1
|
Mehrani Y, Kakish JE, Napoleoni C, Thompson JJ, Knapp JP, Minott JA, Yates JGE, Stuart D, Coomber BL, Foster RA, Bridle BW, Karimi K. Characterisation and Sensitivity of a Canine Mast Cell Tumour Line to Oncolytic Viruses. Vet Comp Oncol 2024. [PMID: 39526468 DOI: 10.1111/vco.13024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Canine mast cell tumours (MCTs) are one of the most common skin cancers of dogs. Surgical removal is the primary treatment, but recurrence and metastasis can occur even with low-grade tumours. As a result, new treatment strategies are being sought. We tested the potential of several oncolytic viruses (OVs) to infect and kill a cell line isolated from a canine MCT. Employing a resazurin-based metabolic assay and flow cytometry technology, we used recombinant vesicular stomatitis virus (rVSV-Δm51), avian orthoavulavirus-1 (AOaV-1), and Orf viruses in our assessment. Our study aimed to evaluate the potential of oncolytic virotherapy in treating canine cancers. We found that MCT-1 cells showed different sensitivities to the OVs, with rVSV-Δm51 showing the most promising results in vitro. These findings suggest that further investigation into using OVs for treating canine MCTs is needed, although clinical efficacy is yet to be determined.
Collapse
Affiliation(s)
- Yeganeh Mehrani
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Julia E Kakish
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Christina Napoleoni
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jennifer Jane Thompson
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jason P Knapp
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jessica A Minott
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jacob G E Yates
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Deirdre Stuart
- Companion Animal Tumour Bank, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Brenda L Coomber
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Robert A Foster
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
2
|
Volodina S, Titov I, Zhivoderov S, Yurkov S, Malogolovkin A. Comparative analysis of two novel complete genomes of myxoma virus vaccine strains. Virus Genes 2024; 60:528-536. [PMID: 38990486 DOI: 10.1007/s11262-024-02090-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Myxoma virus (MYXV) is a double-stranded DNA-containing virus of the family Poxviridae, genus Leporipoxvirus. MYXV is an important model virus for evolutionary and immunological research and a promising oncolytic. In this study, we sequenced and analyzed two complete genomes of MYXV virus vaccine strains B-82 and Rabbivac-B, which are widely used for vaccine production in Russia. Here, we first show that MYXV vaccine strains B-82 and Rabbivac-B share a common origin with the American recombinant MYXV MAV vaccine strain. In addition, our data suggest that the MYXV B-82 and Rabbivac-B strains contain a number of genes at the 5' and 3' ends that are identical to the virulent MYXV Lausanne strain. Several unique genetic signatures were identified in the M013L, M017L, M023, and M121R genes, helping to achieve high genetic resolution between vaccine strains. Overall, these findings highlight the evolutionary flexibility of certain genes in the MYXV genome and provide insights into the molecular epidemiology of the virus and subsequent vaccine development.
Collapse
Affiliation(s)
- Sofya Volodina
- Molecular Virology Laboratory, First Moscow State Medical University (Sechenov University), Trubetskaya 8, 119048, Moscow, Russia
| | - Ilya Titov
- Federal Research Center for Virology and Microbiology, Bakoulova Street, B.1, 601125, Volginskiy, Russia
| | - Sergey Zhivoderov
- Federal Research Center for Virology and Microbiology, Bakoulova Street, B.1, 601125, Volginskiy, Russia
| | - Sergey Yurkov
- Federal Research Center for Virology and Microbiology, Bakoulova Street, B.1, 601125, Volginskiy, Russia
| | - Alexander Malogolovkin
- Molecular Virology Laboratory, First Moscow State Medical University (Sechenov University), Trubetskaya 8, 119048, Moscow, Russia.
- Gene Therapy Department, Science Center for Translational Medicine, Sirius University of Science and Technology, Olimpiyskiy Ave, B.1, 354340, Sirius, Russia.
| |
Collapse
|
3
|
Pagallies F, Labisch JJ, Wronska M, Pflanz K, Amann R. Efficient and scalable clarification of Orf virus from HEK suspension for vaccine development. Vaccine X 2024; 18:100474. [PMID: 38523620 PMCID: PMC10958475 DOI: 10.1016/j.jvacx.2024.100474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024] Open
Abstract
The Orf virus (ORFV) is a promising vector platform for the generation of vaccines against infectious diseases and cancer, highlighted by its progression to clinical testing phases. One of the critical steps during GMP manufacturing is the clarification of crude harvest because of the enveloped nature and large size of ORFV. This study presents the first description of ORFV clarification process from a HEK suspension batch process. We examined various filter materials, membrane pore sizes, harvest timings, and nuclease treatments. Employing the Ambr® crossflow system for high-throughput, small-volume experiments, we identified polypropylene-based Sartopure® PP3 filters as ideal. These filters, used in two consecutive stages with reducing pore sizes, significantly enhanced ORFV recovery and addressed scalability challenges. Moreover, we demonstrated that the time of harvest and the use of a nuclease play a decisive role to increase ORFV yields. With these findings, we were able to establish an efficient and scalable clarification process of ORFV derived from a suspension production process, essential for advancing ORFV vaccine manufacturing.
Collapse
Affiliation(s)
- Felix Pagallies
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Jennifer J. Labisch
- Lab Essentials Applications Development, Sartorius, Otto-Brenner-Straße 20, 37079 Göttingen, Germany
| | - Malgorzata Wronska
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
- PRiME Vector Technologies, Herrenberger Straße 24, 72070 Tübingen, Germany
| | - Karl Pflanz
- Lab Essentials Applications Development, Sartorius, Otto-Brenner-Straße 20, 37079 Göttingen, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
- PRiME Vector Technologies, Herrenberger Straße 24, 72070 Tübingen, Germany
| |
Collapse
|
4
|
Schlosser-Perrin L, Holzmuller P, Fernandez B, Miotello G, Dahmani N, Neyret A, Bertagnoli S, Armengaud J, Caufour P. Constitutive proteins of lumpy skin disease virion assessed by next-generation proteomics. J Virol 2023; 97:e0072323. [PMID: 37737587 PMCID: PMC10617387 DOI: 10.1128/jvi.00723-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/10/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE Lumpy skin disease virus (LSDV) is the causative agent of an economically important cattle disease which is notifiable to the World Organisation for Animal Health. Over the past decades, the disease has spread at an alarming rate throughout the African continent, the Middle East, Eastern Europe, the Russian Federation, and many Asian countries. While multiple LDSV whole genomes have made further genetic comparative analyses possible, knowledge on the protein composition of the LSDV particle remains lacking. This study provides for the first time a comprehensive proteomic analysis of an infectious LSDV particle, prompting new efforts toward further proteomic LSDV strain characterization. Furthermore, this first incursion within the capripoxvirus proteome represents one of very few proteomic studies beyond the sole Orthopoxvirus genus, for which most of the proteomics studies have been performed. Providing new information about other chordopoxviruses may contribute to shedding new light on protein composition within the Poxviridae family.
Collapse
Affiliation(s)
- Léo Schlosser-Perrin
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| | - Philippe Holzmuller
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| | - Bernard Fernandez
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| | - Guylaine Miotello
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | - Noureddine Dahmani
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| | - Aymeric Neyret
- CEMIPAI, University of Montpellier, UAR3725 CNRS, Montpellier, France
| | | | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | - Philippe Caufour
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| |
Collapse
|
5
|
Eilts F, Labisch JJ, Orbay S, Harsy YMJ, Steger M, Pagallies F, Amann R, Pflanz K, Wolff MW. Stability studies for the identification of critical process parameters for a pharmaceutical production of the Orf virus. Vaccine 2023:S0264-410X(23)00722-3. [PMID: 37353451 DOI: 10.1016/j.vaccine.2023.06.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
A promising new vaccine platform is based on the Orf virus, a viral vector of the genus Parapoxvirus, which is currently being tested in phase I clinical trials. The application as a vaccine platform mandates a well-characterised, robust, and efficient production process. To identify critical process parameters in the production process affecting the virus' infectivity, the Orf virus was subjected to forced degradation studies, including thermal, pH, chemical, and mechanical stress conditions. The tests indicated a robust virus infectivity within a pH range of 5-7.4 and in the presence of the tested buffering substances (TRIS, HEPES, PBS). The ionic strength up to 0.5 M had no influence on the Orf virus' infectivity stability for NaCl and MgCl2, while NH4Cl destabilized significantly. Furthermore, short-term thermal stress of 2d up to 37 °C and repeated freeze-thaw cycles (20cycles) did not affect the virus' infectivity. The addition of recombinant human serum albumin was found to reduce virus inactivation. Last, the Orf virus showed a low shear sensitivity induced by peristaltic pumps and mixing, but was sensitive to ultrasonication. The isoelectric point of the applied Orf virus genotype D1707-V was determined at pH3.5. The broad picture of the Orf virus' infectivity stability against environmental parameters is an important contribution for the identification of critical process parameters for the production process, and supports the development of a stable pharmaceutical formulation. The work is specifically relevant for enveloped (large DNA) viruses, like the Orf virus and like most vectored vaccine approaches.
Collapse
Affiliation(s)
- Friederike Eilts
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Jennifer J Labisch
- Lab Essentials Applications Development, Sartorius Stedim Biotech GmbH, August-Spindler-Straße 11, 37079 Goettingen, Germany; Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Lower Saxony, Germany
| | - Sabri Orbay
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Yasmina M J Harsy
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Marleen Steger
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Felix Pagallies
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15/3.008, 72076 Tuebingen, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15/3.008, 72076 Tuebingen, Germany; Prime Vector Technologies, Herrenberger Straße 24, 72070 Tuebingen, Germany
| | - Karl Pflanz
- Lab Essentials Applications Development, Sartorius Stedim Biotech GmbH, August-Spindler-Straße 11, 37079 Goettingen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany.
| |
Collapse
|
6
|
Eilts F, Steger M, Pagallies F, Rziha HJ, Hardt M, Amann R, Wolff MW. Comparison of sample preparation techniques for the physicochemical characterization of Orf virus particles. J Virol Methods 2022; 310:114614. [PMID: 36084768 DOI: 10.1016/j.jviromet.2022.114614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022]
Abstract
The determination of the electrostatic charge of biological nanoparticles requires a purified, mono-disperse, and concentrated sample. Previous studies proofed an impact of the preparation protocol on the stability and electro-hydrodynamics of viruses, whereas commonly used methods are often complex and do not allow the required sample throughput. In the present study, the application of the (I) steric exclusion chromatography (SXC) for the Orf virus (ORFV) purification and subsequent physicochemical characterization was evaluated and compared to (II) SXC followed by centrifugal diafiltration and (III) sucrose cushion ultracentrifugation. The three methods were characterized in terms of protein removal, size distribution, infectious virus recovery, visual appearance, and electrophoretic mobility as a function of pH. All preparation techniques achieved a protein removal of more than 99 %, and (I) an infectious ORFV recovery of more than 85 %. Monodisperse samples were realized by (I) and (III). In summary, ORFV samples prepared by (I) and (III) displayed comparable quality. Additionally, (I) offered the shortest operation time and easy application. Based on the obtained data, the three procedures were ranked according to eight criteria of possible practical relevance, which delineate the potential of SXC as virus preparation method for physicochemical analysis.
Collapse
Affiliation(s)
- Friederike Eilts
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany.
| | - Marleen Steger
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Felix Pagallies
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Hanns-Joachim Rziha
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Martin Hardt
- Imaging Unit, Biomedical Research Centre Seltersberg, Justus Liebig University, Schubertstraße 81, 35392 Giessen, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany; PRiME Vector Technologies, Herrenberger Straße 24, 72070 Tuebingen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany.
| |
Collapse
|
7
|
Minott JA, van Vloten JP, Chan L, Mehrani Y, Bridle BW, Karimi K. The Role of Neutrophils in Oncolytic Orf Virus-Mediated Cancer Immunotherapy. Cells 2022; 11:cells11182858. [PMID: 36139433 PMCID: PMC9496759 DOI: 10.3390/cells11182858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Neutrophils are innate leukocytes with diverse effector functions that allow them to respond to pathogens rapidly. Accumulating evidence has highlighted these cells’ complex roles in the host’s response to viral infections and tumor progression. Oncolytic virotherapy is emerging as a promising treatment modality in the armamentarium of cancer therapeutics. Oncolytic viruses preferentially kill cancer cells and stimulate tumor-associated inflammation, resulting in tumor regression. Assessing the activity of individual effector cell subsets following oncolytic virotherapy is important in identifying their contribution to antitumor immunity. In this study, we investigated the role of neutrophils in oncolytic Orf-virus-mediated immunotherapy in a murine model of pulmonary melanoma metastases. The systemic administration of the Orf virus stimulated a dramatic increase in the number of leukocytes in circulation and within the tumor microenvironment, most of which were neutrophils. Analysis of tumor-burdened lungs shortly after therapy revealed significant numbers of phenotypically immature neutrophils, with the enhanced expression of molecules affiliated with activation, migration, and cytotoxicity. Neutrophils stimulated by Orf virus therapy were directly tumoricidal through tumor necrosis factor-α-mediated effects and were required for optimal antitumor efficacy following Orf virus therapy. Taken together, these data reveal neutrophils as a crucial innate effector to consider when investigating oncolytic virotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Byram W. Bridle
- Correspondence: (B.W.B.); (K.K.); Tel.: +1-(519)-824-4120 (ext. 54657) (B.W.B.); +1-(519)-824-4120 (ext. 54668) (K.K.)
| | - Khalil Karimi
- Correspondence: (B.W.B.); (K.K.); Tel.: +1-(519)-824-4120 (ext. 54657) (B.W.B.); +1-(519)-824-4120 (ext. 54668) (K.K.)
| |
Collapse
|
8
|
van Vloten JP, Matuszewska K, Minow MAA, Minott JA, Santry LA, Pereira M, Stegelmeier AA, McAusland TM, Klafuric EM, Karimi K, Colasanti J, McFadden DG, Petrik JJ, Bridle BW, Wootton SK. Oncolytic Orf virus licenses NK cells via cDC1 to activate innate and adaptive antitumor mechanisms and extends survival in a murine model of late-stage ovarian cancer. J Immunother Cancer 2022; 10:jitc-2021-004335. [PMID: 35296558 PMCID: PMC8928368 DOI: 10.1136/jitc-2021-004335] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Novel therapies are needed to improve outcomes for women diagnosed with ovarian cancer. Oncolytic viruses are multifunctional immunotherapeutic biologics that preferentially infect cancer cells and stimulate inflammation with the potential to generate antitumor immunity. Herein we describe Parapoxvirus ovis (Orf virus (OrfV)), an oncolytic poxvirus, as a viral immunotherapy for ovarian cancer. METHODS The immunotherapeutic potential of OrfV was tested in the ID8 orthotopic mouse model of end-stage epithelial ovarian carcinoma. Immune cell profiling, impact on secondary lesion development and survival were evaluated in OrfV-treated mice as well as in Batf3 knockout, mice depleted of specific immune cell subsets and in mice where the primary tumor was removed. Finally, we interrogated gene expression datasets from primary human ovarian tumors from the International Cancer Genome Consortium database to determine whether the interplay we observed between natural killer (NK) cells, classical type 1 dendritic cells (cDC1s) and T cells exists and influences outcomes in human ovarian cancer. RESULTS OrfV was an effective monotherapy in a murine model of advanced-stage epithelial ovarian cancer. OrfV intervention relied on NK cells, which when depleted abrogated antitumor CD8+ T-cell responses. OrfV therapy was shown to require cDC1s in experiments with BATF3 knockout mice, which do not have mature cDC1s. Furthermore, cDC1s governed antitumor NK and T-cell responses to mediate antitumor efficacy following OrfV. Primary tumor removal, a common treatment option in human patients, was effectively combined with OrfV for optimal therapeutic outcome. Analysis of human RNA sequencing datasets revealed that cDC1s correlate with NK cells in human ovarian cancer and that intratumoral NK cells correlate positively with survival. CONCLUSIONS The data herein support the translational potential of OrfV as an NK stimulating immunotherapeutic for the treatment of advanced-stage ovarian cancer.
Collapse
Affiliation(s)
- Jacob P van Vloten
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Kathy Matuszewska
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Mark A A Minow
- Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jessica A Minott
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Lisa A Santry
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Madison Pereira
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | - Thomas M McAusland
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Elaine M Klafuric
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Khalil Karimi
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Joseph Colasanti
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - D Grant McFadden
- Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - James J Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Byram W Bridle
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|