1
|
Luo Q, Shen F, Zhao S, Dong L, Wei J, Hu H, Huang Q, Wang Q, Yang P, Liang W, Li W, He F, Cao J. LINC00460/miR-186-3p/MYC feedback loop facilitates colorectal cancer immune escape by enhancing CD47 and PD-L1 expressions. J Exp Clin Cancer Res 2024; 43:225. [PMID: 39135122 PMCID: PMC11321182 DOI: 10.1186/s13046-024-03145-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) have been implicated as critical regulators of cancer tumorigenesis and progression. However, their functions and molecular mechanisms in colorectal cancer (CRC) still remain to be further elucidated. METHODS LINC00460 was identified by differential analysis between human CRC and normal tissues and verified by in situ hybridization (ISH) and qRT-PCR. We investigated the biological functions of LINC00460 in CRC by in vitro and in vivo experiments. We predicted the mechanism and downstream functional molecules of LINC00460 by bioinformatics analysis, and confirmed them by dual luciferase reporter gene assay, RNA immunoprecipitation (RIP), RNA pull-down, etc. RESULTS: LINC00460 was found to be significantly overexpressed in CRC and associated with poor prognosis. Overexpression of LINC00460 promoted CRC cell immune escape and remodeled a suppressive tumor immune microenvironment, thereby promoting CRC proliferation and metastasis. Mechanistic studies showed that LINC00460 served as a molecular sponge for miR-186-3p, and then promoted the expressions of MYC, CD47 and PD-L1 to facilitate CRC cell immune escape. We also demonstrated that MYC upregulated LINC00460 expression at the transcriptional level and formed a positive feedback loop. CONCLUSIONS The LINC00460/miR-186-3p/MYC feedback loop promotes CRC cell immune escape and subsequently facilitates CRC proliferation and metastasis. Our findings provide novel insight into LINC00460 as a CRC immune regulator, and provide a potential therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Qingqing Luo
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Fei Shen
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, China
- Department of Thyroid surgery, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Sheng Zhao
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Lan Dong
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Jianchang Wei
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - He Hu
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Qing Huang
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Qiang Wang
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Ping Yang
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Wenlong Liang
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Wanglin Li
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Feng He
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China.
| | - Jie Cao
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China.
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China.
| |
Collapse
|
2
|
Dobrzyn K, Kopij G, Kiezun M, Zaobidna E, Gudelska M, Zarzecka B, Paukszto L, Rak A, Smolinska N, Kaminski T. Visfatin (NAMPT) affects global gene expression in porcine anterior pituitary cells during the mid-luteal phase of the oestrous cycle. J Anim Sci Biotechnol 2024; 15:96. [PMID: 38978053 PMCID: PMC11232246 DOI: 10.1186/s40104-024-01054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/23/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The pituitary belongs to the most important endocrine glands involved in regulating reproductive functions. The proper functioning of this gland ensures the undisturbed course of the oestrous cycle and affects the female's reproductive potential. It is believed that visfatin, a hormone belonging to the adipokine family, may regulate reproductive functions in response to the female's metabolic state. Herein we verified the hypothesis that suggests a modulatory effect of visfatin on the anterior pituitary transcriptome during the mid-luteal phase of the oestrous cycle. RESULTS RNA-seq analysis of the porcine anterior pituitary cells revealed changes in the expression of 202 genes (95 up-regulated and 107 down-regulated in the presence of visfatin, when compared to the non-treated controls), assigned to 318 gene ontology terms. We revealed changes in the frequency of alternative splicing events (235 cases), as well as long noncoding RNA expression (79 cases) in the presence of the adipokine. The identified genes were associated, among others, with reproductive system development, epithelial cell proliferation, positive regulation of cell development, gland morphogenesis and cell chemotaxis. CONCLUSIONS The obtained results indicate a modulatory influence of visfatin on the regulation of the porcine transcriptome and, in consequence, pituitary physiology during the mid-luteal phase of the oestrous cycle.
Collapse
Affiliation(s)
- Kamil Dobrzyn
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| | - Grzegorz Kopij
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Kiezun
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Ewa Zaobidna
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marlena Gudelska
- School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Barbara Zarzecka
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Lukasz Paukszto
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Agnieszka Rak
- Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Nina Smolinska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tadeusz Kaminski
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
3
|
Jin Y, Fan Z. New insights into the interaction between m6A modification and lncRNA in cancer drug resistance. Cell Prolif 2024; 57:e13578. [PMID: 37961996 PMCID: PMC10984110 DOI: 10.1111/cpr.13578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Drug resistance is perhaps the greatest obstacle in improving outcomes for cancer patients, leading to recurrence, progression and metastasis of various cancers. Exploring the underlying mechanism worth further study. N6-methyladenosine (m6A) is the most common RNA modification found in eukaryotes, playing a vital role in RNA translation, transportation, stability, degradation, splicing and processing. Long noncoding RNA (lncRNA) refers to a group of transcripts that are longer than 200 nucleotides (nt) and typically lack the ability to code for proteins. LncRNA has been identified to play a significant role in regulating multiple aspects of tumour development and progression, including proliferation, metastasis, metabolism, and resistance to treatment. In recent years, a growing body of evidence has emerged, highlighting the crucial role of the interplay between m6A modification and lncRNA in determining the sensitivity of cancer cells to chemotherapeutic agents. In this review, we focus on the recent advancements in the interaction between m6A modification and lncRNA in the modulation of cancer drug resistance. Additionally, we aim to explore the underlying mechanisms involved in this process. The objective of this review is to provide valuable insights and suggest potential future directions for the reversal of chemoresistance in cancer.
Collapse
Affiliation(s)
- Yizhou Jin
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of StomatologyCapital Medical UniversityBeijingChina
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of StomatologyCapital Medical UniversityBeijingChina
- Beijing Laboratory of Oral HealthCapital Medical UniversityBeijingChina
- Research Unit of Tooth Development and RegenerationChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
4
|
Al-Hawary SIS, Rodrigues P, Bangali H, Hassan ZF, Elawady A. The role of long noncoding RNA DGCR5 in cancers: Focus on molecular targets. Cell Biochem Funct 2024; 42:e3949. [PMID: 38379219 DOI: 10.1002/cbf.3949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/22/2024]
Abstract
Long noncoding RNAs (lncRNAs) are major components of cellular transcripts that are emerging as important players in various biological pathways. Due to their specific expression and functional diversity in a variety of cancers, lncRNAs have promising applications in cancer diagnosis, prognosis, and therapy. Studies have shown that lncRNA DiGeorge syndrome critical region gene 5 (DGCR5) with high specificity and accuracy has the potential to become biomarkers in cancers. LncRNA DGCR5 can be noninvasively extracted from body fluids, tissues, and cells, and can be used as independent or auxiliary biomarkers to improve the accuracy of diagnosis or prognosis. Now, the underlying mechanisms of lncRNAs such as DGCR5 were explored as therapeutic targets, which have been investigated in clinical trials of several cancers. The DGCR5 lacks an appropriate animal model, which is necessary to gain greater knowledge of their functions. While some studies on the uses of DGCR5 have been carried out, the small sample size makes them unreliable. In this review, we presented a compilation of recent publications addressing the potential of lncRNA DGCR5 that could be considered as biomarkers or therapeutic targets, with the hopes of providing promised implications for future cancer therapy.
Collapse
Affiliation(s)
| | - Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia
| | - Harun Bangali
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia
| | | | - Ahmed Elawady
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
5
|
Xia Y, Pei T, Zhao J, Wang Z, Shen Y, Yang Y, Liang J. Long noncoding RNA H19: functions and mechanisms in regulating programmed cell death in cancer. Cell Death Discov 2024; 10:76. [PMID: 38355574 PMCID: PMC10866971 DOI: 10.1038/s41420-024-01832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are a group of noncoding RNAs with transcript lengths of >200 nucleotides. Mounting evidence suggests that lncRNAs are closely associated with tumorigenesis. LncRNA H19 (H19) was the first lncRNA to function as an oncogene in many malignant tumors. Apart from the established role of H19 in promoting cell growth, proliferation, invasion, migration, epithelial-mesenchymal transition (EMT), and metastasis, it has been recently discovered that H19 also inhibits programmed cell death (PCD) of cancer cells. In this review, we summarize the mechanisms by which H19 regulates PCD in cancer cells through various signaling pathways, molecular mechanisms, and epigenetic modifications. H19 regulates PCD through the Wnt/β-catenin pathway and the PI3K-Akt-mTOR pathway. It also acts as a competitive endogenous RNA (ceRNA) in PCD regulation. The interaction between H19 and RNA-binding proteins (RBP) regulates apoptosis in cancer. Moreover, epigenetic modifications, including DNA and RNA methylation and histone modifications, are also involved in H19-associated PCD regulation. In conclusion, we summarize the role of H19 signaling via PCD in cancer chemoresistance, highlighting the promising research significance of H19 as a therapeutic target. We hope that our study will contribute to a broader understanding of H19 in cancer development and treatment.
Collapse
Affiliation(s)
- Yuyang Xia
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Tianjiao Pei
- Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China.
| | - Junjie Zhao
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Zilin Wang
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Yu Shen
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Yang Yang
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
6
|
Li J, Jiang JL, Chen YM, Lu WQ. KLF2 inhibits colorectal cancer progression and metastasis by inducing ferroptosis via the PI3K/AKT signaling pathway. J Pathol Clin Res 2023; 9:423-435. [PMID: 37147883 PMCID: PMC10397377 DOI: 10.1002/cjp2.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/26/2023] [Accepted: 04/16/2023] [Indexed: 05/07/2023]
Abstract
Krüppel-like factor 2 (KLF2) belongs to the zinc finger family and is thought to be a tumor suppressor gene due to its low expression in various cancer types. However, its functional role and molecular pathway involvement in colorectal cancer (CRC) are not well defined. Herein, we investigated the potential mechanism of KLF2 in CRC cell invasion, migration, and epithelial-mesenchymal transition (EMT). We utilized the TCGA and GEPIA databases to analyze the expression of KLF2 in CRC patients and its correlation with different CRC stages and CRC prognosis. RT-PCR, western blot, and immunohistochemistry assays were used to measure KLF2 expression. Gain-of-function assays were performed to evaluate the role of KLF2 in CRC progression. Moreover, mechanistic experiments were conducted to investigate the molecular mechanism and involved signaling pathways regulated by KLF2. Additionally, we also conducted a xenograft tumor assay to evaluate the role of KLF2 in tumorigenesis. KLF2 expression was low in CRC patient tissues and cell lines, and low expression of KLF2 was associated with poor CRC prognosis. Remarkably, overexpressing KLF2 significantly inhibited the invasion, migration, and EMT capabilities of CRC cells, and tumor growth in xenografts. Mechanistically, KLF2 overexpression induced ferroptosis in CRC cells by regulating glutathione peroxidase 4 expression. Moreover, this KLF2-dependent ferroptosis in CRC cells was mediated by inhibiting the PI3K/AKT signaling pathway that resulted in the suppression of invasion, migration, and EMT of CRC cells. We report for the first time that KLF2 acts as a tumor suppressor in CRC by inducing ferroptosis via inhibiting the PI3K/AKT signaling pathway, thus providing a new direction for CRC prognosis assessment and targeted therapy.
Collapse
Affiliation(s)
- Jia Li
- Department of General SurgeryShenzhen Traditional Chinese Medicine HospitalShenzhenPR China
| | - Ji Ling Jiang
- Department of General SurgeryShenzhen Traditional Chinese Medicine HospitalShenzhenPR China
| | - Yi Mei Chen
- Department of Breast SurgeryShenzhen Women & Children's Health Care HospitalShenzhenPR China
| | - Wei Qi Lu
- Department of Gastrointestinal SurgeryFirst Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouPR China
| |
Collapse
|
7
|
Chen XQ, Ma J, Xu D, Xiang ZL. Comprehensive analysis of KLF2 as a prognostic biomarker associated with fibrosis and immune infiltration in advanced hepatocellular carcinoma. BMC Bioinformatics 2023; 24:270. [PMID: 37386390 PMCID: PMC10308631 DOI: 10.1186/s12859-023-05391-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023] Open
Abstract
PURPOSE Most Hepatocellular carcinoma (HCC) patients are in advanced or metastatic stage at the time of diagnosis. Prognosis for advanced HCC patients is dismal. This study was based on our previous microarray results, and aimed to explore the promising diagnostic and prognostic markers for advanced HCC by focusing on the important function of KLF2. METHODS The Cancer Genome Atlas (TCGA), Cancer Genome Consortium database (ICGC), and the Gene Expression Comprehensive Database (GEO) provided the raw data of this study research. The cBioPortal platform, CeDR Atlas platform, and the Human Protein Atlas (HPA) website were applied to analyze the mutational landscape and single-cell sequencing data of KLF2. Basing on the results of single-cell sequencing analyses, we further explored the molecular mechanism of KLF2 regulation in the fibrosis and immune infiltration of HCC. RESULTS Decreased KLF2 expression was discovered to be mainly regulated by hypermethylation, and indicated a poor prognosis of HCC. Single-cell level expression analyses revealed KLF2 was highly expressed in immune cells and fibroblasts. The function enrichment analysis of KLF2 targets indicated the crucial association between KLF2 and tumor matrix. 33-genes related with cancer associated fibroblasts (CAFs) were collected to identify the significant association of KLF2 with fibrosis. And SPP1 was validated as a promising prognostic and diagnostic marker for advanced HCC patients. CXCR6 CD8+ T cells were noted as a predominant proportion in the immune microenvironment, and T cell receptor CD3D was discovered to be a potential therapeutic biomarker for HCC immunotherapy. CONCLUSION This study identified that KLF2 is an important factor promoting HCC progression by affecting the fibrosis and immune infiltration, highlighting its great potential as a novel prognostic biomarker for advanced HCC.
Collapse
Affiliation(s)
- Xue-Qin Chen
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Jie Ma
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Di Xu
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zuo-Lin Xiang
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Radiation Oncology, Shanghai East Hospital Ji'an hospital, Jiangxi, 343000, China.
| |
Collapse
|
8
|
Hosseini FA, Rejali L, Zabihi MR, Salehi Z, Daskar-Abkenar E, Taraz T, Fatemi N, Hashemi M, Asadzadeh-Aghdaei H, Nazemalhosseini-Mojarad E. Long non‑coding RNA LINC00460 contributes as a potential prognostic biomarker through its oncogenic role with ANXA2 in colorectal polyps. Mol Biol Rep 2023; 50:4505-4515. [PMID: 37024747 DOI: 10.1007/s11033-023-08393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/17/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Long intergenic non-coding RNA 460 (LINC00460) as a potential oncogene and Annexin A2 (ANXA2) as a promoter in different cancer progression processes was considered. A significant relationship between the LINC00460 and ANXA2 has been recently discovered in colorectal cancer (CRC). Therefore, defining molecular biomarkers accompanied by lesion histopathologic features can be a suggestive prognostic biomarker in precancerous polyps. This study aimed to investigate the elusive expression pattern of ANXA2 and LINC00460 in polyps. MATERIALS AND METHODS The construction of the co-expression and correlation network of LINC00460 and ANXA2 was plotted. LINC00460 and ANXA2 expression in 40 colon polyps was quantified by reverse transcription-real-time polymerase chain reaction. The receiver operating characteristic (ROC) curve was designed for distinguishing the high-risk precancerous lesion from the low-risk. Further, bioinformatics analysis was applied to find the shared MicroRNA-Interaction-Targets (MITs) between ANXA2 and LINC00460, and the associated pathways. RESULTS ANXA2 has a high co-expression rank with LINC00460 in the lncHUB database. Overexpression of ANXA2 and LINC00460 was distinguished in advanced adenoma polyps compared to the adjacent normal samples. The estimated AUC for ANXA2 and LINC00460 was 0.88 - 0.85 with 93%-90% sensitivity and 81%-70% specificity. In addition, eight MITs were shared between ANXA2 and LINC00460. Enrichment analysis detected several GO terms and pathways, including HIF-1α associated with cancer development. CONCLUSION In conclusion, the expression of the ANXA2 and LINC00460 were significantly elevated in pre-cancerous polyps, especially in high-risk adenomas. Collectively, ANXA2 and LINC00460 may be administered as potential prognostic biomarkers in patients with a precancerous large intestine lesion as an alarming issue.
Collapse
Affiliation(s)
- Farzaneh Alsadat Hosseini
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Leili Rejali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zabihi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Laboratory of Complex Biological Systems and Bio-informatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Elahe Daskar-Abkenar
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tannaz Taraz
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence sciences Research Centre, Farhikhtegan Hospital, Islamic Azad University, Tehran Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh-Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Yeman St, Chamran Expressway, 19857-17413, Tehran, Iran.
| |
Collapse
|
9
|
DNA Double-Strand Break-Related Competitive Endogenous RNA Network of Noncoding RNA in Bovine Cumulus Cells. Genes (Basel) 2023; 14:genes14020290. [PMID: 36833217 PMCID: PMC9956238 DOI: 10.3390/genes14020290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
(1) Background: DNA double strand breaks (DSBs) are the most serious form of DNA damage that affects oocyte maturation and the physiological state of follicles and ovaries. Non-coding RNAs (ncRNAs) play a crucial role in DNA damage and repair. This study aims to analyze and establish the network of ncRNAs when DSB occurs and provide new ideas for next research on the mechanism of cumulus DSB. (2) Methods: Bovine cumulus cells (CCs) were treated with bleomycin (BLM) to construct a DSB model. We detected the changes of the cell cycle, cell viability, and apoptosis to determine the effect of DSBs on cell biology, and further evaluated the relationship between the transcriptome and competitive endogenous RNA (ceRNA) network and DSBs. (3) Results: BLM increased γH2AX positivity in CCs, disrupted the G1/S phase, and decreased cell viability. Totals of 848 mRNAs, 75 long noncoding RNAs (lncRNAs), 68 circular RNAs (circRNAs), and 71 microRNAs (miRNAs) in 78 groups of lncRNA-miRNA-mRNA regulatory networks, 275 groups of circRNA-miRNA-mRNA regulatory networks, and five groups of lncRNA/circRNA-miRNA-mRNA co-expression regulatory networks were related to DSBs. Most differentially expressed ncRNAs were annotated to cell cycle, p53, PI3K-AKT, and WNT signaling pathways. (4) Conclusions: The ceRNA network helps to understand the effects of DNA DSBs activation and remission on the biological function of CCs.
Collapse
|
10
|
Shaath H, Vishnubalaji R, Elango R, Kardousha A, Islam Z, Qureshi R, Alam T, Kolatkar PR, Alajez NM. Long non-coding RNA and RNA-binding protein interactions in cancer: Experimental and machine learning approaches. Semin Cancer Biol 2022; 86:325-345. [PMID: 35643221 DOI: 10.1016/j.semcancer.2022.05.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023]
Abstract
Understanding the complex and specific roles played by non-coding RNAs (ncRNAs), which comprise the bulk of the genome, is important for understanding virtually every hallmark of cancer. This large group of molecules plays pivotal roles in key regulatory mechanisms in various cellular processes. Regulatory mechanisms, mediated by long non-coding RNA (lncRNA) and RNA-binding protein (RBP) interactions, are well documented in several types of cancer. Their effects are enabled through networks affecting lncRNA and RBP stability, RNA metabolism including N6-methyladenosine (m6A) and alternative splicing, subcellular localization, and numerous other mechanisms involved in cancer. In this review, we discuss the reciprocal interplay between lncRNAs and RBPs and their involvement in epigenetic regulation via histone modifications, as well as their key role in resistance to cancer therapy. Other aspects of RBPs including their structural domains, provide a deeper knowledge on how lncRNAs and RBPs interact and exert their biological functions. In addition, current state-of-the-art knowledge, facilitated by machine and deep learning approaches, unravels such interactions in better details to further enhance our understanding of the field, and the potential to harness RNA-based therapeutics as an alternative treatment modality for cancer are discussed.
Collapse
Affiliation(s)
- Hibah Shaath
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Radhakrishnan Vishnubalaji
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Ramesh Elango
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Ahmed Kardousha
- College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Zeyaul Islam
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Rizwan Qureshi
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Prasanna R Kolatkar
- College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar; Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Nehad M Alajez
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar; College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
11
|
Tumor-Suppressive and Oncogenic Roles of microRNA-149-5p in Human Cancers. Int J Mol Sci 2022; 23:ijms231810823. [PMID: 36142734 PMCID: PMC9501226 DOI: 10.3390/ijms231810823] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022] Open
Abstract
Malignant tumors are always a critical threat to human health, with complex pathogenesis, numerous causative factors, and poor prognosis. The features of cancers, such as gene mutations, epigenetic alterations, and the activation and inhibition of signaling pathways in the organism, play important roles in tumorigenesis and prognosis. MicroRNA (miRNA) enables the control of various molecular mechanisms and plays a variety of roles in human cancers, such as radiation sensitivity and tumor immunity, through the regulation of target genes. MiR-149-5p participates in the process and is closely related to lipogenesis, the migration of vascular endothelial cells, and the expression of stem-cell-related proteins. In recent years, its role in cancer has dramatically increased. In this review, we summarize the regular physiological roles of miRNAs, specifically miR-149-5p, in the organism and discuss the tumor-suppressive or oncogenic roles of miR-149-5p in different human cancers with respect to signaling pathways involved in regulation. Possible clinical applications of miR-149-5p in future targeted therapies and prognosis improvement in oncology are suggested.
Collapse
|
12
|
Irfan M, Javed Z, Khan K, Khan N, Docea AO, Calina D, Sharifi-Rad J, Cho WC. Apoptosis evasion via long non-coding RNAs in colorectal cancer. Cancer Cell Int 2022; 22:280. [PMID: 36076273 PMCID: PMC9461221 DOI: 10.1186/s12935-022-02695-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/31/2022] [Indexed: 01/03/2023] Open
Abstract
Long non-coding RNA (LncRNA) is a novel and diverse class of regulatory transcripts that are frequently dysregulated in numerous tumor types. LncRNAs are involved in a complicated molecular network, regulating gene expression, and modulating diverse cellular activities in different cancers including colorectal cancer (CRC). Evidence indicates that lncRNAs can be used as a potential biomarker for the prognosis and diagnosis of CRC as they are aberrantly expressed in CRC cells. The high expression or silencing of lncRNAs is associated with cell proliferation, invasion, metastasis, chemoresistance and apoptosis in CRC. LncRNAs exert both pro-apoptotic and anti-apoptotic functions in CRC. The expression of some oncogene lncRNAs is upregulated which leads to the inhibition of apoptotic pathways, similarly, the tumor suppressor lncRNAs are downregulated in CRC. In this review, we describe the function and mechanisms of lncRNAs to regulate the expression of genes that are involved directly or indirectly in controlling cellular apoptosis in CRC. Furthermore, we also discussed the different apoptotic pathways in normal cells and the mechanisms by which CRC evade apoptosis.
Collapse
Affiliation(s)
- Muhammad Irfan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Zeeshan Javed
- Office for Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Khushbukhat Khan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Naila Khan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
13
|
Su M, Tang J, Yang D, Wu Z, Liao Q, Wang H, Xiao Y, Wang W. Oncogenic roles of the lncRNA LINC00460 in human cancers. Cancer Cell Int 2022; 22:240. [PMID: 35906593 PMCID: PMC9336008 DOI: 10.1186/s12935-022-02655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/17/2022] [Indexed: 11/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) represent an important group of endogenous RNAs with limit protein-encoding capability, with a length of more than 200 nucleotides. Emerging evidence have demonstrated that lncRNAs are greatly involved in multiple cancers by playing critical roles in tumor initiation and progression. Long intergenic non-protein coding RNA 460 (LINC00460), a novel cancer-related lncRNA, exhibits abnormal expression and oncogenic function in multiple cancers, and positively correlates with poor clinical characteristics of cancer patients. LINC00460 has also been shown to be a promising biomarker for diagnosis as well as prognostic evaluation in cancer patients. In this review, we briefly summarized recent knowledge on the expression, functional roles, molecular mechanisms, and diagnostic and prognostic values of LINC00460 in human malignancies.
Collapse
Affiliation(s)
- Min Su
- Thoracic Surgery Department 2, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Hunan Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Hunan, 410013, Changsha, People's Republic of China
| | - Jinming Tang
- Thoracic Surgery Department 2, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Desong Yang
- Thoracic Surgery Department 2, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Zhining Wu
- Thoracic Surgery Department 2, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Hunan, 410013, Changsha, People's Republic of China
| | - Yuhang Xiao
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China. .,Department of Pharmacy, Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410001, People's Republic of China.
| | - Wenxiang Wang
- Thoracic Surgery Department 2, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China. .,Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.
| |
Collapse
|
14
|
Mirzaei S, Gholami MH, Hushmandi K, Hashemi F, Zabolian A, Canadas I, Zarrabi A, Nabavi N, Aref AR, Crea F, Wang Y, Ashrafizadeh M, Kumar AP. The long and short non-coding RNAs modulating EZH2 signaling in cancer. J Hematol Oncol 2022; 15:18. [PMID: 35236381 PMCID: PMC8892735 DOI: 10.1186/s13045-022-01235-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a large family of RNA molecules with no capability in encoding proteins. However, they participate in developmental and biological processes and their abnormal expression affects cancer progression. These RNA molecules can function as upstream mediators of different signaling pathways and enhancer of zeste homolog 2 (EZH2) is among them. Briefly, EZH2 belongs to PRCs family and can exert functional roles in cells due to its methyltransferase activity. EZH2 affects gene expression via inducing H3K27me3. In the present review, our aim is to provide a mechanistic discussion of ncRNAs role in regulating EZH2 expression in different cancers. MiRNAs can dually induce/inhibit EZH2 in cancer cells to affect downstream targets such as Wnt, STAT3 and EMT. Furthermore, miRNAs can regulate therapy response of cancer cells via affecting EZH2 signaling. It is noteworthy that EZH2 can reduce miRNA expression by binding to promoter and exerting its methyltransferase activity. Small-interfering RNA (siRNA) and short-hairpin RNA (shRNA) are synthetic, short ncRNAs capable of reducing EZH2 expression and suppressing cancer progression. LncRNAs mainly regulate EZH2 expression via targeting miRNAs. Furthermore, lncRNAs induce EZH2 by modulating miRNA expression. Circular RNAs (CircRNAs), like lncRNAs, affect EZH2 expression via targeting miRNAs. These areas are discussed in the present review with a focus on molecular pathways leading to clinical translation.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, 1417466191, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Gorgan, Golestan, Iran
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada.
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, 34956, Turkey.
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
15
|
Chen X, Tu J, Ma L, Huang Y, Yang C, Yuan X. Analysis of Ferroptosis-Related LncRNAs Signatures Associated with Tumor Immune Infiltration and Experimental Validation in Clear Cell Renal Cell Carcinoma. Int J Gen Med 2022; 15:3215-3235. [PMID: 35342303 PMCID: PMC8942346 DOI: 10.2147/ijgm.s354682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/10/2022] [Indexed: 12/15/2022] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is the most aggressive subtype of renal cell carcinoma. Ferroptosis is an iron-dependent programmed cell death. Long non-coding RNAs (lncRNAs) emerge as a critical role in regulating cancer progression. Objective This study aimed to identify molecular regulation of ferroptosis-related lncRNAs (FRLs) in ccRCC. Methods The prognostic value of FRLs was investigated in ccRCC samples downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) dataset. The FRLs were screened out by Pearson correlation test. The 465 FRLs confirmed as potential prognostic factors through univariate Cox regression analysis were entered into Lasso and multivariate Cox regression to build a FRLs prognostic signature. A risk score based on the prognostic model divided ccRCC patients into low- and high-risk groups. A prognostic nomogram, derived from the prognostic signature and integrating clinical characteristics, was constructed. Gene set enrichment analysis (GSEA) revealed the immune- and tumor-associated pathways. Two distinct clusters were identified with different immune signatures through consensus clustering analysis. The prognostic value of some hub FRLs was externally validated via three GEO datasets (GSE46699, GSE53757 and GSE66272) and online databases. Finally, the three FRLs (LINC00460, LINC00941 and LINC02027) were verified through in vitro experiments. Results The FRLs prognostic signature, including 7 independent prognostic lncRNAs, exhibited good accuracy in predicting overall survival (OS) of ccRCC patients. This signature was correlated with immune infiltration and immune checkpoint blockade (ICB). We correlated two distinct clusters with immune infiltration signature of ccRCC. The worse prognosis of cluster 2 was probably mediated by immune evasion. We also found that the expression levels of LINC00460 and LINC00941 in ccRCC cell lines were higher than those in HK-2 cells, but LINC02027 showed the inverse trend. Conclusion Collectively, our study demonstrated a FRLs prognostic signature which had great clinical value in prognosis assessment.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Li Ma
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Chunguang Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
- Correspondence: Xianglin Yuan, Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, People’s Republic of China, Tel/Fax +8602783662683, Email
| |
Collapse
|
16
|
Poursheikhani A, Abbaszadegan MR, Kerachian MA. Long non-coding RNA AC087388.1 as a novel biomarker in colorectal cancer. BMC Cancer 2022; 22:196. [PMID: 35193569 PMCID: PMC8862536 DOI: 10.1186/s12885-022-09282-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background Several investigations have reported diverse roles of long non-coding RNA (lncRNA) in biological processes, tumor development, and progression of colorectal cancer (CRC). In this study, we investigated the lncRNA AC087388.1 tumorigenic role in CRC cells. Methods The CRC tissues were collected at the Reza Radiotherapy and Oncology Center, Mashhad, Iran. The human SW-48 and HT-29 CRC cell lines were obtained from the national cell bank of Iran. The cells were cultured according to ATCC (the American Type Culture Collection) recommendations. Quantitative real-time PCR was applied to assess the RNA expression. ShRNA transfection was done to downregulate the target gene. MTT and apoptosis assays were conducted to evaluate cell proliferation and viability, respectively. Colony formation assay, wound healing assay, and invasion assay were applied to determine growth, motility, and invasion of the cells, respectively. ENCORI online tool was used as downstream enrichment analysis. Results Forty CRC patients were encompassed in this study. The results demonstrated that the lncRNA SLC16A1-AS1, AC087388.1, and ELFN1-AS1 were significantly overexpressed in the CRC tissues in comparison to their normal counterpart margins. All the lncRNAs have shown significant Area Under Curve (AUC) values in the patients. Downregulation of lncRNA AC087388.1 remarkably decreased the cell proliferation and viability of the CRC cells. In addition, the data demonstrated that the downregulation of lncRNA AC087388.1 significantly suppressed cell growth and colony formation capability in the cells. Also, downregulation of lncRNA AC087388.1 attenuated motility and invasion of CRC cells, and significantly decreased the expression of invasion genes. In-silico functional enrichment analysis indicated that the lncRNA AC087388.1 has contributed to crucial signaling pathways in tumorigenesis such as the p53 and Wnt signaling pathways, apoptosis, and cell cycle. Conclusions Altogether, we showed that lncRNA AC087388.1 has an oncogenic role in tumorigenesis of CRC, and it can be considered as a novel diagnostic and prognostic biomarker in CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09282-0.
Collapse
Affiliation(s)
- Arash Poursheikhani
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran.
| |
Collapse
|
17
|
Yao ZT, Yang YM, Sun MM, He Y, Liao L, Chen KS, Li B. New insights into the interplay between long non-coding RNAs and RNA-binding proteins in cancer. Cancer Commun (Lond) 2022; 42:117-140. [PMID: 35019235 PMCID: PMC8822594 DOI: 10.1002/cac2.12254] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
With the development of proteomics and epigenetics, a large number of RNA‐binding proteins (RBPs) have been discovered in recent years, and the interaction between long non‐coding RNAs (lncRNAs) and RBPs has also received increasing attention. It is extremely important to conduct in‐depth research on the lncRNA‐RBP interaction network, especially in the context of its role in the occurrence and development of cancer. Increasing evidence has demonstrated that lncRNA‐RBP interactions play a vital role in cancer progression; therefore, targeting these interactions could provide new insights for cancer drug discovery. In this review, we discussed how lncRNAs can interact with RBPs to regulate their localization, modification, stability, and activity and discussed the effects of RBPs on the stability, transport, transcription, and localization of lncRNAs. Moreover, we explored the regulation and influence of these interactions on lncRNAs, RBPs, and downstream pathways that are related to cancer development, such as N6‐methyladenosine (m6A) modification of lncRNAs. In addition, we discussed how the lncRNA‐RBP interaction network regulates cancer cell phenotypes, such as proliferation, apoptosis, metastasis, drug resistance, immunity, tumor environment, and metabolism. Furthermore, we summarized the therapeutic strategies that target the lncRNA‐RBP interaction network. Although these treatments are still in the experimental stage and various theories and processes are still being studied, we believe that these strategies may provide new ideas for cancer treatment.
Collapse
Affiliation(s)
- Zi-Ting Yao
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Yan-Ming Yang
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Miao-Miao Sun
- Department of Pathology, Henan Key Laboratory of Tumor Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Yan He
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510700, P. R. China
| | - Long Liao
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510700, P. R. China
| | - Kui-Sheng Chen
- Department of Pathology, Henan Key Laboratory of Tumor Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Bin Li
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510700, P. R. China
| |
Collapse
|
18
|
Chen X, Song J, Wang X, Sun D, Liu Y, Jiang Y. LncRNA LINC00460: Function and mechanism in human cancer. Thorac Cancer 2022; 13:3-14. [PMID: 34821482 PMCID: PMC8720622 DOI: 10.1111/1759-7714.14238] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (LncRNAs), which are more than 200 nucleotides in length and with limited protein-coding potential, play vital roles in the pathogenesis, tumorigenesis, and angiogenesis of cancers. Aberrant expression of lncRNAs has been detected in various carcinomas and may be correlated with oncogenesis by affecting related genes expression. Recently, an increasing number of studies have reported on long intergenic non-protein coding RNA 460 (LINC00460) in human tumor fields. LINC00460 is upregulated in diverse cancer tissues and cells. The upregulated expression level of LINC00460 is correlated with larger tumor size, tumor node metastasis (TNM) stage, lymph node metastasis, and shorter overall survival. The regulatory mechanism of LINC00460 was complex and diverse. LINC00460 could act as a competitive endogenous RNA (ceRNA), directly bind with proteins or regulate multiple pathways, which affected tumor progression. Moreover, LINC00460 was also identified to increase drug resistance, and therefore, weaken the effectiveness of tumor treatment. It has become increasingly important to investigate the roles of LINC00460 in various cancers by different mechanisms. Therefore, a more comprehensive understanding of LINC00460 is crucial to expound on the cellular function and molecular mechanism of human cancers. In this review, we refer to studies concerning LINC00460 and provide the basis for the evaluation of LINC00460 as a predicted biomarker or potential therapeutic target in malignancies, and also provide ideas for the future research of lncRNAs similar to LINC00460.
Collapse
Affiliation(s)
- Xi Chen
- School of StomatologyWeifang Medical UniversityWeifangShandongChina
| | - Jiwu Song
- Department of StomatologyWeifang People's Hospital, First Affiliated Hospital of Weifang Medical UniversityWeifangShandongChina
| | - Xiaoxiao Wang
- School of StomatologyWeifang Medical UniversityWeifangShandongChina
- Department of DentistryAffiliated Hospital of Weifang Medical UniversityWeifangShandongChina
| | - Dongyuan Sun
- School of StomatologyWeifang Medical UniversityWeifangShandongChina
- Department of DentistryAffiliated Hospital of Weifang Medical UniversityWeifangShandongChina
| | - Yunxia Liu
- School of StomatologyWeifang Medical UniversityWeifangShandongChina
- Department of DentistryAffiliated Hospital of Weifang Medical UniversityWeifangShandongChina
| | - Yingying Jiang
- School of StomatologyWeifang Medical UniversityWeifangShandongChina
- Department of DentistryAffiliated Hospital of Weifang Medical UniversityWeifangShandongChina
| |
Collapse
|
19
|
Yang C, Deng S. Hsa_circ_0017728 as an oncogene in gastric cancer by sponging miR-149 and modulating the IL-6/STAT3 pathway. Arch Med Sci 2022; 18:1558-1571. [PMID: 36457988 PMCID: PMC9710264 DOI: 10.5114/aoms.2019.87274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/03/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Circular RNAs (circRNAs) have been identified as competing endogenous RNAs (ceRNAs) to mediate gene expression participating in the progression of multiple cancers, including gastric carcinoma (GC). However, the underlying molecular mechanisms by which circRNAs-modulated cell proliferation and apoptosis in GC had not been completely clarified. In our study, hsa_circ_0017728 as a potential oncogene competing endogenous RNA (ceRNA) was investigated in the progression and development of gastric carcinogenesis. MATERIAL AND METHODS High-throughput sequencing was used to determine differentially expressed circRNAs in GC tissues and corresponding non-cancerous tissues. The CCK-8 assay and Annexin V-fluorescein isothiocyanate/polyimide (Annexin V-FITC/PI) staining were performed to detect the cell viability and apoptosis in GC cells. In addition, gene expression and protein levels in GC tissues and cell lines were measured using RT-qPCR and western blotting, respectively. RESULTS Our results demonstrated that the hsa_circ_0017728 expression level was up-regulated in GC tissues and cell lines and closely associated with poor overall survival and pathological differentiation, higher TNM stage and lymph node metastasis. Knockdown of hsa_circ_0017728 had the ability to cause inhibition of cell proliferation and migration and elevate the cell apoptosis rate in GC cells. We also discovered that hsa_circ_0017728 might serve as a ceRNA to sponge miR-149 and indirectly regulated the IL-6/STAT3 signaling pathway in GC cell proliferation and apoptosis. CONCLUSIONS The regulatory network of hsa_circ_0017728/miR-149/IL-6/STAT3 cascade signaling might provide a better understanding of gastric carcinogenesis and progression.
Collapse
Affiliation(s)
- Chun Yang
- School of Medicine, University of Electronic Science and Technology of China; Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Shaoping Deng
- School of Medicine, University of Electronic Science and Technology of China; Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
20
|
A Review on the Role of miR-149-5p in the Carcinogenesis. Int J Mol Sci 2021; 23:ijms23010415. [PMID: 35008841 PMCID: PMC8745060 DOI: 10.3390/ijms23010415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
miR-149 is an miRNA with essential roles in carcinogenesis. This miRNA is encoded by the MIR149 gene on 2q37.3. The miR-149 hairpin produces miR-149-5p and miR-149-3p, which are the “guide” and the sister “passenger” strands, respectively. Deep sequencing experiments have shown higher prevalence of miR-149-5p compared with miR-149-3p. Notably, both oncogenic and tumor suppressive roles have been reported for miR-149-5p. In this review, we summarize the impact of miR-149-5p in the tumorigenesis and elaborate mechanisms of its involvement in this process in a variety of neoplastic conditions based on three lines of evidence, i.e., in vitro, in vivo and clinical settings.
Collapse
|
21
|
Lu S, Ding X, Wang Y, Hu X, Sun T, Wei M, Wang X, Wu H. The Relationship Between the Network of Non-coding RNAs-Molecular Targets and N6-Methyladenosine Modification in Colorectal Cancer. Front Cell Dev Biol 2021; 9:772542. [PMID: 34938735 PMCID: PMC8685436 DOI: 10.3389/fcell.2021.772542] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
Recent accumulating researches implicate that non-coding RNAs (ncRNAs) including microRNA (miRNA), circular RNA (circRNA), and long non-coding RNA (lncRNAs) play crucial roles in colorectal cancer (CRC) initiation and development. Notably, N6-methyladenosine (m6A) methylation, the critical posttranscriptional modulators, exerts various functions in ncRNA metabolism such as stability and degradation. However, the interaction regulation network among ncRNAs and the interplay with m6A-related regulators has not been well documented, particularly in CRC. Here, we summarize the interaction networks and sub-networks of ncRNAs in CRC based on a data-driven approach from the publications (IF > 6) in the last quinquennium (2016–2021). Further, we extend the regulatory pattern between the core m6A regulators and m6A-related ncRNAs in the context of CRC metastasis and progression. Thus, our review will highlight the clinical potential of ncRNAs and m6A modifiers as promising biomarkers and therapeutic targets for improving the diagnostic precision and treatment of CRC.
Collapse
Affiliation(s)
- Senxu Lu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Xiangyu Ding
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Yuanhe Wang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Shenyang, China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Tong Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China.,Shenyang Kangwei Medical Laboratory Analysis Co. Ltd., Liaoning, China
| | - Xiaobin Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
22
|
Van der Mude A. A proposed Information-Based modality for the treatment of cancer. Biosystems 2021; 211:104587. [PMID: 34915101 DOI: 10.1016/j.biosystems.2021.104587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/20/2021] [Accepted: 12/01/2021] [Indexed: 11/02/2022]
Abstract
Treatment modalities for cancer involve physical manipulations such as surgery, immunology, radiation, chemotherapy or gene editing. This is a proposal for an information-based modality. This modality does not change the internal state of the cancer cell directly - instead, the cancer cell is manipulated by giving it information to instruct the cell to perform an action. This modality is based on a theory of Structure Encoding in DNA, where information about body part structure controls the epigenetic state of cells in the process of development from pluripotent cells to fully differentiated cells. It has been noted that cancer is often due to errors in morphogenetic differentiation accompanied by associated epigenetic processes. This implies a model of cancer called the Epigenetic Differentiation Model. A major feature of the Structure Encoding Theory is that the characteristics of the differentiated cell are affected by inter-cellular information passed in the tissue microenvironment, which specifies the exact location of a cell in a body part structure. This is done by exosomes that carry fragments of long non-coding RNA and transposons, which convey structure information. In the normal process of epigenetic differentiation, the information passed may lead to apoptosis due to the constraints of a particular body part structure. The proposed treatment involves determining what structure information is being passed in a particular tumor, then adding artificial exosomes that overwhelm the current information with commands for the cells to go into apoptosis.
Collapse
|
23
|
Revealing the role of miRNA-489 as a new onco-suppressor factor in different cancers based on pre-clinical and clinical evidence. Int J Biol Macromol 2021; 191:727-737. [PMID: 34562537 DOI: 10.1016/j.ijbiomac.2021.09.089] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/17/2023]
Abstract
Recently, microRNAs (miRNAs) have shown to be potential therapeutic, diagnostic and prognostic targets in disease therapy. These endogenous non-coding RNAs contribute to regulation of different cellular events that are necessary for maintaining physiological condition. Dysregulation of miRNAs is correlated with development of various pathological events such as neurological disorders, cardiovascular diseases, and cancer. miRNA-489 is a new emerging miRNA and studies are extensively investigating its role in pathological conditions. Herein, potential function of miRNA-489 as tumor-suppressor in various cancers is described. miRNA-489 is able to sensitize cancer cells into chemotherapy by disrupting molecular pathways involved in cancer growth such as PI3K/Akt, and induction of apoptosis. The PROX1 and SUZ12 as oncogenic pathways, are affected by miRNA-489 in suppressing metastasis of cancer cells. Wnt/β-catenin as an oncogenic factor ensuring growth and malignancy of tumors is inhibited via miRNA-489 function. For enhancing drug sensitivity of tumors, restoring miRNA-489 expression is a promising strategy. The lncRNAs can modulate miRNA-489 expression in tumors and studies about circRNA role in miRNA-489 modulation should be performed. The expression level of miRNA-489 is a diagnostic tool for tumor detection. Besides, down-regulation of miRNA-489 in tumors provides unfavorable prognosis.
Collapse
|
24
|
Qin SY, Li B, Chen M, Qin MQ, Liu JM, Lv QL. MiR-32-5p promoted epithelial-to-mesenchymal transition of oral squamous cell carcinoma cells via regulating the KLF2/CXCR4 pathway. Kaohsiung J Med Sci 2021; 38:120-128. [PMID: 34741382 DOI: 10.1002/kjm2.12450] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/26/2021] [Accepted: 08/17/2021] [Indexed: 11/07/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common carcinomas of the oral cavity. However, the regulatory mechanisms on miR-32-5p remain poorly understood in OSCC. The expression of miR-32-5p, Krüppel-like factor 2 (KLF2), C-X-C motif chemokine receptor 4 (CXCR4), and epithelial-to-mesenchymal transition (EMT)-related proteins (E-cadherin, Vimentin, N-cadherin, and Snail) were evaluated were assessed using RT-qPCR and Western blot. 3-(4, 5-Dimethylthiazolyl2)-2, 5-diphenyltetrazolium bromide assay, wound healing assay, and transwell assay were employed to detect cell proliferation, migration, and invasion of OSCC cells. Finally, dual-luciferase reporter assay was performed to verify the binding relationship between KLF2 and miR-32-5p. MiR-32-5p was highly expressed while KLF2 was lowly expressed in OSCC cells, and miR-32-5p knockdown or KLF2 overexpression could markedly reduce cell proliferation, migration, invasion, and EMT of OSCC cells. What is more, KLF2 was the target of miR-32-5p, and knockdown of KLF2 abolished the inhibitory effect of miR-32-5p inhibitor on progression of OSCC. Finally, CXCR4 expression was negatively regulated by KLF2, and inhibition of CXCR4 obviously alleviated the biological effects of si-KLF2 on the progression of OSCC. MiR-32-5p could enhance cell proliferation, migration, invasion, and EMT of OSCC cells, and the discovery of miR-32-5p/KLF2/CXCR4 axis might provide potential therapeutic targets for OSCC.
Collapse
Affiliation(s)
- Shi-Yu Qin
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, China
| | - Bo Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, China
| | - Mei Chen
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, China
| | - Ming-Qun Qin
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, China
| | - Ji-Mu Liu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, China
| | - Qiu-Li Lv
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
25
|
Fang X, Liu X, Lu L, Liu G. Identification of a Somatic Mutation-Derived Long Non-Coding RNA Signatures of Genomic Instability in Renal Cell Carcinoma. Front Oncol 2021; 11:728181. [PMID: 34676164 PMCID: PMC8523920 DOI: 10.3389/fonc.2021.728181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022] Open
Abstract
Background Renal cell carcinoma (RCC) is a malignant tumor with high morbidity and mortality. It is characterized by a large number of somatic mutations and genomic instability. Long non-coding RNAs (lncRNAs) are widely involved in the expression of genomic instability in renal cell carcinoma. But no studies have identified the genome instability-related lncRNAs (GInLncRNAs) and their clinical significances in RCC. Methods Clinical data, gene expression data and mutation data of 943 RCC patients were downloaded from The Cancer Genome Atlas (TCGA) database. Based on the mutation data and lncRNA expression data, GInLncRNAs were screened out. Co-expression analysis, Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted to explore their potential functions and related signaling pathways. A prognosis model was further constructed based on genome instability-related lncRNAs signature (GInLncSig). And the efficiency of the model was verified by receiver operating characteristic (ROC) curve. The relationships between the model and clinical information, prognosis, mutation number and gene expression were analyzed using correlation prognostic analysis. Finally, the prognostic model was verified in clinical stratification according to TCGA dataset. Results A total of 45 GInLncRNAs were screened out. Functional analysis showed that the functional genes of these GInLncRNAs were mainly enriched in chromosome and nucleoplasmic components, DNA binding in molecular function, transcription and complex anabolism in biological processes. Univariate and Multivariate Cox analyses further screened out 11 GInLncSig to construct a prognostic model (AL031123.1, AC114803.1, AC103563.7, AL031710.1, LINC00460, AC156455.1, AC015977.2, 'PRDM16-dt', AL139351.1, AL035661.1 and LINC01606), and the coefficient of each GInLncSig in the model was calculated. The area under the curve (AUC) value of the ROC curve was 0.770. Independent analysis of the model showed that the GInLncSig model was significantly correlated with the RCC patients' overall survival. Furthermore, the GInLncSig model still had prognostic value in different subgroups of RCC patients. Conclusion Our study preliminarily explored the relationship between genomic instability, lncRNA and clinical characteristics of RCC patients, and constructed a GInLncSig model consisted of 11 GInLncSig to predict the prognosis of patients with RCC. At the same time, our study provided theoretical support for the exploration of the formation and development of RCC.
Collapse
Affiliation(s)
- Xisheng Fang
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xia Liu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lin Lu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guolong Liu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
26
|
Ren FJ, Yao Y, Cai XY, Cai YT, Su Q, Fang GY. MiR-149-5p: An Important miRNA Regulated by Competing Endogenous RNAs in Diverse Human Cancers. Front Oncol 2021; 11:743077. [PMID: 34722295 PMCID: PMC8554335 DOI: 10.3389/fonc.2021.743077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) consist of a large family of small, non-coding RNAs with the ability to result in gene silencing post-transcriptionally. With recent advances in research technology over the past several years, the physiological and pathological potentials of miRNAs have been gradually uncovered. MiR-149-5p, a conserved miRNA, was found to regulate physiological processes, such as inflammatory response, adipogenesis and cell proliferation. Notably, increasing studies indicate miR-149-5p may act as an important regulator in solid tumors, especially cancers in reproductive system and digestive system. It has been acknowledged that miR-149-5p can function as an oncogene or tumor suppressor in different cancers, which is achieved by controlling a variety of genes expression and adjusting downstream signaling pathway. Moreover, the levels of miR-149-5p are influenced by several newly discovered long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). However, there is blank about systematic function and mechanism of miR-149-5p in human cancers. In this review, we firstly summarize the present comprehension of miR-149-5p at the molecular level, its vital role in tumor initiation and progression, as well as its potential roles in monitoring diverse reproductive and digestive malignancies.
Collapse
Affiliation(s)
- Fu-jia Ren
- Department of Pharmacy, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Yao Yao
- Department of Pharmacy, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-yu Cai
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-ting Cai
- Department of Pharmacy, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Qian Su
- Department of Pharmacy, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Guo-ying Fang
- Department of Pharmacy, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| |
Collapse
|
27
|
Tang C, Liu J, Hu Q, Zeng S, Yu L. Metastatic colorectal cancer: Perspectives on long non-coding RNAs and promising therapeutics. Eur J Pharmacol 2021; 908:174367. [PMID: 34303661 DOI: 10.1016/j.ejphar.2021.174367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 01/06/2023]
Abstract
Metastatic colorectal cancer (mCRC) has long been lethal despite the continuous efforts of researchers worldwide to discover and improve therapeutic regimens. Thanks to the emergence of long non-coding RNAs (lncRNAs), which has strongly reshaped our inherent perspectives on the pathophysiological patterns of disease, research in the field has been reinvigorated. Here, we focus on current understanding of the modes of action of lncRNAs, and review their regulatory roles in metastatic colorectal cancer, and discuss correlated potential lncRNA-based therapeutics. All of the discussed studies share clear and promising perspectives on future diagnostic and therapeutic remedies for metastatic colorectal cancer.
Collapse
Affiliation(s)
- Chunyuan Tang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Junqing Liu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310022, China
| | - Qingqing Hu
- The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Jinhua, 322023, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
28
|
Lin X, Zhou B, Ma J. Significance of LINC00460 in the progression and prognosis in digestive tract tumors. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:628-636. [PMID: 34275932 PMCID: PMC10930199 DOI: 10.11817/j.issn.1672-7347.2021.200975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Indexed: 11/03/2022]
Abstract
The long intergic non-protein coding RNA 460 (LINC00460) is abnormally highly expressed in gastrointestinal tumors and plays an important role in promoting tumor formation and development. LINC00460 is mainly distributed in cytoplasm and has many abnormal gene variants of single nucleotide polymorphism in tumors. LINC00460 can promote the proliferation, metastasis, angiogenesis, radiotherapy and chemotherapy resistance, inhibit the apoptosis of tumor cells, and further promote the malignant progression of tumors via involving in chromatin state maintenance, methylation modification, endogenous competition and transcriptional regulation. It may serve as a valuable tumor marker and therapeutic target.
Collapse
Affiliation(s)
- Xiaoyan Lin
- Medical Research Center, Second Affiliated Hospital, Zhengzhou University, Zhengzhou 450014, China.
| | - Bo Zhou
- Medical Research Center, Second Affiliated Hospital, Zhengzhou University, Zhengzhou 450014, China
| | - Jun Ma
- Medical Research Center, Second Affiliated Hospital, Zhengzhou University, Zhengzhou 450014, China.
| |
Collapse
|
29
|
Li M, Zhang X, Ding X, Zheng Y, Du H, Li H, Ji H, Wang Z, Jiao P, Song X, Zhong Y, Wu H. Long Noncoding RNA LINC00460 Promotes Cell Progression by Sponging miR-4443 in Head and Neck Squamous Cell Carcinoma. Cell Transplant 2021; 29:963689720927405. [PMID: 32478564 PMCID: PMC7563806 DOI: 10.1177/0963689720927405] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers worldwide. Long noncoding RNAs were proved to be associated with the development and progression in HNSCC. However, the mechanism of LINC00460 in HNSCC needs to be further investigated. The study used quantitative real-time polymerase chain reaction assay to detect the expression of LINC00460 in cancer tissues and cell lines. Gain and loss of function experiments were conducted to analyze the effects of LINC00460 and miR-4443 on cell proliferation, invasion, and apoptosis of HNSCC cells in vitro. The interactions among miR-4443 and LINC00460 were detected by dual-luciferase reporter assay. Here, the study showed that LINC00460 was highly expressed in HNSCC tissues and cell lines. Functionally, knockdown of LINC00460 inhibited HNSCC cell proliferation and migration in vitro. Besides, LINC00460 promoted cell progression by sponging miR-4443, and miR-4443 inhibitor could reverse the effects of si-LINC00460 on cell proliferation and migration. In summary, LINC00460 could potentially promote cell progression and epithelial mesenchymal transition by sponging miR-4443 in HNSCC. LINC00460 could be used as a potential therapeutic target for HNSCCs.
Collapse
Affiliation(s)
- Meng Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China.,Both the authors contributed equally to this article
| | - Xiaomin Zhang
- Paediatric Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Jiangsu, China.,Both the authors contributed equally to this article
| | - Xu Ding
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
| | - Yang Zheng
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
| | - Hongming Du
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
| | - Huaiqi Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
| | - Huan Ji
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China
| | - Zeyu Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
| | - Pengfei Jiao
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
| | - Xiaomeng Song
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
| | - Yi Zhong
- Department of Oral Pathology, Institute of Stomatology, Nanjing Medical University, Jiangsu, China
| | - HeMing Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
| |
Collapse
|
30
|
Yang H, Xiong X, Li H. Development and Interpretation of a Genomic Instability Derived lncRNAs Based Risk Signature as a Predictor of Prognosis for Clear Cell Renal Cell Carcinoma Patients. Front Oncol 2021; 11:678253. [PMID: 34094983 PMCID: PMC8176022 DOI: 10.3389/fonc.2021.678253] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a kind of frequently diagnosed cancer, leading to high death rate in patients. Genomic instability (GI) is regarded as playing indispensable roles in tumorigenesis and impacting the prognosis of patients. The aberrant regulation of long non-coding RNAs (lncRNAs) is a main cause of GI. We combined the somatic mutation profiles and expression profiles to identify GI derived lncRNAs (GID-lncRNAs) in ccRCC and developed a GID-lncRNAs based risk signature for prognosis prediction and medication guidance. METHODS We decided cases with top 25% cumulative number of somatic mutations as genomically unstable (GU) group and last 25% as genomically stable (GS) group, and identified differentially expressed lncRNAs (GID-lncRNAs) between two groups. Then we developed the risk signature with all overall survival related GID-lncRNAs with least absolute shrinkage and selection operator (LASSO) Cox regression. The functions of the GID-lncRNAs were partly interpreted by enrichment analysis. We finally validated the effectiveness of the risk signature in prognosis prediction and medication guidance. RESULTS We developed a seven-lncRNAs (LINC00460, AL139351.1, AC156455.1, AL035446.1, LINC02471, AC022509.2, and LINC01606) risk signature and divided all samples into high-risk and low-risk groups. Patients in high-risk group were in more severe clinicopathologic status (higher tumor grade, pathological stage, T stage, and more metastasis) and were deemed to have less survival time and lower survival rate. The efficacy of prognosis prediction was validated by receiver operating characteristic analysis. Enrichment analysis revealed that the lncRNAs in the risk signature mainly participate in regulation of cell cycle, DNA replication, material metabolism, and other vital biological processes in the tumorigenesis of ccRCC. Moreover, the risk signature could help assess the possibility of response to precise treatments. CONCLUSION Our study combined the somatic mutation profiles and the expression profiles of ccRCC for the first time and developed a GID-lncRNAs based risk signature for prognosis predicting and therapeutic scheme deciding. We validated the efficacy of the risk signature and partly interpreted the roles of the seven lncRNAs composing the risk signature in ccRCC. Our study provides novel insights into the roles of genomic instability derived lncRNAs in ccRCC.
Collapse
Affiliation(s)
| | | | - Hua Li
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
31
|
Wu J, Sun S, Liao W, Chen E, Wang X, Song Y, Duan F, Deng W, Li S. LINC00460 promotes pancreatic cancer progression by sponging miR-491-5p. J Gene Med 2021; 23:e3333. [PMID: 33789360 DOI: 10.1002/jgm.3333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/21/2021] [Accepted: 03/21/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A growing body of studies have suggested that LINC00460 is instrumental in tumorigenesis and tumour progression. Nonetheless, the biological function and mechanisms of LINC00460 in pancreatic ductal adenocarcinoma (PDAC) remain vague. METHODS Analysis based on public databases and a quantitative reverse transcription-polymerase chain reaction were performed to screen for differentially expressed lncRNAs in PDAC and to detect LINC00460 expression in PDAC cell lines and clinical samples. The survival of patients in the up-regulated and down-regulated LINC00460 expression groups was compared by using the Kaplan-Meier method. In addition, the potential biological functions of LINC00460 in PDAC were explored by cell counting kit-8, colony formation, flow cytometry and transwell assays. Furthermore, bioinformatics analysis, luciferase reporter assays and rescue experiments were applied to demonstrate the mechanism by which LINC00460 could directly bind to and inhibit miR-491-5p. RESULTS LINC00460 is up-regulated in PDAC and correlates with adverse survival outcomes. The results of functional tests verified that LINC00460 knockdown inhibited both cell proliferation and cell migration. Additionally, knockdown led to G0/G1 cell cycle blockage and enhanced cell apoptosis. Mechanistic investigations revealed that LINC00460 directly binds to and attenuates the tumour suppressor miR-491-5p, thus accelerating PDAC progression. CONCLUSIONS This research showed that LINC00460 is overexpressed in PDAC and correlates with adverse clinical outcomes. Additionally, LINC00460 promotes the aggressiveness of PDAC by targeting miR-491-5p. Thus, LINC00460 may serve as diagnostic biomarker of PDAC and a new target for PDAC therapy.
Collapse
Affiliation(s)
- Jiali Wu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shuxin Sun
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wei Liao
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenhzen, China
| | - Enni Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiaonan Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yunda Song
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fangting Duan
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wuguo Deng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shengping Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
32
|
Zhuang Q, Jin Z, Zheng X, Jin T, Xiang L. Long non‑coding RNA LINC00460 serves as a potential biomarker and oncogene via regulation of the miR‑320b/PBX3 axis in acute myeloid leukemia. Mol Med Rep 2021; 23:435. [PMID: 33846790 PMCID: PMC8060808 DOI: 10.3892/mmr.2021.12074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/16/2020] [Indexed: 12/26/2022] Open
Abstract
Long non-coding RNA 00460 (LINC00460) has been reported to be involved in the tumorigenesis of various cancer types. However, the function of LINC00460 in acute myeloid leukemia (AML) remains elusive. Therefore, the present study aimed to investigate the role of LINC00460 in AML. The expression of LINC00460 in the serum of 80 diagnosed patients with AML and 67 healthy controls was measured via reverse transcription-quantitative polymerase chain reaction, and the results were compared with clinical features and patient outcomes. The expression of LINC00460 in 45 patients with cytogenetically normal-AML (CN-AML) was also assayed. Receiver operating characteristic (ROC) curves were generated to evaluate the sensitivity and specificity of serum LINC00460. In addition, the effects of LINC00460 on the viability, cell cycle distribution and apoptosis of AML cells were investigated. Bioinformatics tools were used to identify the possible mechanisms of how LINC00460 affects AML cells. It was found that the expression of LINC00460 was significantly upregulated in the serum of patients with AML and those with CN-AML. Higher expression of serum LINC00460 was positively associated with French-American-British classification and cytogenetics. Furthermore, ROC curve analyses demonstrated that serum LINC00460 could differentiate patients with AML from healthy individuals with an area under the curve of 0.8488 (95% CI, 0.7697–0.9279). The serum LINC00460 expression was also significantly decreased when the patients achieved complete remission. Kaplan-Meier analysis indicated that patients with high serum LINC00460 expression had a shorter overall survival time compared with the low serum LINC00460 expression group. Knockdown of LINC00460 inhibited viability, while inducing cell cycle arrest and apoptosis in AML cells. LINC00460 was also a decoy of microRNA (miR)-320b, which can further inhibit the expression of PBX homeobox 3 (PBX3). Collectively, the results suggested that LINC00460 may be applied as a potential diagnostic and prognostic biomarker for patients with AML. It was identified that LINC00460 may exert its effects, at least partly, via the miR-320b/PBX3 axis in AML.
Collapse
Affiliation(s)
- Qiang Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Zhenlin Jin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xiangkuo Zheng
- Department of Experimental Center, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Ting Jin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Lina Xiang
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
33
|
Cisneros-Villanueva M, Hidalgo-Pérez L, Cedro-Tanda A, Peña-Luna M, Mancera-Rodríguez MA, Hurtado-Cordova E, Rivera-Salgado I, Martínez-Aguirre A, Jiménez-Morales S, Alfaro-Ruiz LA, Arellano-Llamas R, Tenorio-Torres A, Domínguez-Reyes C, Villegas-Carlos F, Ríos-Romero M, Hidalgo-Miranda A. LINC00460 Is a Dual Biomarker That Acts as a Predictor for Increased Prognosis in Basal-Like Breast Cancer and Potentially Regulates Immunogenic and Differentiation-Related Genes. Front Oncol 2021; 11:628027. [PMID: 33912452 PMCID: PMC8074675 DOI: 10.3389/fonc.2021.628027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/10/2021] [Indexed: 12/23/2022] Open
Abstract
Breast cancer (BRCA) is a serious public health problem, as it is the most frequent malignant tumor in women worldwide. BRCA is a molecularly heterogeneous disease, particularly at gene expression (mRNAs) level. Recent evidence shows that coding RNAs represent only 34% of the total transcriptome in a human cell. The rest of the 66% of RNAs are non−coding, so we might be missing relevant biological, clinical or regulatory information. In this report, we identified two novel tumor types from TCGA with LINC00460 deregulation. We used survival analysis to demonstrate that LINC00460 expression is a marker for poor overall (OS), relapse-free (RFS) and distant metastasis-free survival (DMFS) in basal-like BRCA patients. LINC00460 expression is a potential marker for aggressive phenotypes in distinct tumors, including HPV-negative HNSC, stage IV KIRC, locally advanced lung cancer and basal-like BRCA. We show that the LINC00460 prognostic expression effect is tissue-specific, since its upregulation can predict poor OS in some tumors, but also predicts an improved clinical course in BRCA patients. We found that the LINC00460 expression is significantly enriched in the Basal-like 2 (BL2) TNBC subtype and potentially regulates the WNT differentiation pathway. LINC00460 can also modulate a plethora of immunogenic related genes in BRCA, such as SFRP5, FOSL1, IFNK, CSF2, DUSP7 and IL1A and interacts with miR-103-a-1, in-silico, which, in turn, can no longer target WNT7A. Finally, LINC00460:WNT7A ratio constitutes a composite marker for decreased OS and DMFS in Basal-like BRCA, and can predict anthracycline therapy response in ER-BRCA patients. This evidence confirms that LINC00460 is a master regulator in BRCA molecular circuits and influences clinical outcome.
Collapse
Affiliation(s)
- Mireya Cisneros-Villanueva
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México.,Laboratorio de Epigenética del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Mexico
| | - Lizbett Hidalgo-Pérez
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México.,Programa de Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Alberto Cedro-Tanda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México
| | - Mónica Peña-Luna
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México
| | | | - Eduardo Hurtado-Cordova
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México
| | - Irene Rivera-Salgado
- Departamento de Anatomía Patológica, Hospital Central Sur de Alta Especialidad, Petróleos Mexicanos, Ciudad de México, México
| | - Alejandro Martínez-Aguirre
- Departamento de Anatomía Patológica, Hospital Central Sur de Alta Especialidad, Petróleos Mexicanos, Ciudad de México, México
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México
| | - Luis Alberto Alfaro-Ruiz
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México
| | - Rocío Arellano-Llamas
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México
| | | | | | | | - Magdalena Ríos-Romero
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México.,Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México
| |
Collapse
|
34
|
Ghafouri-Fard S, Hussen BM, Gharebaghi A, Eghtedarian R, Taheri M. LncRNA signature in colorectal cancer. Pathol Res Pract 2021; 222:153432. [PMID: 33857856 DOI: 10.1016/j.prp.2021.153432] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is among the most frequent cancers and is associated with high mortality particularly when being diagnosed in advanced stages. Although several environmental and intrinsic risk factors have been identified, the underlying cause of CRC is not clear in the majority of cases. Several studies especially in the recent decade have pointed to the role of epigenetic factors in this kind of cancer. Long non-coding RNAs (lncRNAs) as important contributors in the epigenetic mechanisms are involved in the initiation, progression and metastasis of CRC. Tens of oncogenic lncRNAs and a lower number of tumor suppressor lncRNAs have been recently identified to be dysregulated in CRC cells and tissues. Notably, expressions of a number of these transcripts have been dysregulated in serum samples of CRC patients, providing a non-invasive route for detection of this kind of cancer. The involvement of lncRNAs in the regulation of autophagy has provided them the ability to modulate response of CRC cells to chemotherapeutic modalities. In the current manuscript, we review the studies which evaluated the role of lncRNAs in the pathogenesis and progression of CRC to appraise their application as diagnostic/ prognostic markers.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Alireza Gharebaghi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reyhane Eghtedarian
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Wang Q, Yang W, Peng W, Qian X, Zhang M, Wang T. Integrative Analysis of DNA Methylation Data and Transcriptome Data Identified a DNA Methylation-Dysregulated Four-LncRNA Signature for Predicting Prognosis in Head and Neck Squamous Cell Carcinoma. Front Cell Dev Biol 2021; 9:666349. [PMID: 33869232 PMCID: PMC8047109 DOI: 10.3389/fcell.2021.666349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/15/2021] [Indexed: 11/18/2022] Open
Abstract
Increasing evidence has demonstrated the crosstalk between DNA epigenetic alterations and aberrant expression of long non-coding RNAs (lncRNAs) during carcinogenesis. However, epigenetically dysregulated lncRNAs and their functional and clinical roles in Head and Neck Squamous Cell Carcinoma (HNSCC) are still not explored. In this study, we performed an integrative analysis of DNA methylation data and transcriptome data and identified a DNA methylation-dysregulated four-lncRNA signature (DNAMeFourLncSig) from 596 DNA methylation-dysregulated lncRNAs using a machine-learning-based feature selection method, which classified the patients of the discovery cohort into two risk groups with significantly different survival including overall survival, disease-specific survival, and progression-free survival. Then the DNAMeFourLncSig was implemented to another two HNSCC patient cohorts and showed similar prognostic values in both. Results from multivariable Cox regression analysis revealed that the DNAMeFourLncSig might be an independent prognostic factor. Furthermore, the DNAMeFourLncSig was substantially correlated with the complete response rate of chemotherapy and may predict chemotherapy response. Functional in silico analysis found that DNAMeFourLncSig-related mRNAs were mainly enriched in cell differentiation, tissue development and immune-related pathways. Overall, our study will improve our understanding of underlying transcriptional and epigenetic mechanisms in HNSCC carcinogenesis and provided a new potential biomarker for the prognosis of patients with HNSCC.
Collapse
Affiliation(s)
- Qiuxu Wang
- Department of Stomatology, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Stomatology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Weiwei Yang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Wei Peng
- Department of Stomatology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xuemei Qian
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Minghui Zhang
- Department of Oncology, Chifeng City Hospital, Chifeng, China
| | - Tianzhen Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| |
Collapse
|
36
|
Overexpression of circ_CELSR1 facilitates paclitaxel resistance of ovarian cancer by regulating miR-149-5p/SIK2 axis. Anticancer Drugs 2021; 32:496-507. [PMID: 33735118 DOI: 10.1097/cad.0000000000001058] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Circular RNAs (circRNAs) have emerged as vital regulators in the chemoresistance of diverse human tumors, including ovarian cancer. In the present study, we attempted to explore the function of circ_CELSR1 in paclitaxel resistance of ovarian cancer. Quantitative real-time PCR (qRT-PCR) was conducted for the expression of circ_CELSR1, miR-149-5p and salt inducible kinase 2 (SIK2). Cell Counting Kit-8 (CCK-8) assay was performed to evaluate the half-maximal inhibitory concentration (IC50) of paclitaxel and cell viability. Colony formation assay was adopted for cell colony formation. Flow cytometry analysis was conducted to analyze cell cycle process and apoptosis. Western blot assay was utilized to determine the protein levels. RNA immunoprecipitation (RIP) and dual-luciferase reporter assays were conducted to verify the association between miR-149-5p and circ_CELSR1 or SIK2. Murine xenograft model assay was carried out to determine the effect of circ_CELSR1 in paclitaxel resistance in vivo. Circ_CELSR1 was upregulated in paclitaxel-resistant ovarian cancer tissues and cells. Circ_CELSR1 knockdown enhanced paclitaxel sensitivity and cell apoptosis and repressed cell viability, colony formation and cell cycle process in paclitaxel-resistant ovarian cancer cells. For mechanism analysis, circ_CELSR1 could positively modulate SIK2 expression via sponging miR-149-5p. MiR-149-5p inhibition effectively restored the impacts of circ_CELSR1 knockdown on paclitaxel resistance and cell progression in paclitaxel-resistant ovarian cancer cells. MiR-149-5p overexpression suppressed paclitaxel resistance and cell progression in paclitaxel-resistant ovarian cancer cells by interacting with SIK2. In addition, circ_CELSR1 silencing impeded paclitaxel resistance of ovarian cancer in vivo. Circ_CELSR1 improved the resistance of ovarian cancer to paclitaxel by regulating miR-149-5p/SIK2 axis.
Collapse
|
37
|
Jiang W, Li T, Guo J, Wang J, Jia L, Shi X, Yang T, Jiao R, Wei X, Feng Z, Tang Q, Ji G. Bispecific c-Met/PD-L1 CAR-T Cells Have Enhanced Therapeutic Effects on Hepatocellular Carcinoma. Front Oncol 2021; 11:546586. [PMID: 33777728 PMCID: PMC7987916 DOI: 10.3389/fonc.2021.546586] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
T cells expressing chimeric antigen receptors, especially CD19 CAR-T cells have exhibited effective antitumor activities in B cell malignancies, but due to several factors such as antigen escape effects and tumor microenvironment, their curative potential in hepatocellular carcinoma has not been encouraging. To reduce the antigen escape risk of hepatocellular carcinoma, this study was to design and construct a bispecific CAR targeting c-Met and PD-L1. c-Met/PD-L1 CAR-T cells were obtained by lentiviral transfection, and the transfection efficiency was monitored by flow cytometry analysis. LDH release assays were used to elucidate the efficacy of c-Met/PD-L1 CAR-T cells on hepatocellular carcinoma cells. In addition, xenograft models bearing human hepatocellular carcinoma were constructed to detect the antitumor effect of c-Met/PD-L1 CAR-T cells in vivo. The results shown that this bispecific CAR was manufactured successfully, T cells modified with this bispecific CAR demonstrated improved antitumor activities against c-Met and PD-L1 positive hepatocellular carcinoma cells when compared with those of monovalent c-Met CAR-T cells or PD-L1 CAR-T cells but shown no distinct cytotoxicity on hepatocytes in vitro. In vivo experiments shown that c-Met/PD-L1 CAR-T cells significantly inhibited tumor growth and improve survival persistence compared with other groups. These results suggested that the design of single-chain, bi-specific c-Met/PD-L1 CAR-T is more effective than that of monovalent c-Met CAR-T for the treatment of hepatocellular carcinoma., and this bi-specific c-Met/PD-L1 CAR is rational and implementable with current T-cell engineering technology.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tao Li
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jiaojiao Guo
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China.,Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Jingjing Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Lizhou Jia
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China.,Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Xiao Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tingting Yang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China.,Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Ruonan Jiao
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Wei
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zhenqing Feng
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China.,Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Qi Tang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China.,Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Guozhong Ji
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
38
|
Liao Z, Nie H, Wang Y, Luo J, Zhou J, Ou C. The Emerging Landscape of Long Non-Coding RNAs in Colorectal Cancer Metastasis. Front Oncol 2021; 11:641343. [PMID: 33718238 PMCID: PMC7947863 DOI: 10.3389/fonc.2021.641343] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal cancers, with extremely high rates of morbidity and mortality. The main cause of death in CRC is distant metastasis; it affects patient prognosis and survival and is one of the key challenges in the treatment of CRC. Long non-coding RNAs (lncRNAs) are a group of non-coding RNA molecules with more than 200 nucleotides. Abnormal lncRNA expression is closely related to the occurrence and progression of several diseases, including cancer. Recent studies have shown that numerous lncRNAs play pivotal roles in the CRC metastasis, and reversing the expression of these lncRNAs through artificial means can reduce the malignant phenotype of metastatic CRC to some extent. This review summarizes the major mechanisms of lncRNAs in CRC metastasis and proposes lncRNAs as potential therapeutic targets for CRC and molecular markers for early diagnosis.
Collapse
Affiliation(s)
- Zhiming Liao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yutong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingjing Luo
- Teaching and Research Room of Biochemistry and Molecular Biology, Medical School of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
39
|
Song P, Yang F, Jin H, Wang X. The regulation of protein translation and its implications for cancer. Signal Transduct Target Ther 2021; 6:68. [PMID: 33597534 PMCID: PMC7889628 DOI: 10.1038/s41392-020-00444-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/30/2020] [Accepted: 12/06/2020] [Indexed: 02/08/2023] Open
Abstract
In addition to the deregulation of gene transcriptions and post-translational protein modifications, the aberrant translation from mRNAs to proteins plays an important role in the pathogenesis of various cancers. Targeting mRNA translation are expected to become potential approaches for anticancer treatments. Protein translation is affected by many factors including translation initiation factors and RNA-binding proteins. Recently, modifications of mRNAs mainly N6-methyladenine (m6A) modification and noncoding RNAs, such as microRNAs and long noncoding RNAs are involved. In this review, we generally summarized the recent advances on the regulation of protein translation by the interplay between mRNA modifications and ncRNAs. By doing so, we hope this review could offer some hints for the development of novel approaches in precision therapy of human cancers.
Collapse
Affiliation(s)
- Ping Song
- grid.13402.340000 0004 1759 700XDepartment of Medical Oncology, Cancer Institute of Zhejiang University, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Fan Yang
- grid.13402.340000 0004 1759 700XDepartment of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Hongchuan Jin
- grid.13402.340000 0004 1759 700XKey Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Xian Wang
- grid.13402.340000 0004 1759 700XDepartment of Medical Oncology, Cancer Institute of Zhejiang University, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| |
Collapse
|
40
|
Cheng J, Lou Y, Jiang K. Downregulation of long non-coding RNA LINC00460 inhibits the proliferation, migration and invasion, and promotes apoptosis of pancreatic cancer cells via modulation of the miR-320b/ARF1 axis. Bioengineered 2020; 12:96-107. [PMID: 33345740 PMCID: PMC8806231 DOI: 10.1080/21655979.2020.1863035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) ranks among the most lethal cancers worldwide with high mortality. A marked increase in the level of long non-coding RNA LINC00460 was reported in PAAD patients, in comparison with the healthy controls. However, the underlying mechanisms of the above phenomenon are not yet well understood. Hence, the present study was designed to investigate the molecular mechanism underlying the role of LINC00460 in proliferation, migration and invasion of pancreatic cancer (PC) cells. It was found in our study that LINC00460 knockdown inhibited SW1990 cell proliferation, migration and invasion and promoted its apoptosis. Moreover, miR-320b was targeted straight and its expression was downregulated by LINC00460, whose knockdown led to a reduction in ARF1 expression. Interestingly, miR-320b downregulation partly reversed the effect of LINC00460 knockdown on the proliferation, migration, invasion and apoptosis of SW1990 cells, as well as ARF1expression. In conclusion, LINC00460 knockdown inhibited the proliferation, migration and invasion, and promotes the apoptosis of SW1990 cells via modulation of the miR-320b/ARF1 axis. Thus, LINC00460 can be perceived as a promising target in the treatment of PAAD.
Collapse
Affiliation(s)
- Jian Cheng
- Department of Hepatobiliary, Pancreatic and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou City, Zhejiang Province, PR China
| | - Yanghui Lou
- Department of Anesthesiology, Yiwu Maternity and Children Hospital , Yiwu City, Zhejiang Province, PR China
| | - Kai Jiang
- Department of Hepatobiliary, Pancreatic and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou City, Zhejiang Province, PR China
| |
Collapse
|
41
|
Wang Y, Zhang B, Gao G, Zhang Y, Xia Q. Long Non-Coding RNA LINC00355 Promotes the Development and Progression of Colorectal Cancer by Elevating Guanine Nucleotide Exchange Factor T Expression via RNA Binding Protein lin-28 Homolog A. Front Oncol 2020; 10:582669. [PMID: 33381451 PMCID: PMC7769380 DOI: 10.3389/fonc.2020.582669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022] Open
Abstract
Background Our previous study showed that guanine nucleotide exchange factor T (GEFT) was highly expressed in colorectal cancer (CRC) tissues and CRC patients with high GEFT expression had a poor prognosis, and suggested the close link of GEFT expression and CRC tumorigenesis/metastasis. In this text, the roles and upstream regulatory mechanisms of GEFT in the development and progression of CRC were further investigated. Methods Expression levels of GEFT mRNA and LINC00355 was measured by RT-qPCR assay. Protein levels of lin-28 homologue A (LIN28A) and GEFT were determined by western blot assay. Cell proliferative, migratory, and invasive capacities were assessed by CCK-8, Transwell migration and invasion assays, respectively. The effect of GEFT knockdown on CRC tumorigenesis was examined by mouse xenograft experiments in vivo. GEFT mRNA stability was examined by actinomycin D assay. The relationships of LINC000355, LIN28A, and GEFT were explored by RNA pull down and RIP assays. Results GEFT was highly expressed in CRC tissues and cell lines. GEFT knockdown inhibited CRC cell proliferation, migration, and invasion, and hindered CRC xenograft tumor growth. GEFT overexpression alleviated the detrimental effects of LINC00355 loss on CRC cell proliferation, migration, and invasion. LINC00355 promoted GEFT expression and enhanced GEFT mRNA stability via LIN28A. LIN28A knockdown weakened the promotive effect of LINC00355 on CRC cell proliferation, migration, and invasion. Conclusion LINC00355 facilitated CRC tumorigenesis and progression by increasing GEFT expression via LIN28A, deepening our understanding on roles and upstream regulatory mechanisms of GEFT in CRC development and progression.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Bing Zhang
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Ge Gao
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yinping Zhang
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Qingxin Xia
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
42
|
Wang N, Zhou P, Chen Y, Qu H, Lu K, Xia J. MicroRNA-149: A review of its role in digestive system cancers. Pathol Res Pract 2020; 216:153266. [PMID: 33197838 DOI: 10.1016/j.prp.2020.153266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/18/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a group of highly conserved, short (18-25 nucleotide long) non-coding RNAs which play important functional roles in cellular differentiation, biological development, pathogenesis and disease susceptibility and have been linked to both tumorigenesis and the malignant progression of various cancers. miRNAs primarily exert their function through the negative regulation of their target gene's transcription via the specific recognition of their 3' untranslated region. A single miRNA can regulate multiple target genes and most miRNAs are controlled by several factors. Recent studies have shown that microRNA-149 (miR-149) plays a pivotal role in the pathogenesis of digestive system cancers and may act as a potential diagnostic marker and therapeutic target. In this review, we summarize and discuss the most recent reports describing miR-149 in digestive system cancers, including its single nucleotide polymorphisms, expression levels, target genes, drug sensitivity and clinical significance.
Collapse
Affiliation(s)
- Ning Wang
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China
| | - Peng Zhou
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China
| | - Yigang Chen
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China
| | - Huiheng Qu
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China
| | - Keyu Lu
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China
| | - Jiazeng Xia
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China.
| |
Collapse
|
43
|
Li F, Zhu W, Wang Z. Long noncoding RNA LINC00460 promotes the progression of cervical cancer via regulation of the miR-361-3p/Gli1 axis. Hum Cell 2020; 34:229-237. [PMID: 33063235 DOI: 10.1007/s13577-020-00447-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/02/2020] [Indexed: 12/30/2022]
Abstract
Mounting evidence indicates that the long non-coding RNA (lncRNA) LINC00460 plays an oncogenic role in tumor progression; however, the role of LINC00460 in cervical cancer (CC) remains unknown. In this study, we found that LINC00460 was frequently upregulated in CC tissues and cell lines. Knockdown of LINC00460 repressed CC cell growth and invasion in vitro and attenuated tumorigenesis in vivo. Mechanistically, miR-361-3p was predicted as a direct target of LINC00460 by bioinformatics analysis, which was further confirmed by qRT-PCR, dual-luciferase reporter assays, and rescue experiments. Furthermore, miR-361-3p targeted the 3' untranslated region (UTR) of Gli1 mRNA and repressed its expression. Taken together, our study revealed that LINC00460 functions as an oncogenic lncRNA in CC, indicating the likely participation of the LINC00460/miR-361-3p/Gli1 pathway in the disease. Accordingly, our results provide new insight into CC tumorigenesis.
Collapse
Affiliation(s)
- Fan Li
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu District, Suzhou, 215000, China
- Department of Gynaecology and Obestetrics, Shanghai the Eighth People's Hospital, No.8 Caobao Road, Xuhui District, Shanghai, 200235, China
| | - Weipei Zhu
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu District, Suzhou, 215000, China.
| | - Zhijie Wang
- Department of Gynaecology and Obestetrics, Shanghai the Eighth People's Hospital, No.8 Caobao Road, Xuhui District, Shanghai, 200235, China.
| |
Collapse
|
44
|
LINC00460-miR-149-5p/miR-150-5p-Mutant p53 Feedback Loop Promotes Oxaliplatin Resistance in Colorectal Cancer. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 22:1004-1015. [PMID: 33251049 PMCID: PMC7679243 DOI: 10.1016/j.omtn.2020.10.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023]
Abstract
Oxaliplatin resistance is a major challenge in the clinical treatment for advanced colorectal cancer (CRC). Long non-coding RNAs (lncRNAs) are involved in tumorigenesis and progression as critical regulators, while their potential roles in chemoresistance are poorly understood. In this study, we report that the LINC00460-miR-149-5p/miR-150-5p-mutant p53 feedback loop is responsible for oxaliplatin resistance in CRC. First, LINC00460 was found to exhibit higher expression in oxaliplatin-resistant CRC (CRC/OxR) cells compared with parental oxaliplatin-sensitive ones, and this expression pattern depends on mutant p53 (SW480/OxR), not wild-type p53 (HCT116/OxR). Oxaliplatin-induced LINC00460 in SW480/OxR cells was mainly located in the cytoplasm and was associated with AGO2 protein. LINC00460 functions as a competing endogenous RNA (ceRNA) to promote oxaliplatin resistance through sequestering miR-149-5p/miR-150-5p and upregulating the expression of the microRNA (miRNA) target p53. Knockdown of LINC00460 sensitized SW480/OxR cells to oxaliplatin by modulating p53 in vitro and in vivo. In turn, mutant p53 positively regulated the expression of LINC00460, thus forming a feedback loop. Clinical data showed that LINC00460 was upregulated in CRC tissues compared with paired normal tissues and was significantly correlated with clinical stage and node (N) status. Our findings uncover a mechanism for the LINC00460-miR-149-5p/miR-150-5p-mutant p53 feedback loop in oxaliplatin resistance of CRC, and they provide potential therapeutic targets for tumor chemoresistance.
Collapse
|
45
|
Lin L, Xin B, Jiang T, Wang XL, Yang H, Shi TM. Long non-coding RNA LINC00460 promotes proliferation and inhibits apoptosis of cervical cancer cells by targeting microRNA-503-5p. Mol Cell Biochem 2020; 475:1-13. [PMID: 32740791 DOI: 10.1007/s11010-020-03853-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022]
Abstract
Long non-coding RNAs are associated with the pathogenesis of cancers. Moreover, LINC00460 is involved in the development of multiple cancers. However, the function of LINC00460 in cervical cancer (CC) remains inconclusive. Herein, CC tissues and tumor-adjacent tissues were collected from patients. The effect of LINC00460 silencing in cell proliferation and apoptosis in CC was explored in vitro and in vivo. Additionally, the interaction between LINC00460 and miR-503-5p was analyzed using dual luciferase reporter assay. The expression of genes and proteins was assayed using quantitative real-time PCR, western blotting and immunohistochemistry, cell viability using MTT assay, cell cycle distribution using flow cytometry, cell apoptosis using Annexin V staining, Hoechst staining and TUNEL assay. LINC00460 levels in CC tissues were higher than tumor-adjacent tissues. LINC00460 silencing suppressed proliferation and promoted apoptosis of CC cells as evidenced by decreased cell viability, inhibited proliferation-related protein and cell cycle protein expressions and G1/S transition, increased apoptotic cells and Hoechst-positive cells, and enhanced apoptosis-related protein expressions. LINC00460 could bind to miR-503-5p and LINC00460 silencing enhanced miR-503-5p expression and inhibited its target gene expressions in CC cells. MiR-503-5p inhibition reversed LINC00460 silencing-caused inhibition of cell proliferation and miR-503-5p target gene expressions, and promotion of cell apoptosis. LINC00460 silencing also attenuated tumor growth, promoted miR-503-5p levels and cell apoptosis, and inhibited cell proliferation and miR-503-5p target gene expressions in tumor tissues. Hence, LINC00460 functioned as an oncogene in CC that affected cell proliferation and apoptosis via sponging miR-503-5p. This study provides a novel therapeutic target for CC.
Collapse
Affiliation(s)
- Lin Lin
- Department of Ultrasound, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, Liaoning, People's Republic of China
| | - Bing Xin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Tao Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xin-Lu Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, Liaoning, People's Republic of China
| | - Hua Yang
- Department of Ultrasound, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, Liaoning, People's Republic of China
| | - Tie-Mei Shi
- Department of Ultrasound, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, Liaoning, People's Republic of China.
| |
Collapse
|
46
|
Long intergenic non-protein-coding RNA 01446 facilitates the proliferation and metastasis of gastric cancer cells through interacting with the histone lysine-specific demethylase LSD1. Cell Death Dis 2020; 11:522. [PMID: 32651355 PMCID: PMC7351757 DOI: 10.1038/s41419-020-2729-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023]
Abstract
Growing evidences illustrated that long non-coding RNAs (lncRNAs) exhibited widespread effects on the progression of human cancers via various mechanisms. Long intergenic non-protein-coding RNA 01446 (LINC01446), a 3484-bp ncRNA, is known to locate at chromosome 7p12.1. However, its biological functions and specific action mechanism in gastric cancer (GC) are still unclear. In our study, LINC01446 was proved to be markedly upregulated in GC tissues relative to the normal tissues, and positively correlated with the poor survival of GC patients. The multivariate Cox regression model showed that LINC01446 functioned as an independent prognostic factor for the survival of GC patients. Functionally, LINC01446 facilitated the proliferation and metastasis of GC cells. Moreover, RNA-seq analysis demonstrated that LINC01446 knockdown primarily regulated the genes relating to the growth and migration of GC. Mechanistically, LINC01446 could widely interact with histone lysine-specific demethylase LSD1 and recruit LSD1 to the Ras-related dexamethasone-induced 1 (RASD1) promoter, thereby suppressing RASD1 transcription. Overall, these findings suggest that LINC01446/LSD1/RASD1 regulatory axis may provide bona fide targets for anti-GC therapies.
Collapse
|
47
|
miRNAs-Based Molecular Signature for KRAS Mutated and Wild Type Colorectal Cancer: An Explorative Study. J Immunol Res 2020; 2020:4927120. [PMID: 32676506 PMCID: PMC7330647 DOI: 10.1155/2020/4927120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
microRNAs (miRNAs) have been proposed as promising molecular biomarkers for diagnosis, prognosis, and responsive therapeutic targets in different types of cancer, including colorectal cancer (CRC). In this study, we evaluated the expression levels of 84 cancer-associated miRNAs in a cohort of 39 human samples comprising 13 peritumoral and 26 tumoral tissues from surgical specimens of CRC patients. KRAS mutations were detected in 11 tumoral samples. In a first analysis, we found 5 miRNAs (miR-215-5p, miR-9-5p, miR-138-5p, miR378a-3p, and miR-150-5p) that were significantly downregulated and one upregulated (miR-135b-5p) in tumoral tissues compared with the peritumoral tissues. Furthermore, by comparing miRNA profile between KRAS mutated CRC tissues respect to wild type CRC tissues, we found 7 miRNA (miR-27b-3p, miR-191-5p, miR-let7d-5p, miR-15b-5p, miR-98-5p, miR-10a-5p, and miR-149-5p) downregulated in KRAS mutated condition. In conclusion, we have identified a panel of miRNAs that specifically distinguish CRC tissues from peritumoral tissue and a different set of miRNAs specific for CRC with KRAS mutations. These findings may contribute to the discovering of new molecular biomarkers with clinic relevance and might shed light on novel molecular aspects of CRC.
Collapse
|
48
|
Comprehensive analysis of competitive endogenous RNAs network reveals potential prognostic lncRNAs in gastric cancer. Heliyon 2020; 6:e03978. [PMID: 32455175 PMCID: PMC7235626 DOI: 10.1016/j.heliyon.2020.e03978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/13/2020] [Accepted: 05/11/2020] [Indexed: 01/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are key regulators of a range of human diseases, including various cancers, with multiple previous studies having explored lncRNA dysregulation in the context of gastric cancer (GC). The present study sought to expand upon these previous results by downloading lncRNA, mRNA, and microRNA (miRNA) expression profiles derived from 180 GC tissues and 24 normal control tissues within the Cancer Genome Atlas (TCGA) database. These datasets were then interrogated to identify GC-related differentially expressed (DE) RNAs (|fold change| ≥ 2, FDR< 0.01), leading to the identification of 1946 DE lncRNAs, 123 DE miRNAs, and 3159 DE mRNAs. These results were then used to generate a putative GC-related competitive endogenous RNA (ceRNA) network composed of 131 lncRNAs, 9 miRNAs, and 78 mRNAs. Subsequent survival analyses based upon this network revealed 17 of these lncRNAs to be significantly associated with GC patient survival (P < 0.05). Further multivariable Cox regression and lasso analyses allowed for the construction of an 8-lncRNA risk score that was able to effectively predict GC patient survival with good discriminative ability. The Kaplan-Meier Plotter database further confirmed that network hub genes that were related to these 8 lncRNAs were associated with GC patient prognosis (P < 0.05). As the ceRNA network in the present study was constructed with a focus on both disease stage and differential gene expression, it represents a key resource that will offer valuable insights into the mechanistic roles of ceRNA pathways in GC development and progression.
Collapse
|
49
|
Zhang J, Ding L, Sun G, Ning H, Huang R. Suppression of LINC00460 mediated the sensitization of HCT116 cells to ionizing radiation by inhibiting epithelial-mesenchymal transition. Toxicol Res (Camb) 2020; 9:107-116. [PMID: 32440342 DOI: 10.1093/toxres/tfaa010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022] Open
Abstract
Radiation resistance is the most common challenge for improving radiotherapy. The mechanisms underlying the development of radioresistance remain poorly understood. This study aims to explore the role of LINC00460 in ionizing radiation-induced radioresistance as well as the mechanisms by which LINC00460 is regulated by radiation exposure. The expression of LINC00460 was measured. Cell proliferation and colony formation were measured in HCT116 cells after treatment by radiation. The development of epithelial-mesenchymal transition (EMT) was determined with or without knockdown LINC00460 expression using western blot analysis. Transcription activity was determined using a series of LINC00460-promoter luciferase reporter gene vectors. LINC00460 expression was significantly higher in HCT116 cells, relative to other cell types, with LINC00460 expression significantly affecting HCT116 cell proliferation. Suppression of LINC00460 inhibits EMT development in HCT116 cells via regulation of ZEB1 expression. Furthermore, LINC00460 expression was induced by irradiation via the activation of c-jun transcription factor-binding element located on the LINC00460 promoter. LINC00460 was shown to play a crucial role in EMT-associated progression of colorectal cancer, indicating that LINC00460 may be an indicator or new potential therapeutic target for colorectal cancer radiosensitization.
Collapse
Affiliation(s)
- Jiani Zhang
- Gerontology Department of Xiangya Hospital, Central South University, Changsha, Xiangya road 238, Hunan Province 410078, P. R. China
| | - Lixin Ding
- Department of Radiology, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Taiping road 27, Beijing, 100088, P. R. China
| | - Gaofeng Sun
- Department of Chronic and Non-communicable Diseases Control, City Center for Disease Control and Prevention, Jingyi Road 58, Urumqi, 830026, P. R. China
| | - Huacheng Ning
- Department of Occupational and Environmental Health, Xiangya School of Public Heath, Central South University, Xiangya Road 238, Changsha, Hunan Province 410078, P. R. China
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Heath, Central South University, Xiangya Road 238, Changsha, Hunan Province 410078, P. R. China
| |
Collapse
|
50
|
Huang X, Cai W, Yuan W, Peng S. Identification of key lncRNAs as prognostic prediction models for colorectal cancer based on LASSO. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:675-684. [PMID: 32355515 PMCID: PMC7191144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies, with varying prognoses and a high mortality. There is an urgent need to establish a new prediction model to predict the survival risk of CRC patients. The long non-coding RNAs (lncRNAs) expression profiles and corresponding clinical information of CRC patients were obtained from The Cancer Genome Atlas, TCGA. We identified a total of 1,176 lncRNAs differentially expressed between 480 CRC and 41 normal tissues. In the training test, we combined these differentially expressed lncRNAs with overall survival of CRC patients. Six lncRNAs (AL356270.1, LINC02257, AC020891.2, LINC01485, AC083967.1 and RBAKDN) were finally screened out by using LASSO regression mode to establish a novel prediction model as a prognostic indicator for CRC patients. The area under the curve (AUC) of 3- and 5-year ROC analysis in CRC were 0.6923 and 0.7328 for training set, and were 0.6803 and 0.7035 for testing set, respectively. K-M analysis revealed a significant difference between high risk and low risk in the training set (P-value = 5.0e-05) and testing set (P-value = 0.00052), respectively. Our study shows that the six lncRNAs model can improve the survival prediction mechanism of patients with CRC and provide help for patients through personalized treatment.
Collapse
Affiliation(s)
- Xiao Huang
- School of Big Data and Artificial Intelligence, Chizhou UniversityAnhui, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of EducationShanghai, China
| | - Wei Cai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of EducationShanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and TechnologyShanghai, China
| | - Wenliang Yuan
- College of Mathematics and Information Engineering, Jiaxing UniversityZhejiang, China
- School of Optical-Electric and Computer Engineering, University of Shanghai for Science and TechnologyShanghai, China
| | - Sihua Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of EducationShanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and TechnologyShanghai, China
| |
Collapse
|