1
|
Zhang C, Zaman LA, Poluektova LY, Gorantla S, Gendelman HE, Dash PK. Humanized Mice for Studies of HIV-1 Persistence and Elimination. Pathogens 2023; 12:879. [PMID: 37513726 PMCID: PMC10383313 DOI: 10.3390/pathogens12070879] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
A major roadblock to achieving a cure for human immunodeficiency virus type one (HIV-1) is the persistence of latent viral infections in the cells and tissue compartments of an infected human host. Latent HIV-1 proviral DNA persists in resting memory CD4+ T cells and mononuclear phagocytes (MPs; macrophages, microglia, and dendritic cells). Tissue viral reservoirs of both cell types reside in the gut, lymph nodes, bone marrow, spleen, liver, kidney, skin, adipose tissue, reproductive organs, and brain. However, despite the identification of virus-susceptible cells, several limitations persist in identifying broad latent reservoirs in infected persons. The major limitations include their relatively low abundance, the precise identification of latently infected cells, and the lack of biomarkers for identifying latent cells. While primary MP and CD4+ T cells and transformed cell lines are used to interrogate mechanisms of HIV-1 persistence, they often fail to accurately reflect the host cells and tissue environments that carry latent infections. Given the host specificity of HIV-1, there are few animal models that replicate the natural course of viral infection with any precision. These needs underlie the importance of humanized mouse models as both valuable and cost-effective tools for studying viral latency and subsequently identifying means of eliminating it. In this review, we discuss the advantages and limitations of humanized mice for studies of viral persistence and latency with an eye toward using these models to test antiretroviral and excision therapeutics. The goals of this research are to use the models to address how and under which circumstances HIV-1 latency can be detected and eliminated. Targeting latent reservoirs for an ultimate HIV-1 cure is the task at hand.
Collapse
Affiliation(s)
| | | | | | | | | | - Prasanta K. Dash
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (S.G.)
| |
Collapse
|
2
|
Urak R, Gittins B, Soemardy C, Grepo N, Goldberg L, Maker M, Shevchenko G, Davis A, Li S, Scott T, Morris KV, Forman SJ, Wang X. Evaluation of the Elements of Short Hairpin RNAs in Developing shRNA-Containing CAR T Cells. Cancers (Basel) 2023; 15:2848. [PMID: 37345185 DOI: 10.3390/cancers15102848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/23/2023] Open
Abstract
Short hairpin RNAs (shRNAs) have emerged as a powerful tool for gene knockdown in various cellular systems, including chimeric antigen receptor (CAR) T cells. However, the elements of shRNAs that are crucial for their efficacy in developing shRNA-containing CAR T cells remain unclear. In this study, we evaluated the impact of different shRNA elements, including promoter strength, orientation, multiple shRNAs, self-targeting, and sense and antisense sequence composition on the knockdown efficiency of the target gene in CAR T cells. Our findings highlight the importance of considering multiple shRNAs and their orientation to achieve effective knockdown. Moreover, we demonstrate that using a strong promoter and avoiding self-targeting can enhance CAR T cell functionality. These results provide a framework for the rational design of CAR T cells with shRNA-mediated knockdown capabilities, which could improve the therapeutic efficacy of CAR T cell-based immunotherapy.
Collapse
Affiliation(s)
- Ryan Urak
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
- Center for Gene Therapy, Beckman Research Institute, Duarte, CA 91010, USA
| | - Brenna Gittins
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Citradewi Soemardy
- Center for Gene Therapy, Beckman Research Institute, Duarte, CA 91010, USA
| | - Nicole Grepo
- Center for Gene Therapy, Beckman Research Institute, Duarte, CA 91010, USA
| | - Lior Goldberg
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Madeleine Maker
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Galina Shevchenko
- Center for Gene Therapy, Beckman Research Institute, Duarte, CA 91010, USA
| | - Alicia Davis
- Center for Gene Therapy, Beckman Research Institute, Duarte, CA 91010, USA
| | - Shirley Li
- Center for Gene Therapy, Beckman Research Institute, Duarte, CA 91010, USA
| | - Tristan Scott
- Center for Gene Therapy, Beckman Research Institute, Duarte, CA 91010, USA
| | - Kevin V Morris
- Menzies Health Institute Queensland, School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Southport, QLD 4215, Australia
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Xiuli Wang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
3
|
Choudhary MC, Cyktor JC, Riddler SA. Advances in HIV-1-specific chimeric antigen receptor cells to target the HIV-1 reservoir. J Virus Erad 2022; 8:100073. [PMID: 35784676 PMCID: PMC9241028 DOI: 10.1016/j.jve.2022.100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/15/2022] [Indexed: 01/09/2023] Open
Abstract
Antiretroviral therapy (ART) for HIV-1 has dramatically improved outcomes for people living with HIV-1 but requires life-long adherence and can be associated with short and long-term toxicity. Numerous pre-clinical and clinical investigations are underway to develop therapies for immune control of HIV-1 in the absence of ART. The success of chimeric antigen receptor (CAR) cell therapy for hematological malignancy has renewed efforts to develop and investigate CAR cells as strategies to enhance HIV-1 immunity, enable virus control or elimination, and allow ART-free HIV-1 remission. Here, we review the improvements in anti-HIV-1 CAR cell therapy in the two decades since their initial clinical trials were conducted, describe the additional engineering required to protect CAR cells from HIV-1 infection, and preview the current landscape of CAR cell therapies advancing to HIV-1 clinical trials.
Collapse
Affiliation(s)
- Madhu C. Choudhary
- Corresponding author. Division of Infectious Diseases, University of Pittsburgh, Suite 510, 3601 5Th Ave., Pittsburgh, PA, 15213, USA.
| | | | | |
Collapse
|
4
|
Davis A, Morris KV, Shevchenko G. Hypoxia-directed tumor targeting of CRISPR-Cas9 and HSV-TK suicide gene therapy using lipid nanoparticles. Mol Ther Methods Clin Dev 2022; 25:158-169. [PMID: 35402634 PMCID: PMC8971340 DOI: 10.1016/j.omtm.2022.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/13/2022] [Indexed: 12/13/2022]
Abstract
Hypoxia is a characteristic feature of solid tumors that contributes to tumor aggressiveness and is associated with resistance to cancer therapy. The hypoxia inducible factor-1 (HIF-1) transcription factor complex mediates hypoxia-specific gene expression by binding to hypoxia-responsive element (HRE) sequences within the promoter of target genes. HRE-driven expression of therapeutic cargo has been widely explored as a strategy to achieve cancer-specific gene expression. By utilizing this system, we achieve hypoxia-specific expression of two therapeutically relevant cargo elements: the herpes simplex virus thymidine kinase (HSV-tk) suicide gene and the CRISPR-Cas9 nuclease. Using an expression vector containing five copies of the HRE derived from the vascular endothelial growth factor gene, we are able to show high transgene expression in cells in a hypoxic environment, similar to levels achieved using the cytomegalovirus (CMV) and CBh promoters. Furthermore, we are able to deliver our therapeutic cargo to tumor cells with high efficiency using plasmid-packaged lipid nanoparticles (LNPs) to achieve specific killing of tumor cells in hypoxic conditions while maintaining tight regulation with no significant changes to cell viability in normoxia.
Collapse
Affiliation(s)
- Alicia Davis
- Center for Gene Therapy, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Kevin V. Morris
- Menzies Health Institute Queensland, School of Pharmacy and Medical Science Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| | - Galina Shevchenko
- Center for Gene Therapy, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
5
|
Scott TA, Supramaniam A, Idris A, Cardoso AA, Shrivastava S, Kelly G, Grepo NA, Soemardy C, Ray RM, McMillan NA, Morris KV. Engineered extracellular vesicles directed to the spike protein inhibit SARS-CoV-2. Mol Ther Methods Clin Dev 2022; 24:355-366. [PMID: 35127966 PMCID: PMC8806709 DOI: 10.1016/j.omtm.2022.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/28/2022] [Indexed: 12/28/2022]
Abstract
SARS-CoV-2 (CoV-2) viral infection results in COVID-19 disease, which has caused significant morbidity and mortality worldwide. A vaccine is crucial to curtail the spread of SARS-CoV-2, while therapeutics will be required to treat ongoing and reemerging infections of SARS-CoV-2 and COVID-19 disease. There are currently no commercially available effective anti-viral therapies for COVID-19, urging the development of novel modalities. Here, we describe a molecular therapy specifically targeted to neutralize SARS-CoV-2, which consists of extracellular vesicles (EVs) containing a novel fusion tetraspanin protein, CD63, embedded within an anti-CoV-2 nanobody. These anti-CoV-2-enriched EVs bind SARS-CoV-2 spike protein at the receptor-binding domain (RBD) site and can functionally neutralize SARS-CoV-2. This work demonstrates an innovative EV-targeting platform that can be employed to target and inhibit the early stages of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Tristan A. Scott
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Aroon Supramaniam
- Menzies Health Institute Queensland, School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Brisbane 4222, Australia
| | - Adi Idris
- Menzies Health Institute Queensland, School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Brisbane 4222, Australia
| | - Angelo A. Cardoso
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Surya Shrivastava
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Gabrielle Kelly
- Menzies Health Institute Queensland, School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Brisbane 4222, Australia
| | - Nicole A. Grepo
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Citradewi Soemardy
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Roslyn M. Ray
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Nigel A.J. McMillan
- Menzies Health Institute Queensland, School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Brisbane 4222, Australia
| | - Kevin V. Morris
- Menzies Health Institute Queensland, School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Brisbane 4222, Australia
| |
Collapse
|