1
|
Le Hars M, Joussain C, Jégu T, Epstein AL. Non-replicative herpes simplex virus genomic and amplicon vectors for gene therapy - an update. Gene Ther 2024:10.1038/s41434-024-00500-x. [PMID: 39533042 DOI: 10.1038/s41434-024-00500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Two major types of defective vectors have been derived from herpes simplex virus type 1 (HSV-1), non-replicative genomic vectors (nrHSV-1), and amplicon vectors. This review recapitulates the main features of both vector types and summarizes recent improvements in our understanding of virus/vector biology, particularly with regard to the critical role played by the overpowering of antiviral cellular defenses and the epigenetic control of viral gene expression. Over the past years, significant breakthroughs in vector design, genetic engineering, and HSV-1 biology have accelerated the development of nrHSV-1 vectors. The low immunogenicity and enhanced safety profiles allowed the successful translation of these vectors into several clinical trials, with some being approved by the FDA. Regarding amplicons, despite their advantage in carrying very large or multiple transgenes, and their potential to avoid genome dilution in dividing cells, the absence of production procedures capable of generating large amounts of helper-free amplicons at reasonable cost with GMP compliance, still limits the translation of these outstanding vectors to clinical trials.
Collapse
Affiliation(s)
- Matthieu Le Hars
- UMR U1179 INSERM - University of Versailles Saint Quentin en Yvelines (UVSQ)-Paris Saclay, Montigny-le-Bretonneux, France
| | - Charles Joussain
- UMR U1179 INSERM - University of Versailles Saint Quentin en Yvelines (UVSQ)-Paris Saclay, Montigny-le-Bretonneux, France
| | | | | |
Collapse
|
2
|
He B, Wilson B, Chen SH, Sharma K, Scappini E, Cook M, Petrovich R, Martin NP. Molecular Engineering of Virus Tropism. Int J Mol Sci 2024; 25:11094. [PMID: 39456875 PMCID: PMC11508178 DOI: 10.3390/ijms252011094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Engineered viral vectors designed to deliver genetic material to specific targets offer significant potential for disease treatment, safer vaccine development, and the creation of novel biochemical research tools. Viral tropism, the specificity of a virus for infecting a particular host, is often modified in recombinant viruses to achieve precise delivery, minimize off-target effects, enhance transduction efficiency, and improve safety. Key factors influencing tropism include surface protein interactions between the virus and host-cell, the availability of host-cell machinery for viral replication, and the host immune response. This review explores current strategies for modifying the tropism of recombinant viruses by altering their surface proteins. We provide an overview of recent advancements in targeting non-enveloped viruses (adenovirus and adeno-associated virus) and enveloped viruses (retro/lentivirus, Rabies, Vesicular Stomatitis Virus, and Herpesvirus) to specific cell types. Additionally, we discuss approaches, such as rational design, directed evolution, and in silico and machine learning-based methods, for generating novel AAV variants with the desired tropism and the use of chimeric envelope proteins for pseudotyping enveloped viruses. Finally, we highlight the applications of these advancements and discuss the challenges and future directions in engineering viral tropism.
Collapse
Affiliation(s)
- Bo He
- Viral Vector Core, Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (B.H.); (B.W.); (S.-H.C.)
| | - Belinda Wilson
- Viral Vector Core, Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (B.H.); (B.W.); (S.-H.C.)
| | - Shih-Heng Chen
- Viral Vector Core, Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (B.H.); (B.W.); (S.-H.C.)
| | - Kedar Sharma
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (K.S.); (M.C.); (R.P.)
| | - Erica Scappini
- Fluorescent Microscopy and Imaging Center, Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Molly Cook
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (K.S.); (M.C.); (R.P.)
| | - Robert Petrovich
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (K.S.); (M.C.); (R.P.)
| | - Negin P. Martin
- Viral Vector Core, Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (B.H.); (B.W.); (S.-H.C.)
| |
Collapse
|
3
|
Beaudin M, Dupre N, Manto M. The importance of synthetic pharmacotherapy for recessive cerebellar ataxias. Expert Rev Neurother 2024; 24:897-912. [PMID: 38980086 DOI: 10.1080/14737175.2024.2376840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION The last decade has witnessed major breakthroughs in identifying novel genetic causes of hereditary ataxias, deepening our understanding of disease mechanisms, and developing therapies for these debilitating disorders. AREAS COVERED This article reviews the currently approved and most promising candidate pharmacotherapies in relation to the known disease mechanisms of the most prevalent autosomal recessive ataxias. Omaveloxolone is an Nrf2 activator that increases antioxidant defense and was recently approved for treatment of Friedreich ataxia. Its therapeutic effect is modest, and further research is needed to find synergistic treatments that would halt or reverse disease progression. Promising approaches include upregulation of frataxin expression by epigenetic mechanisms, direct protein replacement, and gene replacement therapy. For ataxia-telangiectasia, promising approaches include splice-switching antisense oligonucleotides and small molecules targeting oxidative stress, inflammation, and mitochondrial function. Rare recessive ataxias for which disease-modifying therapies exist are also reviewed, emphasizing recently approved therapies. Evidence supporting the use of riluzole and acetyl-leucine in recessive ataxias is discussed. EXPERT OPINION Advances in genetic therapies for other neurogenetic conditions have paved the way to implement feasible approaches with potential dramatic benefits. Particularly, as we develop effective treatments for these conditions, we may need to combine therapies, consider newborn testing for pre-symptomatic treatment, and optimize non-pharmacological approaches.
Collapse
Affiliation(s)
- Marie Beaudin
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Nicolas Dupre
- Neuroscience axis, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Mario Manto
- Service des Neurosciences, Université de Mons, Mons, Belgique
- Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, Charleroi, Belgique
| |
Collapse
|
4
|
Epstein AL, Rabkin SD. Safety of non-replicative and oncolytic replication-selective HSV vectors. Trends Mol Med 2024; 30:781-794. [PMID: 38886138 PMCID: PMC11329358 DOI: 10.1016/j.molmed.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
Herpes simplex virus type 1 (HSV-1) is a DNA virus and human pathogen used to construct promising therapeutic vectors. HSV-1 vectors fall into two classes: replication-selective oncolytic vectors for cancer therapy and defective non-replicative vectors for gene therapy. Vectors from each class can accommodate ≥30 kb of inserts, have been approved clinically, and demonstrate a relatively benign safety profile. Despite oncolytic HSV (oHSV) replication in tumors and elicited immune responses, the virus is well tolerated in cancer patients. Current non-replicative vectors elicit only limited immune responses. Seropositivity and immune responses against HSV-1 do not eliminate either the vector or infected cells, and the vectors can therefore be re-administered. In this review we highlight vectors that have been translated to the clinic and host-virus immune interactions that impact on the safety and efficacy of HSVs.
Collapse
Affiliation(s)
| | - Samuel D Rabkin
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Di Francesco V, Chua AJ, Huang D, D'Souza A, Yang A, Bleier BS, Amiji MM. RNA therapies for CNS diseases. Adv Drug Deliv Rev 2024; 208:115283. [PMID: 38494152 DOI: 10.1016/j.addr.2024.115283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
Neurological disorders are a diverse group of conditions that pose an increasing health burden worldwide. There is a general lack of effective therapies due to multiple reasons, of which a key obstacle is the presence of the blood-brain barrier, which limits drug delivery to the central nervous system, and generally restricts the pool of candidate drugs to small, lipophilic molecules. However, in many cases, these are unable to target key pathways in the pathogenesis of neurological disorders. As a group, RNA therapies have shown tremendous promise in treating various conditions because they offer unique opportunities for specific targeting by leveraging Watson-Crick base pairing systems, opening up possibilities to modulate pathological mechanisms that previously could not be addressed by small molecules or antibody-protein interactions. This potential paradigm shift in disease management has been enabled by recent advances in synthesizing, purifying, and delivering RNA. This review explores the use of RNA-based therapies specifically for central nervous system disorders, where we highlight the inherent limitations of RNA therapy and present strategies to augment the effectiveness of RNA therapeutics, including physical, chemical, and biological methods. We then describe translational challenges to the widespread use of RNA therapies and close with a consideration of future prospects in this field.
Collapse
Affiliation(s)
- Valentina Di Francesco
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA; Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Andy J Chua
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA; Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA; Department of Otorhinolaryngology - Head and Neck Surgery, Sengkang General Hospital, 110 Sengkang E Way, 544886, Singapore
| | - Di Huang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA; Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA; Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Alicia Yang
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin S Bleier
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA; Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Baylot V, Le TK, Taïeb D, Rocchi P, Colleaux L. Between hope and reality: treatment of genetic diseases through nucleic acid-based drugs. Commun Biol 2024; 7:489. [PMID: 38653753 PMCID: PMC11039704 DOI: 10.1038/s42003-024-06121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Rare diseases (RD) affect a small number of people compared to the general population and are mostly genetic in origin. The first clinical signs often appear at birth or in childhood, and patients endure high levels of pain and progressive loss of autonomy frequently associated with short life expectancy. Until recently, the low prevalence of RD and the gatekeeping delay in their diagnosis have long hampered research. The era of nucleic acid (NA)-based therapies has revolutionized the landscape of RD treatment and new hopes arise with the perspectives of disease-modifying drugs development as some NA-based therapies are now entering the clinical stage. Herein, we review NA-based drugs that were approved and are currently under investigation for the treatment of RD. We also discuss the recent structural improvements of NA-based therapeutics and delivery system, which overcome the main limitations in their market expansion and the current approaches that are developed to address the endosomal escape issue. We finally open the discussion on the ethical and societal issues that raise this new technology in terms of regulatory approval and sustainability of production.
Collapse
Affiliation(s)
- Virginie Baylot
- Aix Marseille Univ, CNRS, CINAM, ERL INSERM U 1326, CERIMED, Marseille, France.
| | - Thi Khanh Le
- Aix Marseille Univ, CNRS, CINAM, ERL INSERM U 1326, CERIMED, Marseille, France
| | - David Taïeb
- Aix Marseille Univ, CNRS, CINAM, ERL INSERM U 1326, CERIMED, Marseille, France
| | - Palma Rocchi
- Aix Marseille Univ, CNRS, CINAM, ERL INSERM U 1326, CERIMED, Marseille, France.
| | - Laurence Colleaux
- Aix Marseille Univ, CNRS, CINAM, ERL INSERM U 1326, CERIMED, Marseille, France
| |
Collapse
|
7
|
Ingusci S, Hall BL, Goins WF, Cohen JB, Glorioso JC. Viral vectors for gene delivery to the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:59-81. [PMID: 39341663 DOI: 10.1016/b978-0-323-90120-8.00001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Brain diseases with a known or suspected genetic basis represent an important frontier for advanced therapeutics. The central nervous system (CNS) is an intricate network in which diverse cell types with multiple functions communicate via complex signaling pathways, making therapeutic intervention in brain-related diseases challenging. Nevertheless, as more information on the molecular genetics of brain-related diseases becomes available, genetic intervention using gene therapeutic strategies should become more feasible. There remain, however, several significant hurdles to overcome that relate to (i) the development of appropriate gene vectors and (ii) methods to achieve local or broad vector delivery. Clearly, gene delivery tools must be engineered for distribution to the correct cell type in a specific brain region and to accomplish therapeutic transgene expression at an appropriate level and duration. They also must avoid all toxicity, including the induction of inflammatory responses. Over the last 40 years, various types of viral vectors have been developed as tools to introduce therapeutic genes into the brain, primarily targeting neurons. This review describes the most prominent vector systems currently approaching clinical application for CNS disorders and highlights both remaining challenges as well as improvements in vector designs that achieve greater safety, defined tropism, and therapeutic gene expression.
Collapse
Affiliation(s)
- Selene Ingusci
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bonnie L Hall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - William F Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Justus B Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
8
|
Xiong F, Yang H, Song YG, Qin HB, Zhang QY, Huang X, Jing W, Deng M, Liu Y, Liu Z, Shen Y, Han Y, Lu Y, Xu X, Holmes TC, Luo M, Zhao F, Luo MH, Zeng WB. An HSV-1-H129 amplicon tracer system for rapid and efficient monosynaptic anterograde neural circuit tracing. Nat Commun 2022; 13:7645. [PMID: 36496505 PMCID: PMC9741617 DOI: 10.1038/s41467-022-35355-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Monosynaptic viral tracers are essential tools for dissecting neuronal connectomes and for targeted delivery of molecular sensors and effectors. Viral toxicity and complex multi-injection protocols are major limiting application barriers. To overcome these barriers, we developed an anterograde monosynaptic H129Amp tracer system based on HSV-1 strain H129. The H129Amp tracer system consists of two components: an H129-dTK-T2-pacFlox helper which assists H129Amp tracer's propagation and transneuronal monosynaptic transmission. The shared viral features of tracer/helper allow for simultaneous single-injection and subsequent high expression efficiency from multiple-copy of expression cassettes in H129Amp tracer. These improvements of H129Amp tracer system shorten experiment duration from 28-day to 5-day for fast-bright monosynaptic tracing. The lack of toxic viral genes in the H129Amp tracer minimizes toxicity in postsynaptic neurons, thus offering the potential for functional anterograde mapping and long-term tracer delivery of genetic payloads. The H129Amp tracer system is a powerful tracing tool for revealing neuronal connectomes.
Collapse
Affiliation(s)
- Feng Xiong
- grid.9227.e0000000119573309State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.9227.e0000000119573309Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Hong Yang
- grid.9227.e0000000119573309State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Yi-Ge Song
- grid.33199.310000 0004 0368 7223Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai-Bin Qin
- grid.9227.e0000000119573309State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yang Zhang
- grid.9227.e0000000119573309State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Xian Huang
- grid.33199.310000 0004 0368 7223Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Jing
- grid.33199.310000 0004 0368 7223Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Manfei Deng
- grid.33199.310000 0004 0368 7223Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Liu
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, Beijing, China
| | - Zhixiang Liu
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, Beijing, China
| | - Yin Shen
- grid.49470.3e0000 0001 2331 6153Eye Center, Renmin Hospital, Wuhan University, Wuhan, China
| | - Yunyun Han
- grid.49470.3e0000 0001 2331 6153Eye Center, Renmin Hospital, Wuhan University, Wuhan, China
| | - Youming Lu
- grid.33199.310000 0004 0368 7223Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangmin Xu
- grid.266093.80000 0001 0668 7243Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA USA ,grid.266093.80000 0001 0668 7243Center for Neural Circuit Mapping, School of Medicine, University of California, Irvine, CA USA
| | - Todd C. Holmes
- grid.266093.80000 0001 0668 7243Center for Neural Circuit Mapping, School of Medicine, University of California, Irvine, CA USA ,grid.266093.80000 0001 0668 7243Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA USA
| | - Minmin Luo
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, Beijing, China ,grid.510934.a0000 0005 0398 4153Chinese Institute for Brain Research, Beijing, China
| | - Fei Zhao
- grid.510934.a0000 0005 0398 4153Chinese Institute for Brain Research, Beijing, China ,grid.24696.3f0000 0004 0369 153XSchool of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Min-Hua Luo
- grid.9227.e0000000119573309State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.9227.e0000000119573309Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China ,grid.266093.80000 0001 0668 7243Center for Neural Circuit Mapping, School of Medicine, University of California, Irvine, CA USA
| | - Wen-Bo Zeng
- grid.9227.e0000000119573309State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|