1
|
Ahmed T. Lipid nanoparticle mediated small interfering RNA delivery as a potential therapy for Alzheimer's disease. Eur J Neurosci 2024; 59:2915-2954. [PMID: 38622050 DOI: 10.1111/ejn.16336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 04/17/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that exhibits a gradual decline in cognitive function and is prevalent among a significant number of individuals globally. The use of small interfering RNA (siRNA) molecules in RNA interference (RNAi) presents a promising therapeutic strategy for AD. Lipid nanoparticles (LNPs) have been developed as a delivery vehicle for siRNA, which can selectively suppress target genes, by enhancing cellular uptake and safeguarding siRNA from degradation. Numerous research studies have exhibited the effectiveness of LNP-mediated siRNA delivery in reducing amyloid beta (Aβ) levels and enhancing cognitive function in animal models of AD. The feasibility of employing LNP-mediated siRNA delivery as a therapeutic approach for AD is emphasized by the encouraging outcomes reported in clinical studies for other medical conditions. The use of LNP-mediated siRNA delivery has emerged as a promising strategy to slow down or even reverse the progression of AD by targeting the synthesis of tau phosphorylation and other genes linked to the condition. Improvement of the delivery mechanism and determination of the most suitable siRNA targets are crucial for the efficacious management of AD. This review focuses on the delivery of siRNA through LNPs as a promising therapeutic strategy for AD, based on the available literature.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
2
|
Zhang HR, Ren XH, Wang DW, He XW, Li WY, Zhang YK. Bimetal MOFs catalyzed Fenton-like reaction for dual-mode detection of thiamphenicol. Talanta 2023; 259:124506. [PMID: 37027934 DOI: 10.1016/j.talanta.2023.124506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
In this work, we used a simple ultrasonic stripping method to synthesize a bimetal MOFs at room temperature as a nanoenzyme with peroxidase-like (POD-like) activity. Through bimetal MOFs catalytic Fenton-like competitive reaction, thiamphenicol can be quantitatively dual-mode detected by fluorescence and colorimetry. It realized the sensitive detection of thiamphenicol in water, and the limits of detection (LOD) were 0.030 nM and 0.031 nM, and the liner ranges were 0.1-150 nM and 0.1-100 nM, respectively. The methods were applied to river water, lake water and tap water samples, and with satisfactory recoveries between 97.67% and 105.54%.
Collapse
|
3
|
Jacob MM, Santhosh A, Rajeev A, Joy R, John PM, John F, George J. Current Status of Natural Products/siRNA Co‐Delivery for Cancer Therapy. ChemistrySelect 2022. [DOI: 10.1002/slct.202203476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Megha Mariya Jacob
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Amritha Santhosh
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Anjaly Rajeev
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Reshma Joy
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Pooja Mary John
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Franklin John
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Jinu George
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| |
Collapse
|
4
|
Gandham SK, Attarwala HZ, Amiji MM. Mathematical Modeling and Experimental Validation of Extracellular Vesicle-Mediated Tumor Suppressor MicroRNA Delivery and Propagation in Ovarian Cancer Cells. Mol Pharm 2022; 19:4067-4079. [PMID: 36226722 DOI: 10.1021/acs.molpharmaceut.2c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extracellular vesicle (EV)-mediated microRNA transfer and propagation from the donor cell to the recipient cell in the tumor microenvironment have significant implications, including the development of multidrug resistance (MDR). Although miRNA-encapsulated EV have been shown to have functional effects on recipient cells, the quantitative aspects of transfer kinetics and functional effects remain poorly understood. Intracellular events such as degradation of miRNA, loading of miRNA into EVs, cellular release of EVs, and their uptake by recipient cells govern the transfer and functional effect of encapsulated miRNA. Based on these rate-limiting steps, we developed a mathematical model using ordinary differential equations (model 1). We performed coculture experiments using ID8-VEGF ovarian cancer cells to demonstrate EV-mediated propagation of tumor suppressor miRNA Let7b administered with hyaluronic acid-poly(ethyleneimine) (HA-PEI) nanoparticles. Using the experimental data and model fitting, we determined the rate constants for the kinetic events involved in the transfer from the donor cells to the recipient cells. In model 2, we performed Let7b transfection experiments in ID8-VEGF cells with HA-PEI nanoparticles to determine the concentration-effect relationship on HMGA2 mRNA levels. Lastly, in model 3, we combined model 1 and model 2 parameters to describe the kinetics and effect relationship of EV-Let7b in recipient cells to predict the minimum number of miRNA copies needed to show functional effects.
Collapse
Affiliation(s)
- Srujan K Gandham
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Husain Z Attarwala
- Moderna Therapeutics, Inc., Cambridge, Massachusetts 02139, United State
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States.,Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, Massachusetts 02115, United State
| |
Collapse
|
5
|
Pharmacokinetic and Pharmacodynamic Modeling of siRNA Therapeutics - a Minireview. Pharm Res 2022; 39:1749-1759. [PMID: 35819583 DOI: 10.1007/s11095-022-03333-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022]
Abstract
The approval of four small interfering RNA (siRNA) products in the past few years has demonstrated unequivocally the therapeutic potential of this novel modality. Three such products (givosiran, lumasiran and inclisiran) are liver-targeted, using tris N-acetylgalactosamine (GalNAc)3 as the targeting ligand. Upon subcutaneous administration, GalNAc-conjugated siRNAs rapidly distribute into the liver via asialoglycoprotein receptor (ASGPR) mediated uptake in the hepatocytes, resulting in fast elimination from the systemic circulation. Patisiran, on the other hand, has been formulated in a lipid nanoparticle for optimal delivery to the liver. While several publications have described preclinical and clinical pharmacokinetic (PK) and pharmacodynamic (PD) results, including absorption, distribution, metabolism, and elimination (ADME) profiles in selected species as well as limited modeling efforts for siRNA therapeutics, there is no systematic review of the PK and PD models developed for these agents or work summarizing the utility and application(s) of such models in drug development and regulatory review. Here, we provide a mini-review of the current state of modeling efforts for siRNA therapeutics within the early preclinical, translational, and clinical stages of siRNA development. Diverse modeling methods including simple compartmental, mechanistic and systems PK/PD, physiologically-based PK (PBPK), population PK/PD, and dose-response-time models are introduced and reviewed. The utility of such models in development and regulatory review for siRNA therapeutics is also discussed with examples. Finally, the current knowledge gaps in mechanism of action of siRNA and resulting challenges in model development are summarized. The goal of this minireview is to trigger cross-functional discussion amongst all key stakeholders to generate key experimental datasets and align on current assumptions, model structures, and approaches to facilitate development and application of robust PK/PD models for siRNA therapeutics.
Collapse
|
6
|
Rajeev A, Siby A, Koottungal MJ, George J, John F. Knocking Down Barriers: Advances in siRNA Delivery. ChemistrySelect 2021. [DOI: 10.1002/slct.202103288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anjaly Rajeev
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Aiswarya Siby
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Merin James Koottungal
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Jinu George
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Franklin John
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| |
Collapse
|
7
|
Tieu T, Wei Y, Cifuentes‐Rius A, Voelcker NH. Overcoming Barriers: Clinical Translation of siRNA Nanomedicines. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Terence Tieu
- Parkville Campus 381 Royal Parade Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
- CSIRO Manufacturing Bayview Avenue Clayton VIC 3168 Australia
| | - Yingkai Wei
- Parkville Campus 381 Royal Parade Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
| | - Anna Cifuentes‐Rius
- Parkville Campus 381 Royal Parade Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
| | - Nicolas H. Voelcker
- Parkville Campus 381 Royal Parade Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
- CSIRO Manufacturing Bayview Avenue Clayton VIC 3168 Australia
- Melbourne Centre for Nanofabrication 151 Wellington Road Victorian Node of the Australian National Fabrication Facility Clayton VIC 3168 Australia
| |
Collapse
|
8
|
Hu B, Zhong L, Weng Y, Peng L, Huang Y, Zhao Y, Liang XJ. Therapeutic siRNA: state of the art. Signal Transduct Target Ther 2020; 5:101. [PMID: 32561705 PMCID: PMC7305320 DOI: 10.1038/s41392-020-0207-x] [Citation(s) in RCA: 731] [Impact Index Per Article: 182.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/08/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023] Open
Abstract
RNA interference (RNAi) is an ancient biological mechanism used to defend against external invasion. It theoretically can silence any disease-related genes in a sequence-specific manner, making small interfering RNA (siRNA) a promising therapeutic modality. After a two-decade journey from its discovery, two approvals of siRNA therapeutics, ONPATTRO® (patisiran) and GIVLAARI™ (givosiran), have been achieved by Alnylam Pharmaceuticals. Reviewing the long-term pharmaceutical history of human beings, siRNA therapy currently has set up an extraordinary milestone, as it has already changed and will continue to change the treatment and management of human diseases. It can be administered quarterly, even twice-yearly, to achieve therapeutic effects, which is not the case for small molecules and antibodies. The drug development process was extremely hard, aiming to surmount complex obstacles, such as how to efficiently and safely deliver siRNAs to desired tissues and cells and how to enhance the performance of siRNAs with respect to their activity, stability, specificity and potential off-target effects. In this review, the evolution of siRNA chemical modifications and their biomedical performance are comprehensively reviewed. All clinically explored and commercialized siRNA delivery platforms, including the GalNAc (N-acetylgalactosamine)-siRNA conjugate, and their fundamental design principles are thoroughly discussed. The latest progress in siRNA therapeutic development is also summarized. This review provides a comprehensive view and roadmap for general readers working in the field.
Collapse
Affiliation(s)
- Bo Hu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, 100081, Beijing, People's Republic of China
| | - Liping Zhong
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Guangxi Medical University, 530021, Guangxi, People's Republic of China
| | - Yuhua Weng
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, 100081, Beijing, People's Republic of China
| | - Ling Peng
- Aix-Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Equipe Labellisée Ligue Contre le Cancer, 13288, Marseille, France
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, 100081, Beijing, People's Republic of China.
| | - Yongxiang Zhao
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Guangxi Medical University, 530021, Guangxi, People's Republic of China.
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS), Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 100190, Beijing, People's Republic of China.
| |
Collapse
|
9
|
Parashar D, Rajendran V, Shukla R, Sistla R. Lipid-based nanocarriers for delivery of small interfering RNA for therapeutic use. Eur J Pharm Sci 2020; 142:105159. [DOI: 10.1016/j.ejps.2019.105159] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/03/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022]
|
10
|
Tieu T, Dhawan S, Haridas V, Butler LM, Thissen H, Cifuentes-Rius A, Voelcker NH. Maximizing RNA Loading for Gene Silencing Using Porous Silicon Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22993-23005. [PMID: 31252458 DOI: 10.1021/acsami.9b05577] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gene silencing by RNA interference is a powerful technology with broad applications. However, this technology has been hampered by the instability of small interfering RNA (siRNA) molecules in physiological conditions and their inefficient delivery into the cytoplasm of target cells. Porous silicon nanoparticles have emerged as a potential delivery vehicle to overcome these limitations-being able to encapsulate RNA molecules within the porous matrix and protect them from degradation. Here, key variables were investigated that influence siRNA loading into porous silicon nanoparticles. The effect of modifying the surface of porous silicon nanoparticles with various amino-functional molecules as well as the effects of salt and chaotropic agents in facilitating siRNA loading was examined. Maximum siRNA loading of 413 μg/(mg of porous silicon nanoparticles) was found when the nanoparticles were modified by a fourth generation polyamidoamine dendrimer. Low concentrations of urea or salt increased loading capacity: an increase in RNA loading by 19% at a concentration of 0.05 M NaCl or 21% at a concentration of 0.25 M urea was observed when compared to loading in water. Lastly, it was demonstrated that dendrimer-functionalized nanocarriers are able to deliver siRNA against ELOVL5, a target for the treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Terence Tieu
- Monash Institute of Pharmaceutical Sciences , Monash University , Parkville Campus, 381 Royal Parade , Parkville , Victoria 3052 , Australia
- CSIRO Manufacturing , Bayview Avenue , Clayton , Victoria 3168 , Australia
| | - Sameer Dhawan
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas, New Delhi 110016 , India
| | - V Haridas
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas, New Delhi 110016 , India
| | - Lisa M Butler
- Adelaide Medical School & Freemasons Foundation Centre for Men's Health , University of Adelaide , Adelaide , South Australia 5005 , Australia
- South Australian Health & Medical Research Institute , Adelaide , South Australia 5001 , Australia
| | - Helmut Thissen
- CSIRO Manufacturing , Bayview Avenue , Clayton , Victoria 3168 , Australia
| | - Anna Cifuentes-Rius
- Monash Institute of Pharmaceutical Sciences , Monash University , Parkville Campus, 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences , Monash University , Parkville Campus, 381 Royal Parade , Parkville , Victoria 3052 , Australia
- CSIRO Manufacturing , Bayview Avenue , Clayton , Victoria 3168 , Australia
- Melbourne Centre for Nanofabrication , Victorian Node of the Australian National Fabrication Facility , 151 Wellington Road , Clayton , Victoria 3168 , Australia
| |
Collapse
|