretinal space. Human embryonic stem cells, induced pluripotential stem cells, and especially retinal organoids provide an adequate number of cells at a desired developmental stage which may maximize integration of the graft to host retina. However, stem cells must be manufactured under strict good manufacturing practice protocols due to known tumorigenicity as well as possible genetic and epigenetic stabilities that may pose a danger to the recipient. Immune compatibility of stem cells still stands as a problem for their widespread use for retinitis pigmentosa. Transplantation of stem cells from different sources revealed that some of the transplanted cells may not integrate the host retina but slow down the retinal degeneration through paracrine mechanisms. Discovery of a similar paracrine mechanism has recently opened a new therapeutic path for reversing the cone dormancy and restoring the sight in retinitis pigmentosa.
Collapse
|