1
|
Abedin S, Adeleke OA. State of the art in pediatric nanomedicines. Drug Deliv Transl Res 2024; 14:2299-2324. [PMID: 38324166 DOI: 10.1007/s13346-024-01532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
In recent years, the continuous development of innovative nanopharmaceuticals is expanding their biomedical and clinical applications. Nanomedicines are being revolutionized to circumvent the limitations of unbound therapeutic agents as well as overcome barriers posed by biological interfaces at the cellular, organ, system, and microenvironment levels. In many ways, the use of nanoconfigured delivery systems has eased challenges associated with patient differences, and in our opinion, this forms the foundation for their potential usefulness in developing innovative medicines and diagnostics for special patient populations. Here, we present a comprehensive review of nanomedicines specifically designed and evaluated for disease management in the pediatric population. Typically, the pediatric population has distinguishing needs relative to those of adults majorly because of their constantly growing bodies and age-related physiological changes, which often need specialized drug formulation interventions to provide desirable therapeutic effects and outcomes. Besides, child-centric drug carriers have unique delivery routes, dosing flexibility, organoleptic properties (e.g., taste, flavor), and caregiver requirements that are often not met by traditional formulations and can impact adherence to therapy. Engineering pediatric medicines as nanoconfigured structures can potentially resolve these limitations stemming from traditional drug carriers because of their unique capabilities. Consequently, researchers from different specialties relentlessly and creatively investigate the usefulness of nanomedicines for pediatric disease management as extensively captured in this compilation. Some examples of nanomedicines covered include nanoparticles, liposomes, and nanomicelles for cancer; solid lipid and lipid-based nanostructured carriers for hypertension; self-nanoemulsifying lipid-based systems and niosomes for infections; and nanocapsules for asthma pharmacotherapy.
Collapse
Affiliation(s)
- Saba Abedin
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Oluwatoyin A Adeleke
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
2
|
Pareek A, Kumar D, Pareek A, Gupta MM, Jeandet P, Ratan Y, Jain V, Kamal MA, Saboor M, Ashraf GM, Chuturgoon A. Retinoblastoma: An update on genetic origin, classification, conventional to next-generation treatment strategies. Heliyon 2024; 10:e32844. [PMID: 38975183 PMCID: PMC11226919 DOI: 10.1016/j.heliyon.2024.e32844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
The most prevalent paediatric vision-threatening medical condition, retinoblastoma (RB), has been a global concern for a long time. Several conventional therapies, such as systemic chemotherapy and focal therapy, have been used for curative purposes; however, the search for tumour eradication with the least impact on surrounding tissues is still ongoing. This review focuses on the genetic origin, classification, conventional treatment modalities, and their combination with nano-scale delivery systems for active tumour targeting. In addition, the review also delves into ongoing clinical trials and patents, as well as emerging therapies such as gene therapy and immunotherapy for the treatment of RB. Understanding the role of genetics in the development of RB has refined its treatment strategy according to the genetic type. New approaches such as nanostructured drug delivery systems, galenic preparations, nutlin-3a, histone deacetylase inhibitors, N-MYC inhibitors, pentoxifylline, immunotherapy, gene therapy, etc. discussed in this review, have the potential to circumvent the limitations of conventional therapies and improve treatment outcomes for RB. In summary, this review highlights the importance and need for novel approaches as alternative therapies that would ultimately displace the shortcomings associated with conventional therapies and reduce the enucleation rate, thereby preserving global vision in the affected paediatric population.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Deepanjali Kumar
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 3303, Trinidad and Tobago
| | - Philippe Jeandet
- Research Unit Induced Resistance and Plant Bioprotection - USC INRAe 1488, University of Reims, PO Box 1039, 51687, Reims, France
| | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur, 313001, India
| | - Mohammad Amjad Kamal
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, West China School of Nursing, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW, 2770, Australia
| | - Muhammad Saboor
- Department of Medical Laboratory Science, College of Health Sciences, and Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Science, College of Health Sciences, and Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| |
Collapse
|
3
|
Wu KY, Wang XC, Anderson M, Tran SD. Advancements in Nanosystems for Ocular Drug Delivery: A Focus on Pediatric Retinoblastoma. Molecules 2024; 29:2263. [PMID: 38792122 PMCID: PMC11123804 DOI: 10.3390/molecules29102263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The eye's complex anatomical structures present formidable barriers to effective drug delivery across a range of ocular diseases, from anterior to posterior segment pathologies. Emerging as a promising solution to these challenges, nanotechnology-based platforms-including but not limited to liposomes, dendrimers, and micelles-have shown the potential to revolutionize ophthalmic therapeutics. These nanocarriers enhance drug bioavailability, increase residence time in targeted ocular tissues, and offer precise, localized delivery, minimizing systemic side effects. Focusing on pediatric ophthalmology, particularly on retinoblastoma, this review delves into the recent advancements in functionalized nanosystems for drug delivery. Covering the literature from 2017 to 2023, it comprehensively examines these nanocarriers' potential impact on transforming the treatment landscape for retinoblastoma. The review highlights the critical role of these platforms in overcoming the unique pediatric eye barriers, thus enhancing treatment efficacy. It underscores the necessity for ongoing research to realize the full clinical potential of these innovative drug delivery systems in pediatric ophthalmology.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Xingao C. Wang
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3T 1J4, Canada
| | - Maude Anderson
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
4
|
Pimple P, Sawant A, Nair S, Sawarkar SP. Current Insights into Targeting Strategies for the Effective Therapy of Diseases of the Posterior Eye Segment. Crit Rev Ther Drug Carrier Syst 2024; 41:1-50. [PMID: 37938189 DOI: 10.1615/critrevtherdrugcarriersyst.2023044057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The eye is one a unique sophisticated human sense organ with a complex anatomical structure. It is encased by variety of protective barriers as responsible for vision. There has been a paradigm shift in the prevalence of several major vision threatening ocular conditions with enhanced reliance on computer-based technologies in our workaday life and work-from-home modalities although aging, pollution, injury, harmful chemicals, lifestyle changes will always remain the root cause. Treating posterior eye diseases is a challenge faced by clinicians worldwide. The clinical use of conventional drug delivery systems for posterior eye targeting is restricted by the ocular barriers. Indeed, for overcoming various ocular barriers for efficient delivery of the therapeutic moiety and prolonged therapeutic effect requires prudent and target-specific approaches. Therefore, for efficient drug delivery to the posterior ocular segment, advancements in the development of sustained release and nanotechnology-based ocular drug delivery systems have gained immense importance. Therapeutic efficacy and patient compliance are of paramount importance in clinical translation of these investigative drug delivery systems. This review provides an insight into the various strategies employed for improving the treatment efficacies of the posterior eye diseases. Various drug delivery systems such as systemic and intraocular injections, implants have demonstrated promising outcomes, along with that they have also exhibited side-effects, limitations and strategies employed to overcome them are discussed in this review. The application of artificial intelligence-based technologies along with an appreciation of disease, delivery systems, and patient-specific outcomes will likely enable more effective therapy for targeting the posterior eye segment.
Collapse
Affiliation(s)
- Prachi Pimple
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, V.L. Mehta Road, Vile Parle (West), Mumbai 400 056, India
| | - Apurva Sawant
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, V.L. Mehta Road, Vile Parle (West), Mumbai 400 056, India
| | - Sujit Nair
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, V.L. Mehta Road, Vile Parle (West), Mumbai 400 056, India
| | - Sujata P Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, V.L. Mehta Road, Vile Parle (West), Mumbai 400 056, India
| |
Collapse
|
5
|
Rathore S, Verma A, Ratna R, Marwa N, Ghiya Y, Honavar SG, Tiwari A, Das S, Varshney A. Retinoblastoma: A review of the molecular basis of tumor development and its clinical correlation in shaping future targeted treatment strategies. Indian J Ophthalmol 2023; 71:2662-2676. [PMID: 37417104 PMCID: PMC10491038 DOI: 10.4103/ijo.ijo_3172_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/25/2023] [Accepted: 05/21/2023] [Indexed: 07/08/2023] Open
Abstract
Retinoblastoma is a retinal cancer that affects children and is the most prevalent intraocular tumor worldwide. Despite tremendous breakthroughs in our understanding of the fundamental mechanisms that regulate progression of retinoblastoma, the development of targeted therapeutics for retinoblastoma has lagged. Our review highlights the current developments in the genetic, epigenetic, transcriptomic, and proteomic landscapes of retinoblastoma. We also discuss their clinical relevance and potential implications for future therapeutic development, with the aim to create a frontline multimodal therapy for retinoblastoma.
Collapse
Affiliation(s)
- Shruti Rathore
- Ocular Oncology Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Aman Verma
- Ocular Oncology Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Ria Ratna
- Ocular Genetics Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Navjot Marwa
- Ocular Oncology Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Yagya Ghiya
- Ocular Oncology Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Santosh G Honavar
- Ophthalmic Plastic Surgery, Orbit and Ocular Oncology, Centre for Sight, Hyderbad, Telangana, India
| | - Anil Tiwari
- Ocular Oncology Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Sima Das
- Ocular Oncology Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Akhil Varshney
- Ocular Oncology Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| |
Collapse
|
6
|
Manukonda R, Narayana RV, Kaliki S, Mishra DK, Vemuganti GK. Emerging therapeutic targets for retinoblastoma. Expert Opin Ther Targets 2022; 26:937-947. [PMID: 36524402 DOI: 10.1080/14728222.2022.2158812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Retinoblastoma (Rb) is an early childhood intraocular tumor of the retina and is managed by multimodal therapeutic approaches. Recent advanced targeted delivery of chemotherapeutic drugs to the eye has improved the possibility of globe salvage. However, enucleation is inevitable for advanced and recurrent Rb. The cumulative knowledge of identification of newer molecular biology tools, exosomal cargo, role of cancer stem cells (CSCs), and its microenvironment in the progression of the diseases warrants a relook at the traditional treatment protocol and explore the feasibility of targeted therapies. AREAS COVERED This review covers Rb pathobiology, novel molecular-targeted therapeutics, and strategies targeting Rb CSCs and provides an update on potential therapeutic targets such as second messengers and exosomal cargo. EXPERT OPINION The emergence of early diagnosis and multimodality treatment protocols have significantly improved the clinical outcome of children with advanced Rb; however, the problem of tumor recurrence has not yet been overcome. Improved understanding of the molecular pathways, identification, and characterization of CSCs opens up new targeted therapy approaches. The contemporary evidence from other fields shows promising evidence that combining conservative treatment modalities with targeting therapies specific for CSCs in clinical practice is essential for achieving high globe salvage rate in Rb patients.
Collapse
Affiliation(s)
- Radhika Manukonda
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, India.,Brien Holden Eye Research Center, L. V. Prasad Eye Institute, Hyderabad, India
| | - Revu Vl Narayana
- School of Medical Sciences, University of Hyderabad, Science Complex, Hyderabad, India
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, India.,Brien Holden Eye Research Center, L. V. Prasad Eye Institute, Hyderabad, India
| | - Dilip K Mishra
- Ophthalmic Pathology Laboratory, LV Prasad Eye Institute, Hyderabad, India
| | - Geeta K Vemuganti
- School of Medical Sciences, University of Hyderabad, Science Complex, Hyderabad, India
| |
Collapse
|
7
|
Nanotechnology for Pediatric Retinoblastoma Therapy. Pharmaceuticals (Basel) 2022; 15:ph15091087. [PMID: 36145308 PMCID: PMC9504930 DOI: 10.3390/ph15091087] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 12/11/2022] Open
Abstract
Retinoblastoma is a rare, sometimes hereditary, pediatric cancer. In high-income countries this disease has a survival rate approaching 100%, while in low- and middle-income countries the prognosis is fatal for about 80% of cases. Depending on the stage of the disease, different therapeutic protocols are applied. In more advanced forms of the disease, surgical removal of the entire globe and its intraocular contents (enucleation) is, unfortunately, necessary, whereas in other cases, conventional chemotherapy is normally used. To overcome the side-effects and reduced efficacy of traditional chemotherapic drugs, nanodelivery systems that ensure a sustained drug release and manage to reach the target site have more recently been developed. This review takes into account the current use and advances of nanomedicine in the treatment of retinoblastoma and discusses nanoparticulate formulations that contain conventional drugs and natural products. In addition, future developments in retinoblastoma treatment are discussed.
Collapse
|
8
|
Farhat W, Yeung V, Ross A, Kahale F, Boychev N, Kuang L, Chen L, Ciolino JB. Advances in biomaterials for the treatment of retinoblastoma. Biomater Sci 2022; 10:5391-5429. [PMID: 35959730 DOI: 10.1039/d2bm01005d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Retinoblastoma is the most common primary intraocular malignancy in children. Although traditional chemotherapy has shown some success in retinoblastoma management, there are several shortcomings to this approach, including inadequate pharmacokinetic parameters, multidrug resistance, low therapeutic efficiency, nonspecific targeting, and the need for adjuvant therapy, among others. The revolutionary developments in biomaterials for drug delivery have enabled breakthroughs in cancer management. Today, biomaterials are playing a crucial role in developing more efficacious retinoblastoma treatments. The key goal in the evolution of drug delivery biomaterials for retinoblastoma therapy is to resolve delivery-associated obstacles and lower nonlocal exposure while ameliorating certain adverse effects. In this review, we will first delve into the historical perspective of retinoblastoma with a focus on the classical treatments currently used in clinics to enhance patients' quality of life and survival rate. As we move along, we will discuss biomaterials for drug delivery applications. Various aspects of biomaterials for drug delivery will be dissected, including their features and recent advances. In accordance with the current advances in biomaterials, we will deliver a synopsis on the novel chemotherapeutic drug delivery strategies and evaluate these approaches to gain new insights into retinoblastoma treatment.
Collapse
Affiliation(s)
- Wissam Farhat
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Vincent Yeung
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Amy Ross
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Francesca Kahale
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Nikolay Boychev
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Liangju Kuang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Lin Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA. .,Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.,Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Joseph B Ciolino
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
9
|
Paul B, Gaonkar RH, Dutta D, Dasi R, Mukherjee B, Ganguly S, Das SK. Inhibitory potential of iRGD peptide-conjugated garcinol-loaded biodegradable nanoparticles in rat colorectal carcinoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112714. [DOI: 10.1016/j.msec.2022.112714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/18/2022] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
|
10
|
The roles of mouse double minute 2 (MDM2) oncoprotein in ocular diseases: A review. Exp Eye Res 2022; 217:108910. [PMID: 34998788 DOI: 10.1016/j.exer.2021.108910] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/03/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022]
Abstract
Mouse double minute 2 (MDM2), an E3 ubiquitin ligase and the primary negative regulator of the tumor suppressor p53, cooperates with its structural homolog MDM4/MDMX to control intracellular p53 level. In turn, overexpression of p53 upregulates and forms an autoregulatory feedback loop with MDM2. The MDM2-p53 axis plays a pivotal role in modulating cell cycle control and apoptosis. MDM2 itself is regulated by the PI3K-AKT and RB-E2F-ARF pathways. While amplification of the MDM2 gene or overexpression of MDM2 (due to MDM2 SNP T309G, for instance) is associated with various malignancies, numerous studies have shown that MDM2/p53 alterations may also play a part in the pathogenetic process of certain ocular disorders (Fig. 1). These include cancers (retinoblastoma, uveal melanoma), fibrocellular proliferative diseases (proliferative vitreoretinopathy, pterygium), neovascular diseases, degenerative diseases (cataract, primary open-angle glaucoma, age-related macular degeneration) and infectious/inflammatory diseases (trachoma, uveitis). In addition, MDM2 is implicated in retinogenesis and regeneration after optic nerve injury. Anti-MDM2 therapy has shown potential as a novel approach to treating these diseases. Despite major safety concerns, there are high expectations for the clinical value of reformative MDM2 inhibitors. This review summarizes important findings about the role of MDM2 in ocular pathologies and provides an overview of recent advances in treating these diseases with anti-MDM2 therapies.
Collapse
|
11
|
Mudigunda SV, Pemmaraju DB, Paradkar S, Puppala ER, Gawali B, Upadhyayula SM, Vegi Gangamodi N, Rengan AK. Multifunctional Polymeric Nanoparticles for Chemo/Phototheranostics of Retinoblastoma. ACS Biomater Sci Eng 2021; 8:151-160. [PMID: 34933546 DOI: 10.1021/acsbiomaterials.1c01234] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Retinoblastoma (Rb) is the most critical and severe intraocular malignancy occurring in children. The clinical management of retinoblastoma is still challenging due to failure in early detection and control despite the advancements in medical strategies. Early-stage Rb tumors do not occupy major visual fields, so chemo/photothermal therapy (PTT) with biocompatible materials can be a practical approach. Herein, we report multifunctional polymeric nanoparticles (PNPs) entrapped with an FDA-approved anticancer drug, Palbociclib (PCB), and a near-infrared dye, IR820 (IR), as chemo/photothermal agents. These PCB/IR PNPs were evaluated for the combinational effect in the retinoblastoma cell line. Further, the in vivo photoacoustic imaging efficacy and acute toxicity profile of the PNPs were studied in a mice model. The results indicated that the PCB/IR PNPs exhibited a significant cytotoxic effect (86.5 ± 2.3%) in Y79 cell lines than the respective control groups upon exposure to NIR light. Qualitative and quantitative analyses indicated that PCB/IR PNPs with NIR light induction resulted in DNA damage followed by apoptosis. PCB/IR PNPs, when tested in vivo, showed optimal photoacoustic signals. Thus, the combination of PCB and PTT can emerge as a translational modality for retinoblastoma therapy.
Collapse
Affiliation(s)
- Sushma Venkata Mudigunda
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | - Deepak B Pemmaraju
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research Guwahati, Silakatamur, Kamrup, Changsari, Assam 781101, India
| | - Shivangi Paradkar
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | - Eswara Rao Puppala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research Guwahati, Silakatamur, Kamrup, Changsari, Assam 781101, India
| | - Basveshwar Gawali
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research Guwahati, Silakatamur, Kamrup, Changsari, Assam 781101, India
| | - Suryanarayana Murty Upadhyayula
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research Guwahati, Silakatamur, Kamrup, Changsari, Assam 781101, India
| | - Naidu Vegi Gangamodi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research Guwahati, Silakatamur, Kamrup, Changsari, Assam 781101, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| |
Collapse
|
12
|
Arshad R, Barani M, Rahdar A, Sargazi S, Cucchiarini M, Pandey S, Kang M. Multi-Functionalized Nanomaterials and Nanoparticles for Diagnosis and Treatment of Retinoblastoma. BIOSENSORS 2021; 11:97. [PMID: 33810621 PMCID: PMC8066896 DOI: 10.3390/bios11040097] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
Retinoblastoma is a rare type of cancer, and its treatment, as well as diagnosis, is challenging, owing to mutations in the tumor-suppressor genes and lack of targeted, efficient, cost-effective therapy, exhibiting a significant need for novel approaches to address these concerns. For this purpose, nanotechnology has revolutionized the field of medicine with versatile potential capabilities for both the diagnosis, as well as the treatment, of retinoblastoma via the targeted and controlled delivery of anticancer drugs via binding to the overexpressed retinoblastoma gene. Nanotechnology has also generated massive advancements in the treatment of retinoblastoma based on the use of surface-tailored multi-functionalized nanocarriers; overexpressed receptor-based nanocarriers ligands (folate, galactose, and hyaluronic acid); lipid-based nanocarriers; and metallic nanocarriers. These nanocarriers seem to benchmark in mitigating a plethora of malignant retinoblastoma via targeted delivery at a specified site, resulting in programmed apoptosis in cancer cells. The effectiveness of these nanoplatforms in diagnosing and treating intraocular cancers such as retinoblastoma has not been properly discussed, despite the increasing significance of nanomedicine in cancer management. This article reviewed the recent milestones and future development areas in the field of intraocular drug delivery and diagnostic platforms focused on nanotechnology.
Collapse
Affiliation(s)
- Rabia Arshad
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Mahmood Barani
- Department of Chemistry, ShahidBahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98613-35856, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg/Saar, Germany;
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si 57801, Korea
| | - Misook Kang
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
| |
Collapse
|
13
|
Saarimäki LA, Federico A, Lynch I, Papadiamantis AG, Tsoumanis A, Melagraki G, Afantitis A, Serra A, Greco D. Manually curated transcriptomics data collection for toxicogenomic assessment of engineered nanomaterials. Sci Data 2021; 8:49. [PMID: 33558569 PMCID: PMC7870661 DOI: 10.1038/s41597-021-00808-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Toxicogenomics (TGx) approaches are increasingly applied to gain insight into the possible toxicity mechanisms of engineered nanomaterials (ENMs). Omics data can be valuable to elucidate the mechanism of action of chemicals and to develop predictive models in toxicology. While vast amounts of transcriptomics data from ENM exposures have already been accumulated, a unified, easily accessible and reusable collection of transcriptomics data for ENMs is currently lacking. In an attempt to improve the FAIRness of already existing transcriptomics data for ENMs, we curated a collection of homogenized transcriptomics data from human, mouse and rat ENM exposures in vitro and in vivo including the physicochemical characteristics of the ENMs used in each study.
Collapse
Affiliation(s)
- Laura Aliisa Saarimäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
| | - Antonio Federico
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
| | - Anastasios G Papadiamantis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
- NovaMechanics Ltd, P.O Box 26014 1666, Nicosia, Cyprus
| | | | | | | | - Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- BioMediTech Institute, Tampere University, Tampere, Finland.
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
- Finnish Centre for Alternative Methods (FICAM), Faculty of Medicine and Heath Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
14
|
Yang B, Gu B, Zhang J, Xu L, Sun Y. CASC8 lncRNA Promotes the Proliferation of Retinoblastoma Cells Through Downregulating miR34a Methylation. Cancer Manag Res 2020; 12:13461-13467. [PMID: 33408518 PMCID: PMC7779858 DOI: 10.2147/cmar.s268380] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Background CASC8 lncRNA has been proven to be oncogenic in a variety of cancers, but its role in other types of cancer remains unclear. This study was to investigate the role of CASC8 in retinoblastoma (Rb). Methods RT-qPCR was performed to determine the expression of CASC8 and miR34a in paired Rb and nontumor tissue. Overexpression of CASC8 and miR34a in Rb cells was achieved to evaluate the interaction between them. Methylation-specific PCR was used to analyze the effect of CASC8 overexpression on MIR34A gene methylation. CCK8 assays were used to analyze cell proliferation. Results The results showed that CASC8 expression was upregulated and miR34a expression downregulated in Rb tissue. Moreover, miR34a expression was negatively correlated with the of CASC8 expression in Rb tissue. Overexpression of CASC8 decreased expression of miR34a and increased methylation of MIR34A in Rb cells. In addition, overexpression of CASC8 reduced the inhibitory effects of miR34a on Rb-cell proliferation. Conclusion CASC8 may promote Rb cell proliferation by downregulating miR34a methylation.
Collapse
Affiliation(s)
- Bo Yang
- Department of Ophthalmology, Shenzhen Hospital of Integrated Chinese and Western Medicine, Shenzhen 518101, Guangdong Province, People's Republic of China
| | - Baoyu Gu
- Department of Ophthalmology, Shenzhen Hospital of Integrated Chinese and Western Medicine, Shenzhen 518101, Guangdong Province, People's Republic of China
| | - Jing Zhang
- Department of Ophthalmology, Shenzhen Hospital of Integrated Chinese and Western Medicine, Shenzhen 518101, Guangdong Province, People's Republic of China
| | - Long Xu
- Department of Ophthalmology, Shenzhen Hospital of Integrated Chinese and Western Medicine, Shenzhen 518101, Guangdong Province, People's Republic of China
| | - Yong Sun
- Department of Ophthalmology, Shenzhen Hospital of Integrated Chinese and Western Medicine, Shenzhen 518101, Guangdong Province, People's Republic of China
| |
Collapse
|
15
|
Anananuchatkul T, Tsutsumi H, Miki T, Mihara H. hDM2 protein-binding peptides screened from stapled α-helical peptide phage display libraries with different types of staple linkers. Bioorg Med Chem Lett 2020; 30:127605. [PMID: 33038548 DOI: 10.1016/j.bmcl.2020.127605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 11/18/2022]
Abstract
Chemically modified peptide ligands were identified from α-helix peptide phage libraries with different types of staple linkers. The hDM2-protein was used as a representative target of protein-protein interactions to screen ligands for p53 binding sites in hDM2. Two types of staple linkers were used for the chemical modification of the peptide phage display libraries before affinity selection. The identified stapled peptides could bind to hDM2 competitively with the p53 peptide. The stapled peptide phage libraries developed in this study will improve the discovery of protein-protein interaction inhibitors through the synergistic effect of peptide units and staple linkers.
Collapse
Affiliation(s)
- Teerapat Anananuchatkul
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hiroshi Tsutsumi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Takayuki Miki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hisakazu Mihara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| |
Collapse
|
16
|
HPV16 E7-impaired keratinocyte differentiation leads to tumorigenesis via cell cycle/pRb/involucrin/spectrin/adducin cascade. Appl Microbiol Biotechnol 2020; 104:4417-4433. [PMID: 32215704 DOI: 10.1007/s00253-020-10492-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022]
Abstract
Here, we used codon usage technology to generate two codon-modified human papillomavirus (HPV)16 E7 genes and, together with wild-type E7, to construct three HPV16 E7 gene plasmids: Wt-E7, HB1-E7, and HB2-E7. The three HPV 16 E7 plasmids were used to investigate how HPV16 E7 protein was expressed in different cells and how this oncoprotein deregulated cellular and molecular events in human keratinocytes to induce carcinogenesis. We discovered that codon usage of HPV16 E7 gene played a key role in determining expression of E7 oncoprotein in all tested cells. HPV16 E7 inhibited significantly expression of pRb to impair keratinocyte differentiation and disrupted development of skin epidermis in mice. HPV16 E7 increased substantially the number of G0/G1 cells associated with upregulation of cyclin D2 and downregulation of cyclin B1 in keratinocytes. HPV16 E7 not only inhibited expression of involucrin and α-spectrin but also disrupted the organization of involucrin filaments and spectrin cytoskeleton. Furthermore, HPV16 E7 inhibited expression of β-adducin, destroyed its cytoskeletal structure and induced phosphorylation of β-adducin(Ser662) in keratinocytes. Importantly, HPV16 E7 induced carcinogenesis in mice associated with expression of phosphorylated β-adducin(Ser662) and its nucleus-translocation. In conclusion, we provided evidence that HPV16 E7 oncoprotein inhibited keratinocyte differentiation in vitro and in vivo leading to carcinogenesis through cell cycle arrest and disruption of pRb/involucrin/spectrin/adducin cascade.
Collapse
|
17
|
Muroski ME, Oh E, Nag OK, Medintz IL, Efros AL, Huston A, Delehanty JB. Gold-Nanoparticle-Mediated Depolarization of Membrane Potential Is Dependent on Concentration and Tethering Distance from the Plasma Membrane. Bioconjug Chem 2020; 31:567-576. [DOI: 10.1021/acs.bioconjchem.9b00656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|