1
|
Dong F, Zhou J, Wu Y, Gao Z, Li W, Song Z. MicroRNAs in pancreatic cancer drug resistance: mechanisms and therapeutic potential. Front Cell Dev Biol 2025; 12:1499111. [PMID: 39882259 PMCID: PMC11774998 DOI: 10.3389/fcell.2024.1499111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Pancreatic cancer (PC) remains one of the most lethal malignancies, primarily due to its intrinsic resistance to conventional therapies. MicroRNAs (miRNAs), key regulators of gene expression, have been identified as crucial modulators of drug resistance mechanisms in this cancer type. This review synthesizes recent advancements in our understanding of how miRNAs influence treatment efficacy in PC. We have thoroughly summarized and discussed the complex role of miRNA in mediating drug resistance in PC treatment. By highlighting specific miRNAs that are implicated in drug resistance pathways, we provide insights into their functional mechanisms and interactions with key molecular targets. We also explore the potential of miRNA-based strategies as novel therapeutic approaches and diagnostic tools to overcome resistance and improve patient outcomes. Despite promising developments, challenges such as specificity, stability, and effective delivery of miRNA-based therapeutics remain. This review aims to offer a critical perspective on current research and propose future directions for leveraging miRNA-based interventions in the fight against PC.
Collapse
Affiliation(s)
- Fangying Dong
- Emergency Department, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jing Zhou
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yijie Wu
- Department of general practice, Taozhuang Branch of the First People’s Hospital of Jiashan, Jiaxing, Zhejiang, China
| | - Zhaofeng Gao
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Weiwei Li
- Emergency Department, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhengwei Song
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
2
|
Islam MA, Sultana OF, Bandari M, Kshirsagar S, Manna PR, Reddy PH. MicroRNA-455-3P as a peripheral biomarker and therapeutic target for mild cognitive impairment and Alzheimer's disease. Ageing Res Rev 2024; 100:102459. [PMID: 39153602 PMCID: PMC11383742 DOI: 10.1016/j.arr.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
MicroRNAs are small non-coding RNAs evolutionary conserved molecules. They regulate cellular processes, including RNA silencing, post-translational gene expression and neurodegeneration. MicroRNAs are involved with human diseases such as cancer, Alzheimer's disease (AD) and others. Interestingly, cerebrospinal fluids (CSF) and the blood of AD patients have altered expressions of many RNAs, which may serve as potential peripheral biomarkers. The intensive investigation from our lab revealed that microRNA-455-3 P (miR-455-3p) is a strong candidate as a potential biomarker and therapeutic target for AD. Several genes implicated in the pathogenesis of AD are directly targeted by miR-455-3p. Several years of our lab research revealed that miR-455-3p regulates important physiological processes associated with AD, such as the processing of the amyloid precursor protein (APP), TGF-β signaling, the regulation of oxidative stress, mitochondrial biogenesis, and synaptic damages. The expression of miR-455-3p in mild cognitive impaired subjects and AD patients pointed out its involvement in AD progression. Recently, our lab generated both transgenic and knockout mice for miR-455-3p. Interestingly miR-455-3p transgenic mice showed superior cognitive learning, improved memory and extended lifespan compared to age matched wild-type mice, whereas miR-455-3-p knockout mice showed cognitive decline and reduced lifespan. Information derived from mouse models further demonstrated the advantageous impact of miR-455-3p on dendritic growth, synaptogenesis, and mitochondrial biogenesis in preventing the onset and progression of AD. The identification of miR-455-3p as a biomarker was suggested by its presence in postmortem AD brains, B-lymphocytes, and fibroblasts. Our hypothesis that miR-455-3p could be a peripheral biomarker and therapeutic target for AD.
Collapse
Affiliation(s)
- Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Madhuri Bandari
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Pulak R Manna
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
3
|
Zhang P, Liu J, Chai Z, Fu J, Li S, Yang Z. CircZfp644-205 inhibits osteoblast differentiation and induces apoptosis of pre-osteoblasts via sponging miR-455-3p and promoting SMAD2 expression. Eur J Med Res 2024; 29:315. [PMID: 38849933 PMCID: PMC11161986 DOI: 10.1186/s40001-024-01903-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are involved in the progression of osteoporosis; however, their impact on osteogenic differentiation has yet to be fully elucidated. In this study, we identified a novel circRNA known as circZfp644-205 and investigated its effect on osteogenic differentiation and apoptosis in osteoporosis. METHODS CircZfp644-205, miR-445-3p, and SMAD2 levels were measured using quantitative real-time polymerase chain reaction (qRT-PCR). MC3T3-E1 cells were subjected to microgravity (MG) to establish a cell model. Osteogenic differentiation was assessed using qRT-PCR, Alizarin Red S staining, alkaline phosphatase staining, and western blot. The apoptosis was evaluated using flow cytometry. The relationship between miR-445-3p and circZfp644-205 or SMAD2 was determined using bioinformatics, RNA pull-down, and luciferase reporter assay. Moreover, a hindlimb unloading mouse model was generated to investigate the role of circZfp644-205 in vivo using Micro-CT. RESULTS CircZfp644-205 expression was up-regulated significantly in HG-treated MC3T3-E1 cells. Further in vitro studies confirmed that circZfp644-205 knockdown inhibited the osteogenic differentiation and induced apoptosis of pre-osteoblasts. CircZfp644-205 acted as a sponge for miR-455-3p, which reversed the effects of circZfp644-205 on pre-osteoblasts. Moreover, miR-455-3p directly targeted SMAD2, thus inhibiting the expression of SMAD2 to regulate cellular behaviors. Moreover, circZfp644-205 alleviated the progression of osteoporosis in mice. CONCLUSIONS This study provides a novel circRNA that may serve as a potential therapeutic target for osteoporosis and expands our understanding of the molecular mechanism underlying the progression of osteoporosis.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Orthopaedics, Shanxi Provincial People's Hospital, No.29, Shuangta Temple Street, Taiyuan, 030012, Shanxi, China
| | - Jie Liu
- Department of Internal Neurology, Inner Mongolia Medical University Affiliated Hospital, Hohhot, Inner Mongolia, China
| | - Zijia Chai
- Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Jinjin Fu
- Heze Municipal Hospital, Heze, Shandong, China
| | - Shuwen Li
- Department of Minimal Invasive Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical College, Hohhot, Inner Mongolia, China
| | - Zhe Yang
- Department of Orthopaedics, Shanxi Provincial People's Hospital, No.29, Shuangta Temple Street, Taiyuan, 030012, Shanxi, China.
| |
Collapse
|
4
|
Abulsoud AI, Elshaer SS, Abdelmaksoud NM, Zaki MB, El-Mahdy HA, Ismail A, Al-Noshokaty TM, Fathi D, Abdel-Reheim MA, Mohammed OA, Doghish AS. Investigating the regulatory role of miRNAs as silent conductors in the management of pathogenesis and therapeutic resistance of pancreatic cancer. Pathol Res Pract 2023; 251:154855. [PMID: 37806169 DOI: 10.1016/j.prp.2023.154855] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Pancreatic cancer (PC) has the greatest mortality rate of all the main malignancies. Its advanced stage and poor prognosis place it at the bottom of all cancer sites. Hence, emerging biomarkers can enable precision medicine where PC therapy is tailored to each patient. This highlights the need for new, highly sensitive and specific biomarkers for early PC diagnosis. Prognostic indicators are also required to stratify PC patients. To avoid ineffective treatment, adverse events, and expenses, biomarkers are also required for patient monitoring and identifying responders to treatment. There is substantial evidence that microRNAs (miRs, miRNAs) play a critical role in regulating mRNA and, as a consequence, protein expression in normal and malignant tissues. Deregulated miRNA profiling in PC can help with diagnosis, treatment planning, and prognosis. Furthermore, knowledge of the primary effector genes and downstream pathways in PC can help pinpoint potential miRNAs for use in treatment. Different miRNA expression profiles may serve as diagnostic, prognostic markers, and therapeutic targets across the spectrum of malignant pancreatic illness. Dysregulation of miRNAs has been linked to the malignant pathophysiology of PC through affecting many cellular functions such as increasing invasive and proliferative prospect, supporting angiogenesis, cell cycle aberrance, apoptosis elusion, metastasis promotion, and low sensitivity to particular treatments. Accordingly, in the current review, we summarize the recent advances in the roles of oncogenic and tumor suppressor (TS) miRNAs in PC and discuss their potential as worthy diagnostic and prognostic biomarkers for PC, as well as their significance in PC pathogenesis and anticancer drug resistance.
Collapse
Affiliation(s)
- Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Tohada M Al-Noshokaty
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Doaa Fathi
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
5
|
Hao S, Yao Z, Liu Y. Hsa_circ_0000106 Acts as a Tumor Promoter in Pancreatic Cancer by Targeting the MiR-455-3p/HDAC4. Horm Metab Res 2023; 55:722-732. [PMID: 37553012 DOI: 10.1055/a-2125-7018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Circular RNAs (circRNAs) frequently participate in pancreatic cancer (PC) progression. This study focuses on circ_0000106, a novel circRNA, and its potential function in PC development. Circ_00001106, miR-455-3p, and HDAC4 expression levels in PC were determined using qRT-PCR and immunoblotting. RNA immunoprecipitation and dual-luciferase reporter assays were performed to verify their binding interactions. Loss-of-function assays, including CCK-8, colony formation, and transwell assays, were used to estimate the proliferative and migratory properties of PC cells. A nude mouse model was constructed to assess the influence of circ_0000106 on tumor formation in vivo. A pronounced elevation of circ_0000106 and HDAC4 and a reduction of miR-455-3p in PC were observed. Circ_0000106 was prone to binding to miR-455-3p, and miR-455-3p further targeted HDAC4. Functionally, the proliferative and migratory properties of PC cells were dampened by the loss of circ_0000106 or HDAC4 and could be potentiated by miR-455-3p inhibition. Moreover, the knockdown of circ_0000106 delayed tumor growth in vivo. Additionally, the downregulation of miR-455-3p attenuated the repressive effects of circ_0000106 deficiency on PC cell migration and proliferation. Loss of HDAC4 exerted similar mitigative effects on miR-455-3p downregulation-stimulated PC cells. In conclusion, circ_0000106 promotes tumor migration and growth in PC by targeting the miR-455-3p/HDAC4 axis. These results suggest that the circ_0000106/miR-455-3p/HDAC4 network could be regarded as a latent target for PC treatment.
Collapse
Affiliation(s)
- Shunxin Hao
- Department of General Surgery, Wuhan University of Science and Technology Hospital, Wuhan, China
| | - Zhi Yao
- Department of General Surgery, Wuhan University of Science and Technology Hospital, Wuhan, China
| | - Yifeng Liu
- Department of General Surgery, Wuhan University of Science and Technology Hospital, Wuhan, China
| |
Collapse
|
6
|
Zhan T, Chen M, Liu W, Han Z, Zhu Q, Liu M, Tan J, Liu J, Chen X, Tian X, Huang X. MiR-455-3p inhibits gastric cancer progression by repressing Wnt/β-catenin signaling through binding to ARMC8. BMC Med Genomics 2023; 16:155. [PMID: 37400847 DOI: 10.1186/s12920-023-01583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Globally, gastric cancer (GC) is one of the world's most widespread malignancies, with persistent high mortality and morbidity rates. Increasing evidence now suggests that microRNAs (miRNAs) participate in many biological processes, with miR-455-3p having key roles in the progression of diverse cancers. Nevertheless, miR-455-3p function and expression in GC remain unclear. METHODS We explored miR-455-3p expression in GC using quantitative polymerase chain reaction (qPCR). To further examine the effect of miR-455-3p in GC, after transfecting miR-455-3p mimics or inhibitors into GC cells, 5-ethynyl-2'-deoxyuridine (EdU) incorporation and colony formation assays were performed to examine cell proliferation. Flow cytometry was used to detect apoptosis, and expression levels of Bax, Bcl-2, Snail, N-cadherin, E-cadherin, and Caspase-3 were assessed by western blotting (WB). Using online databases and luciferase assays, we identified armadillo repeat-containing protein 8 (ARMC8) as a promising target of miR-455-3p. A mouse tumor model was established to investigate actions of miR-455-3p in vivo. Expression levels of C-myc, cyclinD1, and β-catenin were examined using WB and immunofluorescence. RESULTS MiR-455-3p expression was attenuated in GC tissue and cell lines. MiR-455-3p overexpression inhibited GC cell proliferation, epithelial-mesenchymal transition (EMT), as well as facilitated apoptosis, while suppression of miR-455-3p had the opposite effects. From luciferase assays, we confirmed that ARMC8 was a novel and direct downstream target gene of miR-455-3p, and that the tumor suppressive role of miR-455-3p was in part reversed due to ARMC8 overexpression. Moreover, miR-455-3p inhibited GC growth in vivo via ARMC8. We also observed that miR-455-3p repressed canonical Wnt pathway activation by binding to ARMC8. CONCLUSIONS MiR-455-3p exerted tumor inhibitory effects in GC by targeting ARMC8. Therefore, intervening in the miR-455-3p/ARMC8/Wnt/βcatenin axis could be a promising novel treatment strategy for GC.
Collapse
Affiliation(s)
- Ting Zhan
- Department of Gastroenterology, WuHan Third Hospital ( Tongren hospital of WuHan University), Wuhan, 430060, China
| | - Mengge Chen
- Department of Gastroenterology, WuHan Third Hospital ( Tongren hospital of WuHan University), Wuhan, 430060, China
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430060, China
| | - Weijie Liu
- Department of Gastroenterology, WuHan Third Hospital ( Tongren hospital of WuHan University), Wuhan, 430060, China
| | - Zheng Han
- Department of Gastroenterology, WuHan Third Hospital ( Tongren hospital of WuHan University), Wuhan, 430060, China
| | - Qingxi Zhu
- Department of Gastroenterology, WuHan Third Hospital ( Tongren hospital of WuHan University), Wuhan, 430060, China
| | - Meng Liu
- Department of Gastroenterology, WuHan Third Hospital ( Tongren hospital of WuHan University), Wuhan, 430060, China
| | - Jie Tan
- Department of Gastroenterology, WuHan Third Hospital ( Tongren hospital of WuHan University), Wuhan, 430060, China
| | - Jiaxi Liu
- Department of Gastroenterology, WuHan Third Hospital ( Tongren hospital of WuHan University), Wuhan, 430060, China
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaoli Chen
- Department of Gastroenterology, WuHan Third Hospital ( Tongren hospital of WuHan University), Wuhan, 430060, China
| | - Xia Tian
- Department of Gastroenterology, WuHan Third Hospital ( Tongren hospital of WuHan University), Wuhan, 430060, China.
| | - Xiaodong Huang
- Department of Gastroenterology, WuHan Third Hospital ( Tongren hospital of WuHan University), Wuhan, 430060, China.
| |
Collapse
|
7
|
Lei C, Huo Y, Ma F, Liao J, Hu Z, Han Q, Li Y, Pan J, Hu L, Guo J, Tang Z. Long-term copper exposure caused hepatocytes autophagy in broiler via miR-455-3p-OXSR1 axis. Chem Biol Interact 2023; 369:110256. [PMID: 36372260 DOI: 10.1016/j.cbi.2022.110256] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Copper (Cu) is a common environmental pollutant which has been identified to cause toxic effects on animal bodies. MicroRNAs (miRNAs) are a type of non-coding RNAs involved in the regulation of various cellular activities including autophagy, but the potential regulatory mechanisms after excess Cu intake are still uncertain. Our previous study has prompted that Cu exposure reduced liver miR-455-3p levels. Herein, miR-455-3p was found to be an important molecule in the regulation of Cu-induced autophagy in vivo and in vitro. Histopathology observation of liver tissue indicated that Cu-induced severe hepatic damage including cellular swelling and vacuolization. Meanwhile, excessive Cu exposure not only heighten the mRNA and protein expression levels of Beclin1, Atg5, LC3Ⅰ and LC3Ⅱ, but also decreased miR-455-3p levels. In vitro experiment, Cu-induced autophagy can be attenuated by miR-455-3p overexpression. Additionally, oxidative stress-responsive 1 (OXSR1) was identified as a direct downstream target of miR-455-3p by dual luciferase reporter assays. Moreover, knockdown of OXSR1 can attenuate the autophagy induced by Cu treatment and the miR-455-3p inhibitor. Overall, the miR-455-3p-OXSR1 axis works as a regulator of autophagy under Cu stress, which provides a basis for further revealing the mechanism of chronic Cu poisoning.
Collapse
Affiliation(s)
- Chaiqin Lei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Yihui Huo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Feiyang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Zhuoying Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| |
Collapse
|
8
|
TAZ Regulates the Cisplatin Resistance of Epithelial Ovarian Cancer Cells via the ANGPTL4/SOX2 Axis. Anal Cell Pathol 2022; 2022:5632164. [PMID: 36247876 PMCID: PMC9553699 DOI: 10.1155/2022/5632164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/20/2022] [Accepted: 08/04/2022] [Indexed: 11/28/2022] Open
Abstract
Objective Epithelial ovarian cancer (EOC) is a fatal gynecological malignancy. This study explored the mechanism of TAZ in regulating drug sensitivity of cisplatin (DDP-)-resistant EOC cells through the ANGPTL4/SOX2 axis. Methods The A2780/DDP cells were prepared by stepwise progressive concentration method. The drug resistance and TAZ expression in EOC cells were determined. Drug sensitivity was measured after TAZ overexpression in A2780 cells and TAZ downregulation in A2780/DDP cells, respectively. The effects of TAZ knockdown on apoptosis rate, stemness, and cancer stem cell (CSC) marker (CD44, OCT4, and ALDH1A) levels in A2780/DDP and DDP-treated A2780/DDP cells were assessed. The binding of TAZ and ANGPTL4 was verified using ChIP-qPCR, and ANGPTL4 and SOX2 levels were determined. The effects of different combined treatments of TAZ, ANGPTL4, and SOX2 on drug sensitivity of A2780/DDP cells and DDP-treated A2780/DDP cells were evaluated. Results TAZ was upregulated in drug-resistant EOC cells. TAZ knockdown significantly increased the drug sensitivity of A2780/DDP cells, while TAZ overexpression markedly decreased the drug sensitivity of A2780 cells. TAZ silencing promoted apoptosis of drug-resistant EOC cells and inhibited cell stemness. TAZ targeted ANGPTL4 and TAZ silencing enhanced drug sensitivity of A2780/DDP cells by inhibiting ANGPTL4. ANGPTL4 overexpression elevated SOX2 expression, and SOX2 downregulation reduced the drug resistance and promoted the apoptosis of A2780/DDP cells. Conclusion TAZ regulates DDP sensitivity of drug-resistant EOC cells via the ANGPTL4/SOX2 axis.
Collapse
|
9
|
Chetta M, Tarsitano M, Oro M, Rivieccio M, Bukvic N. An in silico pipeline approach uncovers a potentially intricate network involving spike SARS-CoV-2 RNA, RNA vaccines, host RNA-binding proteins (RBPs), and host miRNAs at the cellular level. J Genet Eng Biotechnol 2022; 20:129. [PMID: 36066672 PMCID: PMC9446605 DOI: 10.1186/s43141-022-00413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND In the last 2 years, we have been fighting against SARS-CoV-2 viral infection, which continues to claim victims all over the world. The entire scientific community has been mobilized in an attempt to stop and eradicate the infection. A well-known feature of RNA viruses is their high mutational rate, particularly in specific gene regions. The SARS-CoV-2 S protein is also affected by these changes, allowing viruses to adapt and spread more easily. The vaccines developed using mRNA coding protein S undoubtedly contributed to the "fight" against the COVID-19 pandemic even though the presence of new variants in the spike protein could result in protein conformational changes, which could affect vaccine immunogenicity and thus vaccine effectiveness. RESULTS The study presents the findings of an in silico analysis using various bioinformatics tools finding conserved sequences inside SARS-CoV-2 S protein (encoding mRNA) same as in the vaccine RNA sequences that could be targeted by specific host RNA-binding proteins (RBPs). According to the results an interesting scenario emerges involving host RBPs competition and subtraction. The presence of viral RNA in cytoplasm could be a new tool in the virus's armory, allowing it to improve its chances of survival by altering cell gene expression and thus interfering with host cell processes. In silico analysis was used also to evaluate the presence of similar human miRNA sequences within RBPs motifs that can modulate human RNA expression. Increased cytoplasmic availability of exogenous RNA fragments derived from RNA physiological degradation could potentially mimic the effect of host human miRNAs within the cell, causing modulation of the host cell network. CONCLUSIONS Our in silico analysis could aid in shedding light on the potential effects of exogenous RNA (i.e. viruses and vaccines), thereby improving our understanding of the cellular interactions between virus and host biomolecules. Finally, using the computational approach, it is possible to obtain a safety assessment of RNA-based vaccines as well as indications for use in specific clinical conditions.
Collapse
Affiliation(s)
- Massimiliano Chetta
- AORN A. Cardarelli-Dipartimento delle Tecnologie Avanzate Diagnostico-Terapeutiche e dei Servizi sanitari-U.O.C. Genetica Medica e di Laboratorio, Via A. Cardarelli 9, 80131, Napoli, Italy.
| | - Marina Tarsitano
- AORN A. Cardarelli-Dipartimento delle Tecnologie Avanzate Diagnostico-Terapeutiche e dei Servizi sanitari-U.O.C. Genetica Medica e di Laboratorio, Via A. Cardarelli 9, 80131, Napoli, Italy
| | - Maria Oro
- AORN A. Cardarelli-Dipartimento delle Tecnologie Avanzate Diagnostico-Terapeutiche e dei Servizi sanitari-U.O.C. Genetica Medica e di Laboratorio, Via A. Cardarelli 9, 80131, Napoli, Italy
| | - Maria Rivieccio
- AORN A. Cardarelli-Dipartimento delle Tecnologie Avanzate Diagnostico-Terapeutiche e dei Servizi sanitari-U.O.C. Genetica Medica e di Laboratorio, Via A. Cardarelli 9, 80131, Napoli, Italy
| | - Nenad Bukvic
- AOUC "Policlinico di Bari"-UOC Lab. di Genetica Medica, Piazza Giulio Cesare 11, 70124, Bari, Italy
| |
Collapse
|
10
|
Parayath NN, Gandham SK, Amiji MM. Tumor-targeted miRNA nanomedicine for overcoming challenges in immunity and therapeutic resistance. Nanomedicine (Lond) 2022; 17:1355-1373. [PMID: 36255330 PMCID: PMC9706370 DOI: 10.2217/nnm-2022-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
miRNA are critical messengers in the tumor microenvironment (TME) that influence various processes leading to immune suppression, tumor progression, metastasis and resistance. Strategies to modulate miRNAs in the TME have important implications in overcoming these challenges. However, miR delivery to specific cells in the TME has been challenging. This review discusses nanomedicine strategies to achieve cell-specific delivery of miRNAs. The key goal of delivery is to activate the tumor immune landscape as well as to prevent chemotherapy resistance. Specifically, the use of hyaluronic acid-based nanoparticle miRNA delivery to the TME is discussed. The discussion is focused on miRNA-125b for reprogramming tumor-associated macrophages to overcome immunosuppression and miRNA-let-7b to overcome resistance to anticancer chemotherapeutics because both these miRNAs have been extensively evaluated for delivery with hyaluronic acid-based delivery systems.
Collapse
Affiliation(s)
- Neha N Parayath
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Srujan K Gandham
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA,Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA,Author for correspondence: Tel.: +1 617 373 3137;
| |
Collapse
|
11
|
Rahnama N, Jahangir M, Alesaeid S, Kahrizi MS, Adili A, Mohammed RN, Aslaminabad R, Akbari M, Özgönül AM. Association between microRNAs and chemoresistance in pancreatic cancer: Current knowledge, new insights, and forthcoming perspectives. Pathol Res Pract 2022; 236:153982. [PMID: 35779293 DOI: 10.1016/j.prp.2022.153982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 11/25/2022]
Abstract
Pancreatic duct adenocarcinoma, commonly known as pancreatic cancer (PC), is a cancer-related cause of death due to delayed diagnosis, metastasis, and drug resistance. Patients with PC suffer from incorrect responses to chemotherapy due to inherent and acquired chemical resistance. Numerous studies have shown the mechanism of the effect of chemoresistance on PC, such as genetic and epigenetic changes or the elucidation of signaling pathways. In this regard, microRNAs (miRNAs) have been identified as essential modulators of gene expression in various cellular functions, including chemoresistance. Thus, identifying the underlying link between microRNAs and PC chemoresistance helps determine the exact pathogenesis of PC. This study aims to classify miRNAs and signaling pathways related to PC chemoresistance, suggesting new therapeutic approaches to overcome PC chemoresistance.
Collapse
Affiliation(s)
- Negin Rahnama
- Department of Internal Medicine and Health Services, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Samira Alesaeid
- Department of Internal Medicine and Rheumatology, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, FL, USA; Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rebar N Mohammed
- Medical Laboratory Analysis Department, College of Health Sciences, Cihan University of Sulaimaniya, Kurdistan Region, Iraq; College of Veterinary Medicine, University of Sulaimani, Sulaimaniyah, Iraq
| | - Ramin Aslaminabad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Mert Özgönül
- Department of Biochemistry, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey.
| |
Collapse
|
12
|
Zhang Y, Wang Y, Ji H, Ding J, Wang K. The interplay between noncoding RNA and YAP/TAZ signaling in cancers: molecular functions and mechanisms. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:202. [PMID: 35701841 PMCID: PMC9199231 DOI: 10.1186/s13046-022-02403-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022]
Abstract
The Hippo signaling pathway was found coordinately modulates cell regeneration and organ size. Its dysregulation contributes to uncontrolled cell proliferation and malignant transformation. YAP/TAZ are two critical effectors of the Hippo pathway and have been demonstrated essential for the initiation or growth of most tumors. Noncoding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, have been shown to play critical roles in the development of many cancers. In the past few decades, a growing number of studies have revealed that ncRNAs can directly or indirectly regulate YAP/TAZ signaling. YAP/TAZ also regulate ncRNAs expression in return. This review summarizes the interactions between YAP/TAZ signaling and noncoding RNAs together with their biological functions on cancer progression. We also try to describe the complex feedback loop existing between these components.
Collapse
Affiliation(s)
- Yirao Zhang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Yang Wang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Hao Ji
- Department of Liver Surgery and Liver Transplantation Center, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jie Ding
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China.
| | - Keming Wang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China.
| |
Collapse
|
13
|
Francisco AB, Kanke M, Massa AP, Dinh TA, Sritharan R, Vakili K, Bardeesy N, Sethupathy P. Multiomic analysis of microRNA-mediated regulation reveals a proliferative axis involving miR-10b in fibrolamellar carcinoma. JCI Insight 2022; 7:e154743. [PMID: 35482409 PMCID: PMC9220943 DOI: 10.1172/jci.insight.154743] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
Fibrolamellar carcinoma (FLC) is an aggressive liver cancer primarily afflicting adolescents and young adults. Most patients with FLC harbor a heterozygous deletion on chromosome 19 that leads to the oncogenic gene fusion, DNAJB1-PRKACA. There are currently no effective therapeutics for FLC. To address that, it is critical to gain deeper mechanistic insight into FLC pathogenesis. We assembled a large sample set of FLC and nonmalignant liver tissue (n = 52) and performed integrative multiomic analysis. Specifically, we carried out small RNA sequencing to define altered microRNA expression patterns in tumor samples and then coupled this analysis with RNA sequencing and chromatin run-on sequencing data to identify candidate master microRNA regulators of gene expression in FLC. We also evaluated the relationship between DNAJB1-PRKACA and microRNAs of interest in several human and mouse cell models. Finally, we performed loss-of-function experiments for a specific microRNA in cells established from a patient-derived xenograft (PDX) model. We identified miR-10b-5p as the top candidate pro-proliferative microRNA in FLC. In multiple human cell models, overexpression of DNAJB1-PRKACA led to significant upregulation of miR-10b-5p. Inhibition of miR-10b in PDX-derived cells increased the expression of several potentially novel target genes, concomitant with a significant reduction in metabolic activity, proliferation, and anchorage-independent growth. This study highlights a potentially novel proliferative axis in FLC and provides a rich resource for further investigation of FLC etiology.
Collapse
Affiliation(s)
- Adam B. Francisco
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Andrew P. Massa
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Timothy A. Dinh
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Ramja Sritharan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Khashayar Vakili
- Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Nabeel Bardeesy
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
14
|
Huldani H, Jasim SA, Sergeenva KN, Bokov DO, Abdelbasset WK, Turakulov R, Al-Gazally ME, Ahmadzadeh B, Jawhar ZH, Siahmansouri H. Mechanisms of cancer stem cells drug resistance and the pivotal role of HMGA2. Pathol Res Pract 2022; 234:153906. [PMID: 35468338 DOI: 10.1016/j.prp.2022.153906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022]
Abstract
Nowadays, the focus of researchers is on perceiving the heterogeneity observed in a tumor. The researchers studied the role of a specific subset of cancer cells with high resistance to traditional treatments, recurrence, and unregulated metastasis. This small population of tumor cells that have stem-cell-like specifications was named Cancer Stem Cells (CSCs). The unique features that distinguish this type of cancer cell are self-renewing, generating clones of the tumor, plasticity, recurrence, and resistance to therapies. There are various mechanisms that contribute to the drug resistance of CSCs, such as CSCs markers, Epithelial mesenchymal transition, hypoxia, other cells, inflammation, and signaling pathways. Recent investigations have revealed the primary role of HMGA2 in the development and invasion of cancer cells. Importantly, HMGA2 also plays a key role in resistance to treatment through their function in the drug resistance mechanisms of CSCs and challenge it. Therefore, a deep understanding of this issue can provide a clearer perspective for researchers in the face of this problem.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Lambung Mangkurat University, Banjarmasin, South Borneo, Indonesia
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Klunko Nataliya Sergeenva
- Department of post-graduate and doctoral programs, Russian New University, Building 5, Radio Street, Moscow City, Russian Federation
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow 119991, Russian Federation
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Rustam Turakulov
- Department of Internal diseases, Tashkent Medical Academy, Tashkent, Uzbekistan
| | | | - Behnam Ahmadzadeh
- Doctoral School of the University of Szczecin, Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Science, Lebanese French University, Kurdistan Region, Iraq
| | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Zhu Y, Li J, Liu H, Song Z, Yang Q, Lu C, Chen W. Circular RNA, hsa_circRNA_102049, promotes colorectal cancer cell migration and invasion via binding and suppressing miRNA-455-3p. Exp Ther Med 2022; 23:244. [PMID: 35222721 PMCID: PMC8815054 DOI: 10.3892/etm.2022.11169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 04/28/2021] [Indexed: 11/25/2022] Open
Abstract
Colorectal cancer (CRC) is the second most prevalent malignant gastrointestinal tumor type worldwide, displaying poor prognosis. Accumulating studies have reported the significance of circular RNAs (circRNAs) and microRNAs (miRNAs) in CRC carcinogenesis and development. At present, the functions and mechanisms of action underlying the circular RNA, hsa_circRNA_102049, in CRC are not completely understood. The present study aimed to establish the involvement of hsa_circRNA_102049 in CRC, as well as the associated mechanisms. The expression levels of hsa_circRNA_102049 and miRNA-455-3p were measured in CRC cell lines and tissues via reverse transcription-quantitative PCR. CRC progression was evaluated by performing Cell Counting Kit-8, flow cytometry, wound healing and Transwell invasion assays. The results demonstrated that hsa_circRNA_102049 was highly expressed in both CRC tissues and cell lines, which was associated with enhanced CRC cell proliferation, migration and invasion. Furthermore, miR-455-3p expression was downregulated in CRC cells and served as a target of has_circRNA_102049, which was validated by performing the dual luciferase reporter assay. hsa_circRNA_102049 knockdown significantly increased miR-455-3p expression, which was significantly reversed by co-transfection with the miR-455-3p inhibitor. Notably, miRNA-455-3p overexpression alleviated hsa_circRNA_102049-mediated induction of CRC cell proliferation, migration and invasion. The present study clearly demonstrated that miRNA-455-3p was a target of hsa_circRNA_102049. Moreover, the results indicated that the circular RNA, hsa_circRNA_102049, may function as a tumor promoter in CRC via directly sponging miRNA-455-3p.
Collapse
Affiliation(s)
- Yuandong Zhu
- Department of Colorectal and Anal Surgery, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Jianjion Li
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Haiyuan Liu
- Department of Colorectal and Anal Surgery, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Zhengming Song
- Department of Colorectal and Anal Surgery, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Qinghua Yang
- Department of Colorectal and Anal Surgery, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Chengdong Lu
- Department of Colorectal and Anal Surgery, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Wenbin Chen
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
16
|
Zahra MH, Nawara HM, Hassan G, Afify SM, Seno A, Seno M. Cancer Stem Cells Contribute to Drug Resistance in Multiple Different Ways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1393:125-139. [PMID: 36587305 DOI: 10.1007/978-3-031-12974-2_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many tumors are resistant to conventional cancer therapies because a tumor is composed of heterogeneous cell population. Especially, subpopulation of cancer stem cells, which have self-renewal and differentiation properties and responsible for the tumor initiation, is generally considered resistant to chemo-, radio-, and immune therapy. Understanding the mechanism of drug resistance in cancer stem cells should lead to establish more effective therapeutic strategies. Actually, different molecular mechanisms are conceivable for cancer stem cells acquiring drug resistance. These mechanisms include not only cytoplasmic signaling pathways but also the intercellular communications in the tumor microenvironment. Recently, a great deal of successful reports challenged to elucidate the mechanisms of drug resistance and to develop novel treatments targeting cancer stem cells.
Collapse
Affiliation(s)
- Maram H Zahra
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
| | - Hend M Nawara
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
| | - Ghmkin Hassan
- Department of Genomic Oncology and Oral Medicine, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Said M Afify
- Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Shebin El Koum-Menoufia, Shebeen El-Kom, 32511, Egypt
| | - Akimasa Seno
- Laboratory of Natural Food & Medicine, Co., Ltd, Okayama University Incubator, Okayama, 700-8530, Japan
| | - Masaharu Seno
- Laboratory of Natural Food & Medicine, Co., Ltd, Okayama University Incubator, Okayama, 700-8530, Japan.
| |
Collapse
|
17
|
Uzuner E, Ulu GT, Gürler SB, Baran Y. The Role of MiRNA in Cancer: Pathogenesis, Diagnosis, and Treatment. Methods Mol Biol 2022; 2257:375-422. [PMID: 34432288 DOI: 10.1007/978-1-0716-1170-8_18] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer is also determined by the alterations of oncogenes and tumor suppressor genes. These gene expressions can be regulated by microRNAs (miRNA). At this point, researchers focus on addressing two main questions: "How are oncogenes and/or tumor suppressor genes regulated by miRNAs?" and "Which other mechanisms in cancer cells are regulated by miRNAs?" In this work we focus on gathering the publications answering these questions. The expression of miRNAs is affected by amplification, deletion or mutation. These processes are controlled by oncogenes and tumor suppressor genes, which regulate different mechanisms of cancer initiation and progression including cell proliferation, cell growth, apoptosis, DNA repair, invasion, angiogenesis, metastasis, drug resistance, metabolic regulation, and immune response regulation in cancer cells. In addition, profiling of miRNA is an important step in developing a new therapeutic approach for cancer.
Collapse
Affiliation(s)
- Erez Uzuner
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Gizem Tugçe Ulu
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Sevim Beyza Gürler
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Yusuf Baran
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey.
| |
Collapse
|
18
|
Dong P, Xiong Y, Konno Y, Ihira K, Kobayashi N, Yue J, Watari H. Long non-coding RNA DLEU2 drives EMT and glycolysis in endometrial cancer through HK2 by competitively binding with miR-455 and by modulating the EZH2/miR-181a pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:216. [PMID: 34174908 PMCID: PMC8235565 DOI: 10.1186/s13046-021-02018-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/14/2021] [Indexed: 01/27/2023]
Abstract
Background Epithelial-to-mesenchymal transition (EMT) and aerobic glycolysis are fundamental processes implicated in cancer metastasis. Although increasing evidence demonstrates an association between EMT induction and enhanced aerobic glycolysis in human cancer, the mechanisms linking these two conditions in endometrial cancer (EC) cells remain poorly defined. Methods We characterized the role and molecular mechanism of the glycolytic enzyme hexokinase 2 (HK2) in mediating EMT and glycolysis and investigated how long noncoding RNA DLEU2 contributes to the stimulation of EMT and glycolysis via upregulation of HK2 expression. Results HK2 was highly expressed in EC tissues, and its expression was associated with poor overall survival. Overexpression of HK2 effectively promoted EMT phenotypes and enhanced aerobic glycolysis in EC cells via activating FAK and its downstream ERK1/2 signaling. Moreover, microRNA-455 (miR-455) served as a tumor suppressor by directly interacting with HK2 mRNA and inhibiting its expression. Furthermore, DLEU2 displayed a significantly higher expression in EC tissues, and increased DLEU2 expression was correlated with worse overall survival. DLEU2 acted as an upstream activator for HK2-induced EMT and glycolysis in EC cells through two distinct mechanisms: (i) DLEU2 induced HK2 expression by competitively binding with miR-455, and (ii) DLEU2 also interacted with EZH2 to silence a direct inhibitor of HK2, miR-181a. Conclusions This study identified DLEU2 as an upstream activator of HK2-driven EMT and glycolysis in EC cells and provided significant mechanistic insights for the potential treatment of EC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02018-1.
Collapse
Affiliation(s)
- Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan.
| | - Ying Xiong
- Department of Gynecology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yosuke Konno
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan.
| | - Kei Ihira
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan
| | - Noriko Kobayashi
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan
| |
Collapse
|
19
|
Noncoding RNAs Associated with Therapeutic Resistance in Pancreatic Cancer. Biomedicines 2021; 9:biomedicines9030263. [PMID: 33799952 PMCID: PMC7998345 DOI: 10.3390/biomedicines9030263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Therapeutic resistance is an inevitable impediment towards effective cancer therapies. Evidence accumulated has shown that the signaling pathways and related factors are fundamentally responsible for therapeutic resistance via regulating diverse cellular events, such as epithelial-to-mesenchymal transition (EMT), stemness, cell survival/apoptosis, autophagy, etcetera. Noncoding RNAs (ncRNAs) have been identified as essential cellular components in gene regulation. The expression of ncRNAs is altered in cancer, and dysregulated ncRNAs participate in gene regulatory networks in pathological contexts. An in-depth understanding of molecular mechanisms underlying the modulation of therapeutic resistance is required to refine therapeutic benefits. This review presents an overview of the recent evidence concerning the role of human ncRNAs in therapeutic resistance, together with the feasibility of ncRNAs as therapeutic targets in pancreatic cancer.
Collapse
|
20
|
Abstract
Therapy resistance is a major problem when treating cancer patients as cancer cells develop mechanisms that counteract the effect of therapeutic compounds, leading to fit and more aggressive clones that contribute to poor prognosis. Therapy resistance can be both intrinsic and/or acquired. These are multifactorial events, and some are related to factors including adaptations in cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), deregulation of key signaling pathways, drug efflux through ABC transporters, acquired mutations, evading apoptosis, and activation of DNA damage response among others. Among these factors, CSCs represent the major source of therapy resistance. CSCs are a subset of tumor cells that are capable of self-renewal and multilineage progenitor expansion that are known to be intrinsically resistant to anticancer treatments. Multiple clones of CSCs pre-exist, and some can adopt and expand easily to changes in the tumor microenvironment (TME) and/or in response to radio- and chemotherapy. A combination of both intrinsic and extrinsic factors contributes to CSC-mediated therapy resistance. In this review, we will focus on CSCs and therapy resistance as well as suggest strategies to eliminate CSCs and, therefore, overcome resistance. Video abstract.
Collapse
Affiliation(s)
- Yuan Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009 USA
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001 People’s Republic of China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001 People’s Republic of China
| | - Jaffer A. Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009 USA
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009 USA
| |
Collapse
|
21
|
Liu Y, Lu FA, Wang L, Wang YF, Wu CF. Long non‑coding RNA NEAT1 promotes pulmonary fibrosis by regulating the microRNA‑455‑3p/SMAD3 axis. Mol Med Rep 2021; 23:218. [PMID: 33495816 PMCID: PMC7845585 DOI: 10.3892/mmr.2021.11857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022] Open
Abstract
Pulmonary fibrosis is an excessive repair response to tissue damage, triggering hyperplasia of fibrotic connective tissues; however, there is no effective treatment in a clinical setting. The purpose of the present study was to investigate the roles of long non-coding RNA nuclear enriched abundant transcript 1 (NEAT1) and microRNA-455-3p (miR-455-3p) were investigated in pulmonary fibrosis. In this study, the mRNA expression levels of NEAT1, miR-455-3p and SMAD3 in the HPAEpiC alveolar and BEAS-2B bronchial epithelial cell lines were determined using reverse transcription-quantitative PCR, while the markers of epithelial-mesenchymal transformation (EMT) and collagen production were determined using western blot analysis. A wound healing assay was performed to evaluate the migratory ability of the HPAEpiC and BEAS-2B cell lines. The interactions between NEAT1 and miR-455-3p or SMAD3 and miR-455-3p were validated using a luciferase reporter gene assay. The results showed that the mRNA expression levels of NEAT1 and SMAD3 were upregulated in the TGF-β1-treated HPAEpiC and BEAS-2B cell lines, while the mRNA expression level of miR-455-3p was significantly decreased. In addition, silencing NEAT1 effectively alleviated the migratory ability, EMT and collagen generation of the epithelial cells. Following these experiments, NEAT1 was identified as a sponge for miR-455-3p, and SMAD3 was a target gene of miR-455-3p. NEAT1 downregulation or miR-455-3p mimic inhibited the migratory ability, EMT and collagen production of the epithelial cells; however, the effects were reversed by the overexpression of SMAD3. Furthermore, NEAT1 knockdown reduced the expression level of SMAD3 by increasing the expression level of miR-455-3p to further inhibit the migratory ability, EMT and collagen production of epithelial cells.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Rheumatology, Liuzhou People's Hospital, Liuzhou, Guangxi Autonomous Region 545006, P.R. China
| | - Fu-Ai Lu
- Department of Rheumatology, First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, P.R. China
| | - Le Wang
- Department of Rheumatology, Liuzhou People's Hospital, Liuzhou, Guangxi Autonomous Region 545006, P.R. China
| | - Yong-Fu Wang
- Department of Rheumatology, First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, P.R. China
| | - Chun-Feng Wu
- Department of Rheumatology, Liuzhou People's Hospital, Liuzhou, Guangxi Autonomous Region 545006, P.R. China
| |
Collapse
|
22
|
Abstract
MicroRNA-455-3p (miR-455-3p) is identify as a member of broadly conserved miRNA family expressed in most of the phylum and species. In humans, miR-455 is present on the human chromosome 9 at locus 9q32 and encoded by the human COL27A1 gene (collagen type XXVII alpha 1 chain). The role of miR-455 has been implicated in various human diseases such as cartilage development, adipogenesis, preeclampsia, and cancers, e.g., colon cancer, prostate cancer, hepatocellular carcinoma, renal cancer, oral squamous cancer, skin cancer, and non-small cell lung cancer. Recently, our laboratory discovered the biomarker and therapeutic relevance of miR-455-3p in Alzheimer's disease (AD). Our global microarray analysis of serum samples from AD patients, mild cognitive individuals (MCI), and healthy subjects unveiled the high level of miR-455-3p in AD patients relative to MCI and healthy controls. Further, validation analysis using different kinds of AD samples such as serum, postmortem brains, AD fibroblasts, AD B-lymphocytes, AD cell lines, AD mouse models, and AD cerebrospinal fluid confirmed the biomarker potential of miR-455-3p. The mechanistic link of miR-455-3p in AD was determined via modulation of amyloid-β protein precursor (AβPP) and amyloid-β (Aβ) levels. Luciferase reporter assay confirmed AβPP as validated target of miR-455-3p. Our study on mouse neuroblastoma cells revealed the protective role of miR-455-3p against Aβ-induced toxicities. We also noticed that miR-455-3p enhances cell survival and lifespan extension. High level of miR-455-3p reduces Aβ toxicity, enhances mitochondrial biogenesis and synaptic activity, and maintains healthy mitochondrial dynamics. Based on these evidences, we cautiously conclude that miR-455-3p is a promising peripheral biomarker and therapeutic candidate for AD.
Collapse
Affiliation(s)
- Subodh Kumar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Departments of Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
23
|
Zhan T, Chen X, Tian X, Han Z, Liu M, Zou Y, Huang S, Chen A, Cheng X, Deng J, Tan J, Huang X. MiR-331-3p Links to Drug Resistance of Pancreatic Cancer Cells by Activating WNT/β-Catenin Signal via ST7L. Technol Cancer Res Treat 2020; 19:1533033820945801. [PMID: 32924881 PMCID: PMC7493267 DOI: 10.1177/1533033820945801] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: Pancreatic cancer is an aggressive type of cancer with poor prognosis, short survival rate, and high mortality. Drug resistance is a major cause of treatment failure in the disease. MiR-331-3p has been reported to play an important role in several cancers. We previously showed that miR-331-3p is upregulated in pancreatic cancer and promotes pancreatic cancer cell proliferation and epithelial-to-mesenchymal transition–mediated metastasis by targeting ST7L. However, it is uncertain whether miR-331-3p is involved in drug resistance. Methods: We investigated the relationship between miR-331-3p and pancreatic cancer drug resistance. As part of this, microRNA mimics or inhibitors were transfected into pancreatic cancer cells. Quantitative polymerase chain reaction was used to detect miR-331-3p expression, and flow cytometry was used to detect cell apoptosis. The Cell Counting Kit-8 assay was used to measure the IC50 values of gemcitabine in pancreatic cancer cells. The expression of multidrug resistance protein 1, multidrug resistance-related protein 1, breast cancer resistance protein, β-Catenin, c-Myc, Cyclin D1, Bcl-2, and Caspase-3 was evaluated by Western blotting. Results: We confirmed that miR-331-3p is upregulated in gemcitabine-treated pancreatic cancer cells and plasma from chemotherapy patients. We also confirmed that miR-331-3p inhibition decreased drug resistance by regulating cell apoptosis and multidrug resistance protein 1, multidrug resistance-related protein 1, and breast cancer resistance protein expression in pancreatic cancer cells, whereas miR-331-3p overexpression had the opposite effect. We further demonstrated that miR-331-3p effects in drug resistance were partially reversed by ST7L overexpression. In addition, overexpression of miR-331-3p activated Wnt/β-catenin signaling in pancreatic cancer cells, and ST7L overexpression restored activation of Wnt/β-catenin signaling. Conclusions: Taken together, our data demonstrate that miR-331-3p contributes to drug resistance by activating Wnt/β-catenin signaling via ST7L in pancreatic cancer cells. These data provide a theoretical basis for new targeted therapies in the future.
Collapse
Affiliation(s)
- Ting Zhan
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| | - Xiaoli Chen
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| | - Xia Tian
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| | - Zheng Han
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| | - Meng Liu
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| | - Yanli Zou
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| | - Shasha Huang
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| | - Aifang Chen
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| | - Xueting Cheng
- Department of Gastroenterology, 89674Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junsheng Deng
- Department of Gastroenterology, 89674Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jie Tan
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| | - Xiaodong Huang
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Ahn JW, Park Y, Kang SJ, Hwang SJ, Cho KG, Lim J, Kwack K. CeRNA Network Analysis Representing Characteristics of Different Tumor Environments Based on 1p/19q Codeletion in Oligodendrogliomas. Cancers (Basel) 2020; 12:cancers12092543. [PMID: 32906679 PMCID: PMC7564449 DOI: 10.3390/cancers12092543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/29/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Oligodendroglioma (OD) is a subtype of glioma occurring in the central nervous system. The 1p/19q codeletion is a prognostic marker of OD with an isocitrate dehydrogenase (IDH) mutation and is associated with a clinically favorable overall survival (OS). The long non-coding RNAs (lncRNAs) protects the mRNA from degradation by binding with the same miRNA by acting as a competitive endogenous RNA (ceRNA). Recently, although there is an increasing interest in lncRNAs on glioma studies, however, studies regarding their effects on OD and the 1p/19q codeletion remain limited. In our study, we performed in silico analyses using low-grade gliomas from datasets obtained from The Cancer Genome Atlas to investigate the effects of ceRNA with 1p/19q codeletion on ODs. We constructed 16 coding RNA–miRNA–lncRNA networks and the ceRNA network participated in ion channel activity, insulin secretion, and collagen network and extracellular matrix (ECM) changes. In conclusion, our results can provide insights into the possibility in the different tumor microenvironments and OS following 1p/19q codeletion through changes in the ceRNA network. Abstract Oligodendroglioma (OD) is a subtype of glioma occurring in the central nervous system. The 1p/19q codeletion is a prognostic marker of OD with an isocitrate dehydrogenase (IDH) mutation and is associated with a clinically favorable overall survival (OS); however, the exact underlying mechanism remains unclear. Long non-coding RNAs (lncRNAs) have recently been suggested to regulate carcinogenesis and prognosis in cancer patients. Here, we performed in silico analyses using low-grade gliomas from datasets obtained from The Cancer Genome Atlas to investigate the effects of ceRNA with 1p/19q codeletion on ODs. Thus, we selected modules of differentially expressed genes that were closely related to 1p/19q codeletion traits using weighted gene co-expression network analysis and constructed 16 coding RNA–miRNA–lncRNA networks. The ceRNA network participated in ion channel activity, insulin secretion, and collagen network and extracellular matrix (ECM) changes. In conclusion, ceRNAs with a 1p/19q codeletion can create different tumor microenvironments via potassium ion channels and ECM composition changes; furthermore, differences in OS may occur. Moreover, if extrapolated to gliomas, our results can provide insights into the consequences of identical gene expression, indicating the possibility of tracking different biological processes in different subtypes of glioma.
Collapse
Affiliation(s)
- Ju Won Ahn
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (J.W.A.); (Y.P.); (S.J.K.)
| | - YoungJoon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (J.W.A.); (Y.P.); (S.J.K.)
| | - Su Jung Kang
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (J.W.A.); (Y.P.); (S.J.K.)
| | - So Jung Hwang
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University School of Medicine, Seongnam 13496, Korea; (S.J.H.); (K.G.C.)
| | - Kyung Gi Cho
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University School of Medicine, Seongnam 13496, Korea; (S.J.H.); (K.G.C.)
| | - JaeJoon Lim
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University School of Medicine, Seongnam 13496, Korea; (S.J.H.); (K.G.C.)
- Correspondence: (J.L.); (K.K.); Tel.: +82-031-780-5688 (J.L.); +82-031-725-7141 (K.K.)
| | - KyuBum Kwack
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (J.W.A.); (Y.P.); (S.J.K.)
- Correspondence: (J.L.); (K.K.); Tel.: +82-031-780-5688 (J.L.); +82-031-725-7141 (K.K.)
| |
Collapse
|
25
|
Zhang Y, Yuan X, Yue N, Wang L, Liu J, Dai N, Yang H, Fan R, Zhou F. hsa_circRNA6448-14 promotes carcinogenesis in esophageal squamous cell carcinoma. Aging (Albany NY) 2020; 12:15581-15602. [PMID: 32805720 PMCID: PMC7467364 DOI: 10.18632/aging.103650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/19/2020] [Indexed: 01/22/2023]
Abstract
Circular RNAs (circRNAs) play important roles in cancer progression. hsa_circRNA6448-14 originates from exon 5 to exon 11 of the TGFBI gene. We investigated the roles of hsa_circRNA6448-14 in esophageal squamous cell carcinoma (ESCC) with microarrays and quantitative real-time polymerase chain reaction (qRT-PCR), Kaplan-Meier analysis, loss-of-function and gain-of-function assays, and pull-down assays for miRNA binding. The hsa_circRNA6448-14-miRNA-mRNA network was drawn using Circos. hsa_circRNA6448-14 was significantly upregulated in ESCC tissues and cell lines. As a diagnostic biomarker, hsa_circRNA6448-14 had an area under the curve (AUC), sensitivity, and specificity of 0.906, 82.9%, and 85.5%, respectively. hsa_circRNA6448-14 upregulation was correlated with poor differentiation, advanced pTNM stage, poor disease-free survival (DFS), and poor overall survival (OS). Elevated hsa_circRNA6448-14 promoted cell proliferation, migration, invasion, and inhibited apoptosis in vitro. hsa_circRNA6448-14 functioned as a miRNA sponge to competitively bind miR-455-3p, and hsa_circRNA6448-14 expression negatively correlated with that of miR-455-3p. hsa_circRNA6448-14 promoted carcinogenesis in ESCC, suggesting that hsa_circRNA6448-14 could serve as a diagnostic and prognostic biomarker for ESCC.
Collapse
Affiliation(s)
- Yaowen Zhang
- Department of Radiation Oncology, Anyang Cancer Hospital, Anyang 455000, China,Department of Radiation Oncology, Henan Key Laboratory for Cancer Research, The first Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Xiang Yuan
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471000, China
| | - Ning Yue
- Department of Radiation Oncology, Rutgers - Cancer Institute of New Jersey, Rutgers - Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Lidong Wang
- Department of Radiation Oncology, Henan Key Laboratory for Cancer Research, The first Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Junqi Liu
- Department of Radiation Oncology, Henan Key Laboratory for Cancer Research, The first Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Ningtao Dai
- Department of Radiation Oncology, Anyang Cancer Hospital, Anyang 455000, China
| | - Haijun Yang
- Department of Radiation Oncology, Anyang Cancer Hospital, Anyang 455000, China
| | - Ruitai Fan
- Department of Radiation Oncology, Henan Key Laboratory for Cancer Research, The first Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Fuyou Zhou
- Department of Radiation Oncology, Anyang Cancer Hospital, Anyang 455000, China
| |
Collapse
|
26
|
Hu D, Sun S, Wang Y. MicroRNA-455-5p exerts inhibitory effect in cervical carcinoma through targeting S1PR1 and blocking mTOR pathway. Arch Gynecol Obstet 2020; 301:1307-1315. [PMID: 32303890 DOI: 10.1007/s00404-020-05536-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/04/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) have been increasingly exploited in human malignancies. The regulation of microRNA-455-5p (miR-455-5p) has been shown in several cancers, except for cervical carcinoma. Therefore, the role of miR-455-5p was exploited in cervical carcinoma. METHODS The qRT-PCR experiment was used to assess miR-455-5p and S1PR1 expression levels. We explored the function of miR-455-5p through MTT and Transwell assays. The mTOR pathway and cell apoptosis were detected by Western blot assays. The relationship between miR-455-5p and S1PR1 was testified by dual-luciferase reporter assay. RESULTS MiR-455-5p expression was decreased in cervical carcinoma, which was related to poor clinical outcome in cervical carcinoma patients. MiR-455-5p inhibited cell viability and metastasis in cervical carcinoma. Further, S1PR1 is a direct target of miR-455-5p. S1PR1 recovered the inhibition of cell viability and metastasis induced by miR-455-5p in cervical carcinoma. In addition, miR-455-5p induced cell apoptosis and inactivated the mTOR pathway in cervical carcinoma. CONCLUSION MiR-455-5p exerts inhibitory effect in cervical carcinoma through targeting S1PR1 and blocking the mTOR pathway.
Collapse
Affiliation(s)
- DongMei Hu
- Department of Gynaecology and Obstetrics, DongDa Hospital of Shanxian, Shanxian, Shandong, People's Republic of China
| | - ShuChun Sun
- Medical Clinic, Yuhuangding Hospital of Yantai, Yantai, Shandong, People's Republic of China
| | - YanWei Wang
- Department of Gynaecology and Obstetrics, Laiwu Central Hospital of Shandong Energy Xinwen Mining Group, Laiwu, 271100, Shandong, People's Republic of China.
| |
Collapse
|
27
|
Tian S, Liu Y, Dong F, Dou Y, Li W, Wang J. Knockdown of microRNA-584 promotes dental pulp stem cells proliferation by targeting TAZ. Cell Cycle 2020; 19:1048-1058. [PMID: 32208890 DOI: 10.1080/15384101.2020.1744976] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Proliferation of dental pulp stem cells (DPSCs) is crucial in tooth development and damage repairing, also includes its therapy application for tissue engineering. MicroRNAs (miRNAs) are key players in biological processes of DPSCs, and transcriptional co-activator with PDZ-binding motif (TAZ) also plays important roles in cell proliferation and differentiation, however, the roles of miR-584 and TAZ in DPSCs are not known. We found up-regulated miR-584 expression and down-regulated TAZ expression levels in aging dental pulp tissue compare to those in young dental pulp tissue. In proliferating DPSCs we demonstrated the decreased miR-584 expression and increased TAZ expression. miR-584 mimics suppressed DPSCs proliferation and migration, and significantly reduced TAZ production, whereas miR-584 inhibition exerted the converse effects. Knocking down of the TAZ in DPSCs had a similar effect as overexpression of miR-584. Furthermore, luciferase reporter assay demonstrated that miR-584 could directly bind to the TAZ mRNA 3'UTR to repress its translation. Overexpression of TAZ can partly rescue miR-584 mimic-mediated the inhibition of proliferation. Additionally, miR-584 inhibited cell proliferation and downregulated expression of cell cycle proteins by AKT signaling pathway. Together, we identified that miR-584 may be a key regulator in the proliferation of DPSCs by regulating TAZ expression via AKT signaling pathway. It would be a promising biomarker and therapeutic target for pulp disease.
Collapse
Affiliation(s)
- Songbo Tian
- Department of Oral Pathology, College of Stomatology, Hebei Medical University, Shijiazhuang, China.,Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanping Liu
- Physical Examination Center, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fusheng Dong
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Yongqing Dou
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wenjing Li
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Wang
- Department of Oral Pathology, College of Stomatology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
28
|
|
29
|
Zhan T, Zhu Q, Han Z, Tan J, Liu M, Liu W, Chen W, Chen X, Chen X, Deng J, Tian X, Huang X. miR-455-3p Functions as a Tumor Suppressor by Restraining Wnt/β-Catenin Signaling via TAZ in Pancreatic Cancer. Cancer Manag Res 2020; 12:1483-1492. [PMID: 32161500 PMCID: PMC7051256 DOI: 10.2147/cmar.s235794] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
Abstract
Background Pancreatic cancer (PC) is a highly invasive tumor with a poor prognosis, short overall survival rate and few chemotherapeutic choices. Despite the importance of finding ways to treat pancreatic cancer, the mechanisms of tumor progression have not been fully elucidated. microRNA-455-3p (miR-455-3p) has been reported to play an important role in several cancers, but its function in pancreatic cancer remains unclear. Methods To investigate the biological functions, miRNAs mimics or inhibitors were transfected into pancreatic cancer cells. Flow cytometry was used to detect cell apoptosis. Wound healing and Transwell assays were employed to observe cell invasion and migration abilities. The expression of Bcl-2, Bax, caspase-3, E-cadherin, N-cadherin, Snail, β-Catenin, c-Myc and Cyclin D1 were evaluated by qPCR and Western blot. Results We confirmed that inhibition of miR-455-3p decreases cell apoptosis and increases cell migration, invasion and EMT of pancreatic cancer, whereas forced overexpression of miR-455-3p has the opposite effect. Furthermore, we demonstrated that the tumor suppression effects of miR-455-3p were partially reversed by TAZ overexpression. In addition, miR-455-3p led to inactivation of Wnt/β-catenin signaling in pancreatic cancer cells, and TAZ overexpression restored the inhibition of Wnt/β-catenin signaling. Conclusion Taken together, our data demonstrated that miR-455-3p functions as an important tumor suppressor that suppresses the Wnt/β-catenin signaling pathway via TAZ to inhibit tumor progression in pancreatic cancer. We conclude that the miR-455-3p/TAZ/Wnt axis may be a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Ting Zhan
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430060, People's Republic of China
| | - Qingxi Zhu
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430060, People's Republic of China
| | - Zheng Han
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430060, People's Republic of China
| | - Jie Tan
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430060, People's Republic of China
| | - Meng Liu
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430060, People's Republic of China
| | - Weijie Liu
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430060, People's Republic of China
| | - Wei Chen
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430060, People's Republic of China
| | - Xiaoli Chen
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430060, People's Republic of China
| | - Xueting Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Junsheng Deng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Xia Tian
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430060, People's Republic of China
| | - Xiaodong Huang
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430060, People's Republic of China
| |
Collapse
|
30
|
Xie SL, Wang M, Du XH, Zhao ZW, Lv GY. miR-455 Inhibits HepG2 Cell Proliferation and Promotes Apoptosis by Targeting RhoC. Mol Biol 2020. [DOI: 10.1134/s002689332001015x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Reggiani F, Gobbi G, Ciarrocchi A, Ambrosetti DC, Sancisi V. Multiple roles and context-specific mechanisms underlying YAP and TAZ-mediated resistance to anti-cancer therapy. Biochim Biophys Acta Rev Cancer 2020; 1873:188341. [PMID: 31931113 DOI: 10.1016/j.bbcan.2020.188341] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023]
Abstract
Understanding the molecular mechanisms driving resistance to anti-cancer drugs is both a crucial step to define markers of response to therapy and a clinical need in many cancer settings. YAP and TAZ transcriptional cofactors behave as oncogenes in different cancer types. Deregulation of YAP/TAZ expression or alterations in components of the multiple signaling pathways converging on these factors are important mechanisms of resistance to chemotherapy, target therapy and hormone therapy. Moreover, response to immunotherapy may also be affected by YAP/TAZ activities in both tumor and microenvironment cells. For these reasons, various compounds inhibiting YAP/TAZ function by different direct and indirect mechanisms have been proposed as a mean to counter-act drug resistance in cancer. A particularly promising approach may be to simultaneously target both YAP/TAZ expression and their transcriptional activity through BET inhibitors.
Collapse
Affiliation(s)
- Francesca Reggiani
- Laboratory of Translational Research, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giulia Gobbi
- Laboratory of Translational Research, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Valentina Sancisi
- Laboratory of Translational Research, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| |
Collapse
|
32
|
Cheng F, Hu H, Sun K, Yan F, Geng Y. miR-455-3p enhances chondrocytes apoptosis and inflammation by targeting COL2A1 in the in vitro osteoarthritis model. Biosci Biotechnol Biochem 2019; 84:695-702. [PMID: 31809639 DOI: 10.1080/09168451.2019.1690974] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Emerging evidence has shown that microRNAs are important regulators in osteoarthritis (OA). Here, we investigated the function role of miR-455-3p in the pathogenesis of OA and the underlying molecular mechanisms. We first established the in vitro OA model using IL-1β treated human chondrocyte cell line CHON-001. Using quantitative real time PCR, we observed the expression of miR-455-3p expression was up-regulated in the OA cartilage tissues and IL-1β-treated chondrocytes. A series of function assays, including CCK-8 assay, flow cytometry, and ELISA assay showed that miR-455-3p contributed to IL-1β-induced apoptosis and inflammation. Moreover, COL2A1 was confirmed as a target of miR-455-3p by luciferase reporter assay. Furthermore, COL2A1 knockdown reversed the effects of miR-455-3p inhibition, and aggravated the effects of miR-455-3p overexpression on IL-1β-induced OA-like phenomenon. Taken together, these results revealed that miR-455-3p/COL2A1 axis might provide a novel molecular target for the treatment of OA.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Pain Clinic, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, China
| | - Haiyan Hu
- Department of Traditional Chinese and Western Medicine, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, China
| | - Kefu Sun
- Department of Orthopedic, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, China
| | - Fengfeng Yan
- Department of Pain Clinic, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, China
| | - Yuqiang Geng
- Department of Orthopedic, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, China
| |
Collapse
|
33
|
Yun MR, Choi HM, Lee YW, Joo HS, Park CW, Choi JW, Kim DH, Kang HN, Pyo KH, Shin EJ, Shim HS, Soo RA, Yang JCH, Lee SS, Chang H, Kim MH, Hong MH, Kim HR, Cho BC. Targeting YAP to overcome acquired resistance to ALK inhibitors in ALK-rearranged lung cancer. EMBO Mol Med 2019; 11:e10581. [PMID: 31633304 PMCID: PMC6895608 DOI: 10.15252/emmm.201910581] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022] Open
Abstract
Clinical benefit of ALK tyrosine kinase inhibitors (ALK‐TKIs) in ALK‐rearranged lung cancer has been limited by the inevitable development of acquired resistance, and bypass‐molecular resistance mechanisms remain poorly understood. We investigated a novel therapeutic target through screening FDA‐approved drugs in ALK‐TKI‐resistant models. Cerivastatin, the rate‐limiting enzyme inhibitor of the mevalonate pathway, showed anti‐cancer activity against ALK‐TKI resistance in vitro/in vivo, accompanied by cytoplasmic retention and subsequent inactivation of transcriptional co‐regulator YAP. The marked induction of YAP‐targeted oncogenes (EGFR, AXL, CYR61, and TGFβR2) in resistant cells was abolished by cerivastatin. YAP silencing suppressed tumor growth in resistant cells, patient‐derived xenografts, and EML4‐ALK transgenic mice, whereas YAP overexpression decreased the responsiveness of parental cells to ALK inhibitor. In matched patient samples before/after ALK inhibitor treatment, nuclear accumulation of YAP was mainly detected in post‐treatment samples. High expression of YAP in pretreatment samples was correlated with poor response to ALK‐TKIs. Our findings highlight a crucial role of YAP in ALK‐TKI resistance and provide a rationale for targeting YAP as a potential treatment option for ALK‐rearranged patients with acquired resistance to ALK inhibitors.
Collapse
Affiliation(s)
- Mi Ran Yun
- JEUK Institute for Cancer Research, JEUK Co., Ltd., Gumi-City, Korea.,Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Hun Mi Choi
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - You Won Lee
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Hyeong Seok Joo
- JEUK Institute for Cancer Research, JEUK Co., Ltd., Gumi-City, Korea
| | - Chae Won Park
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Woo Choi
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Hwi Kim
- JEUK Institute for Cancer Research, JEUK Co., Ltd., Gumi-City, Korea
| | - Han Na Kang
- JEUK Institute for Cancer Research, JEUK Co., Ltd., Gumi-City, Korea.,Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung-Ho Pyo
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Joo Shin
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo Sup Shim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Ross A Soo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - James Chih-Hsin Yang
- Graduate Institute of Oncology, National Taiwan University, Taipei, Taiwan.,Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung Sook Lee
- Department of Hematology-Oncology, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Hyun Chang
- International St. Mary's Hospital, College of Medicine, Catholic Kwandong University, Incheon, Korea
| | - Min Hwan Kim
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Min Hee Hong
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Ryun Kim
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Byoung Chul Cho
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
34
|
Kumar S, Reddy AP, Yin X, Reddy PH. Novel MicroRNA-455-3p and its protective effects against abnormal APP processing and amyloid beta toxicity in Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2428-2440. [PMID: 31181293 DOI: 10.1016/j.bbadis.2019.06.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022]
Abstract
The purpose of our study is to understand the protective role of miR-455-3p against abnormal amyloid precursor protein (APP) processing, amyloid beta (Aβ) formation, defective mitochondrial biogenesis/dynamics and synaptic damage in AD progression. In-silico analysis of miR-455-3p has identified the APP gene as a putative target. Using mutant APP cells, miR-455-3p construct, biochemical and molecular assays, immunofluorescence and transmission electron microscopy (TEM) analyses, we studied the protective effects of miR-455-3p on - 1) APP regulation, amyloid beta (Aβ)(1-40) & (1-42) levels, mitochondrial biogenesis & dynamics; 3) synaptic activities and 4) cell viability & apoptosis. Our luciferase reporter assay confirmed the binding of miR-455-3p at the 3'UTR of APP gene. Immunoblot, sandwich ELISA and immunostaining analyses revealed that the reduced levels of the mutant APP, Aβ(1-40) & Aβ(1-42), and C99 by miR-455-3p. We also found the reduced levels of mRNA and proteins of mitochondrial biogenesis (PGC1α, NRF1, NRF2, and TFAM) and synaptic genes (synaptophysin and PSD95) in mutant APP cells; on the other hand, mutant APP cells that express miR-455-3p showed increased mRNA and protein levels of biogenesis and synaptic genes. Additionally, expression of mitochondrial fission proteins (DRP1 and FIS1) were decreased while the fusion proteins (OPA1, Mfn1 and Mfn2) were increased by miR-455-3p. Our TEM analysis showed a decrease in mitochondria number and an increase in the size of mitochondrial length in mutant APP cells transfected with miR-455-3p. Based on these observations, we cautiously conclude that miR-455-3p regulate APP processing and protective against mutant APP-induced mitochondrial and synaptic abnormalities in AD.
Collapse
Affiliation(s)
- Subodh Kumar
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Arubala P Reddy
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, 3601 4(th) Street, MS 9424, Lubbock, TX 79430, United States
| | - Xiangling Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, 3601 4(th) Street, MS 9424, Lubbock, TX 79430, United States; Neurology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Suite E, MS 7495, Lubbock, TX 79413, United States.
| |
Collapse
|
35
|
Nguyen CDK, Yi C. YAP/TAZ Signaling and Resistance to Cancer Therapy. Trends Cancer 2019; 5:283-296. [PMID: 31174841 DOI: 10.1016/j.trecan.2019.02.010] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/31/2018] [Accepted: 02/15/2019] [Indexed: 12/23/2022]
Abstract
Drug resistance is a major challenge in cancer treatment. Emerging evidence indicates that deregulation of YAP/TAZ signaling may be a major mechanism of intrinsic and acquired resistance to various targeted and chemotherapies. Moreover, YAP/TAZ-mediated expression of PD-L1 and multiple cytokines is pivotal for tumor immune evasion. While direct inhibitors of YAP/TAZ are still under development, FDA-approved drugs that indirectly block YAP/TAZ activation or critical downstream targets of YAP/TAZ have shown promise in the clinic in reducing therapy resistance. Finally, BET inhibitors, which reportedly block YAP/TAZ-mediated transcription, present another potential venue to overcome YAP/TAZ-induced drug resistance.
Collapse
Affiliation(s)
- Chan D K Nguyen
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Chunling Yi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
36
|
Xu B, Gong X, Zi L, Li G, Dong S, Chen X, Li Y. Silencing of DLEU2 suppresses pancreatic cancer cell proliferation and invasion by upregulating microRNA-455. Cancer Sci 2019; 110:1676-1685. [PMID: 30838724 PMCID: PMC6501038 DOI: 10.1111/cas.13987] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 12/20/2022] Open
Abstract
Long noncoding RNA (lncRNA) DLEU2 has been shown to be dysregulated in several type of tumor. However, the potential biological roles and molecular mechanisms of DLEU2 in pancreatic cancer (PC) progression are poorly understood. In this study, we found that the DLEU2 level was substantially upregulated in PC tissues and PC cell lines, and significantly associated with poor clinical outcomes in PC patients. Overexpression of DLEU2 significantly induced PC cell proliferation and invasion, whereas knockdown of DLEU2 impaired cell proliferation and invasion in vitro. Furthermore, bioinformatics analysis, luciferase reporter assay, and RNA immunoprecipitation assay revealed that DLEU2 directly bond to microRNA‐455 (miR‐455) and functioned as an endogenous sponge for miR‐455, which could remarkably suppress cell growth and invasion. We also determined that SMAD2 was a direct target of miR‐455, and the restoration of SMAD2 rescued cell growth and invasion that were reduced by DLEU2 knockdown or miR‐455 overexpression. In addition, low miR‐455 expression and high SMAD2 expression was correlated with poor patient survival. These results indicate that DLEU2 is an important promoter of PC development, and targeting the DLEU2/miR‐455/SMAD2 pathway could be a promising therapeutic approach in the treatment of PC.
Collapse
Affiliation(s)
- Baoli Xu
- Department of General Surgery, Linyi People's Hospital, Linyi, China
| | - Xufei Gong
- Department of General Surgery, Linyi People's Hospital, Linyi, China
| | - Li Zi
- Department of General Surgery, Linyi People's Hospital, Linyi, China
| | - Guang Li
- Department of General Surgery, Linyi People's Hospital, Linyi, China
| | - Shuxiao Dong
- Department of General Surgery, Linyi People's Hospital, Linyi, China
| | - Xinrui Chen
- Department of General Surgery, Linyi People's Hospital, Linyi, China
| | - Yutao Li
- Department of General Surgery, Linyi People's Hospital, Linyi, China
| |
Collapse
|
37
|
Dinh TA, Jewell ML, Kanke M, Francisco A, Sritharan R, Turnham RE, Lee S, Kastenhuber ER, Wauthier E, Guy CD, Yeung RS, Lowe SW, Reid LM, Scott JD, Diehl AM, Sethupathy P. MicroRNA-375 Suppresses the Growth and Invasion of Fibrolamellar Carcinoma. Cell Mol Gastroenterol Hepatol 2019; 7:803-817. [PMID: 30763770 PMCID: PMC6468197 DOI: 10.1016/j.jcmgh.2019.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS Fibrolamellar carcinoma (FLC) is a rare liver cancer that primarily affects adolescents and young adults. It is characterized by a heterozygous approximately 400-kb deletion on chromosome 19 that results in a unique fusion between DnaJ heat shock protein family member B1 (DNAJB1) and the alpha catalytic subunit of protein kinase A (PRKACA). The role of microRNAs (miRNAs) in FLC remains unclear. We identified dysregulated miRNAs in FLC and investigated whether dysregulation of 1 key miRNA contributes to FLC pathogenesis. METHODS We analyzed small RNA sequencing (smRNA-seq) data from The Cancer Genome Atlas to identify dysregulated miRNAs in primary FLC tumors and validated the findings in 3 independent FLC cohorts. smRNA-seq also was performed on a FLC patient-derived xenograft model as well as purified cell populations of the liver to determine whether key miRNA changes were tumor cell-intrinsic. We then used clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (Cas9) technology and transposon-mediated gene transfer in mice to determine if the presence of DNAJB1-PRKACA is sufficient to suppress miR-375 expression. Finally, we established a new FLC cell line and performed colony formation and scratch wound assays to determine the functional consequences of miR-375 overexpression. RESULTS We identified miR-375 as the most dysregulated miRNA in primary FLC tumors (27-fold down-regulation; P = .009). miR-375 expression also was decreased significantly in a FLC patient-derived xenograft model compared to 4 different cell populations of the liver. Introduction of DNAJB1-PRKACA by clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 engineering and transposon-mediated somatic gene transfer in mice was sufficient to induce significant loss of miR-375 expression (P < .05). Overexpression of miR-375 in FLC cells inhibited Hippo signaling pathway proteins, including yes-associated protein 1 and connective tissue growth factor, and suppressed cell proliferation and migration (P < .05). CONCLUSIONS We identified miR-375 as the most down-regulated miRNA in FLC tumors and showed that overexpression of miR-375 mitigated tumor cell growth and invasive potential. These findings open a potentially new molecular therapeutic approach. Further studies are necessary to determine how DNAJB1-PRKACA suppresses miR-375 expression and whether miR-375 has additional important targets in this tumor. Transcript profiling: GEO accession numbers: GSE114974 and GSE125602.
Collapse
Affiliation(s)
- Timothy A Dinh
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Mark L Jewell
- Department of Medicine, School of Medicine, Duke University, Durham, North Carolina
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Adam Francisco
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Ramja Sritharan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Rigney E Turnham
- Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington
| | - Seona Lee
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Edward R Kastenhuber
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Eliane Wauthier
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Cynthia D Guy
- Department of Pathology, School of Medicine, Duke University, Durham, North Carolina
| | - Raymond S Yeung
- Department of Surgery, University of Washington, Seattle, Washington
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Lola M Reid
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John D Scott
- Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington
| | - Anna M Diehl
- Department of Medicine, School of Medicine, Duke University, Durham, North Carolina.
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York.
| |
Collapse
|
38
|
Gyvyte U, Kupcinskas J, Juzenas S, Inciuraite R, Poskiene L, Salteniene V, Link A, Fassan M, Franke A, Kupcinskas L, Skieceviciene J. Identification of long intergenic non-coding RNAs (lincRNAs) deregulated in gastrointestinal stromal tumors (GISTs). PLoS One 2018; 13:e0209342. [PMID: 30557328 PMCID: PMC6296525 DOI: 10.1371/journal.pone.0209342] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022] Open
Abstract
Long intergenic non-coding RNAs (lincRNAs) are >200 nucleotides long non-coding RNAs, which have been shown to be implicated in carcinogenic processes by interacting with cancer associated genes or other non-coding RNAs. However, their role in development of rare gastrointestinal stromal tumors (GISTs) is barely investigated. Therefore, the aim of this study was to define lincRNAs deregulated in GIST and find new GIST-lincRNA associations. Next-generation sequencing data of paired GIST and adjacent tissue samples from 15 patients were subjected to a web-based lincRNA analysis. Three deregulated lincRNAs (MALAT1, H19 and FENDRR; adjusted p-value < 0.05) were selected for expression validation in a larger group of patients (n = 22) by RT-qPCR method. However, only H19 and FENDRR showed significant upregulation in the validation cohort (adjusted p < 0.05). Further, we performed correlation analyses between expression levels of deregulated lincRNAs and GIST-associated oncogenes or GIST deregulated microRNAs. We found high positive correlations between expression of H19 and known GIST related oncogene ETV1, and between H19 and miR-455-3p. These findings expand the knowledge on lincRNAs deregulated in GIST and may be an important resource for the future studies investigating lincRNAs functionally relevant to GIST carcinogenesis.
Collapse
Affiliation(s)
- Ugne Gyvyte
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Juozas Kupcinskas
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Simonas Juzenas
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Institute of Clinical Molecular Biology, Christian-Albrechts University, Kiel, Germany
| | - Ruta Inciuraite
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Lina Poskiene
- Department of Pathological Anatomy, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Violeta Salteniene
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Matteo Fassan
- Department of Medicine (DMID), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts University, Kiel, Germany
| | - Limas Kupcinskas
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jurgita Skieceviciene
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
- * E-mail:
| |
Collapse
|
39
|
Li J, Shao W, Feng H. MiR-542-3p, a microRNA targeting CDK14, suppresses cell proliferation, invasiveness, and tumorigenesis of epithelial ovarian cancer. Biomed Pharmacother 2018; 110:850-856. [PMID: 30557834 DOI: 10.1016/j.biopha.2018.11.104] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/08/2018] [Accepted: 11/25/2018] [Indexed: 02/08/2023] Open
Abstract
MicroRNA-542-3p (miR-542-3p) has been implicated in several cancers; however, its precise role in ovarian cancer is unclear. In this study, we found that miR-542-3p was significantly downregulated in epithelial ovarian cancer (EOC) tissues and cell lines. Functional assays showed that overexpression of miR-542-3p suppressed tumor cell proliferation, migration, and invasion in vitro, whereas miR-542-3p knockdown dramatically promoted tumor cell proliferation and invasion. An in vivo assay also revealed that miR-542-3p overexpression significantly attenuated tumor growth. Mechanistically, the gene of cyclin-dependent kinase 14 (CDK14) was identified as a novel target of miR-542-3p. CDK14 overexpression reversed the suppressive effects of miR-542-3p in ovarian cancer cells. Collectively, these results suggest that miR-542-3p functions as a tumor-suppressive miRNA in ovarian cancer by directly targeting CDK14. Our data provide novel insights into potential future treatments for patients with ovarian cancer.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Gynaecology and Obstetrics, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Wei Shao
- Department of Gynaecology and Obstetrics, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Huian Feng
- Department of Gynaecology and Obstetrics, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China.
| |
Collapse
|
40
|
Xie M, Ma L, Xu T, Pan Y, Wang Q, Wei Y, Shu Y. Potential Regulatory Roles of MicroRNAs and Long Noncoding RNAs in Anticancer Therapies. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:233-243. [PMID: 30317163 PMCID: PMC6190501 DOI: 10.1016/j.omtn.2018.08.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023]
Abstract
MicroRNAs and long noncoding RNAs have long been investigated due to their roles as diagnostic and prognostic biomarkers of cancers and regulators of tumorigenesis, and the potential regulatory roles of these molecules in anticancer therapies are attracting increasing interest as more in-depth studies are performed. The major clinical therapies for cancer include chemotherapy, immunotherapy, and targeted molecular therapy. MicroRNAs and long noncoding RNAs function through various mechanisms in these approaches, and the mechanisms involve direct targeting of immune checkpoints, cooperation with exosomes in the tumor microenvironment, and alteration of drug resistance through regulation of different signaling pathways. Herein we review the regulatory functions and significance of microRNAs and long noncoding RNAs in three anticancer therapies, especially in targeted molecular therapy, and their mechanisms.
Collapse
Affiliation(s)
- Mengyan Xie
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ling Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tongpeng Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yutian Pan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiang Wang
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yutian Wei
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
41
|
Sun J, Yang J, Chi J, Ding X, Lv N. Identification of drug repurposing candidates based on a miRNA-mediated drug and pathway network for cardiac hypertrophy and acute myocardial infarction. Hum Genomics 2018; 12:52. [PMID: 30514363 PMCID: PMC6280539 DOI: 10.1186/s40246-018-0184-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/25/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cardiac hypertrophy and acute myocardial infarction (AMI) are two common heart diseases worldwide. However, research is needed into the exact pathogenesis and effective treatment strategies for these diseases. Recently, microRNAs (miRNAs) have been suggested to regulate the pathological pathways of heart disease, indicating a potential role in novel treatments. RESULTS In our study, we constructed a miRNA-gene-drug network and analyzed its topological features. We also identified some significantly dysregulated miRNA-gene-drug triplets (MGDTs) in cardiac hypertrophy and AMI using a computational method. Then, we characterized the activity score profile features for MGDTs in cardiac hypertrophy and AMI. The functional analyses suggested that the genes in the network held special functions. We extracted an insulin-like growth factor 1 receptor-related subnetwork in cardiac hypertrophy and a vascular endothelial growth factor A-related subnetwork in AMI. Finally, we considered insulin-like growth factor 1 receptor and vascular endothelial growth factor A as two candidate drug targets by utilizing the cardiac hypertrophy and AMI pathways. CONCLUSION These results provide novel insights into the mechanisms and treatment of cardiac hypertrophy and AMI.
Collapse
Affiliation(s)
- Jiantao Sun
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang People’s Republic of China
| | - Jiemei Yang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang People’s Republic of China
| | - Jing Chi
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang People’s Republic of China
| | - Xue Ding
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang People’s Republic of China
| | - Nan Lv
- Department of Obstetrics, the Second Affiliated Hospital, Harbin Medical University, 246 XueFu Road, Harbin, 150086 Heilongjiang People’s Republic of China
| |
Collapse
|
42
|
Pahlavani M, Wijayatunga NN, Kalupahana NS, Ramalingam L, Gunaratne PH, Coarfa C, Rajapakshe K, Kottapalli P, Moustaid-Moussa N. Transcriptomic and microRNA analyses of gene networks regulated by eicosapentaenoic acid in brown adipose tissue of diet-induced obese mice. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1523-1531. [PMID: 30261280 PMCID: PMC6298436 DOI: 10.1016/j.bbalip.2018.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/01/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022]
Abstract
Brown adipose tissue (BAT) dissipates chemical energy as heat via thermogenesis and protects against obesity by increasing energy expenditure. However, regulation of BAT by dietary factors remains largely unexplored at the mechanistic level. We investigated the effect of eicosapentaenoic acid (EPA) on BAT metabolism. Male C57BL/6J (B6) mice were fed either a high-fat diet (HF, 45% kcal fat) or HF diet supplemented with EPA (HF-EPA, 6.75% kcal EPA) for 11 weeks. RNA sequencing (RNA-Seq) and microRNA (miRNA) profiling were performed on RNA from BAT using Illumina HiSeq and Illumina Genome Analyzer NextSeq, respectively. We conducted pathway analyses using ingenuity pathway analysis software (IPA®) and validated some genes and miRNAs using qPCR. We identified 479 genes that were differentially expressed (2-fold change, n = 3, P ≤ 0.05) in BAT from HF compared to HF-EPA. Genes negatively correlated with thermogenesis such as hypoxia inducible factor 1 alpha subunit inhibitor (Hif1an), were downregulated by EPA. Pathways related to thermogenesis such as peroxisome proliferator-activated receptor (PPAR) were upregulated by EPA while pathways associated with obesity and inflammation such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were downregulated by EPA. MiRNA profiling identified nine and six miRNAs that were upregulated and downregulated by EPA, respectively (log2 fold change > 1.25, n = 3, P ≤ 0.05). Key regulatory miRNAs which were involved in thermogenesis, such as miR-455-3p and miR-129-5p were validated using qPCR. In conclusion, the depth of transcriptomic and miRNA profiling revealed novel mRNA-miRNA interaction networks in BAT which are involved in thermogenesis, and regulated by EPA.
Collapse
Affiliation(s)
- Mandana Pahlavani
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States; Obesity Research Cluster, Texas Tech University, Lubbock, TX, United States
| | - Nadeeja N Wijayatunga
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States
| | - Nishan S Kalupahana
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States; Obesity Research Cluster, Texas Tech University, Lubbock, TX, United States; Department of Physiology, University of Peradeniya, Sri Lanka
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States; Obesity Research Cluster, Texas Tech University, Lubbock, TX, United States
| | - Preethi H Gunaratne
- Department of Biology and Biochemistry, University of Houston, United States
| | - Cristian Coarfa
- Department of Molecular and Cell Biology, Houston, TX, United States
| | - Kimal Rajapakshe
- Department of Molecular and Cell Biology, Houston, TX, United States
| | - Pratibha Kottapalli
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States; Obesity Research Cluster, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|