El Nahas R, Al-Aghbar MA, Herrero L, van Panhuys N, Espino-Guarch M. Applications of Genome-Editing Technologies for Type 1 Diabetes.
Int J Mol Sci 2023;
25:344. [PMID:
38203514 PMCID:
PMC10778854 DOI:
10.3390/ijms25010344]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the destruction of insulin-producing pancreatic β-cells by the immune system. Although conventional therapeutic modalities, such as insulin injection, remain a mainstay, recent years have witnessed the emergence of novel treatment approaches encompassing immunomodulatory therapies, such as stem cell and β-cell transplantation, along with revolutionary gene-editing techniques. Notably, recent research endeavors have enabled the reshaping of the T-cell repertoire, leading to the prevention of T1D development. Furthermore, CRISPR-Cas9 technology has demonstrated remarkable potential in targeting endogenous gene activation, ushering in a promising avenue for the precise guidance of mesenchymal stem cells (MSCs) toward differentiation into insulin-producing cells. This innovative approach holds substantial promise for the treatment of T1D. In this review, we focus on studies that have developed T1D models and treatments using gene-editing systems.
Collapse