1
|
Eslami M, Khazeni S, Khanaghah XM, Asadi MH, Ansari MA, Garjan JH, Lotfalizadeh MH, Bayat M, Taghizadieh M, Taghavi SP, Hamblin MR, Nahand JS. MiRNA-related metastasis in oral cancer: moving and shaking. Cancer Cell Int 2023; 23:182. [PMID: 37635248 PMCID: PMC10463971 DOI: 10.1186/s12935-023-03022-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023] Open
Abstract
Across the world, oral cancer is a prevalent tumor. Over the years, both its mortality and incidence have grown. Oral cancer metastasis is a complex process involving cell invasion, migration, proliferation, and egress from cancer tissue either by lymphatic vessels or blood vessels. MicroRNAs (miRNAs) are essential short non-coding RNAs, which can act either as tumor suppressors or as oncogenes to control cancer development. Cancer metastasis is a multi-step process, in which miRNAs can inhibit or stimulate metastasis at all stages, including epithelial-mesenchymal transition, migration, invasion, and colonization, by targeting critical genes in these pathways. On the other hand, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), two different types of non-coding RNAs, can regulate cancer metastasis by affecting gene expression through cross-talk with miRNAs. We reviewed the scientific literature (Google Scholar, Scopus, and PubMed) for the period 2000-2023 to find reports concerning miRNAs and lncRNA/circRNA-miRNA-mRNA networks, which control the spread of oral cancer cells by affecting invasion, migration, and metastasis. According to these reports, miRNAs are involved in the regulation of metastasis pathways either by directly or indirectly targeting genes associated with metastasis. Moreover, circRNAs and lncRNAs can induce or suppress oral cancer metastasis by acting as competing endogenous RNAs to inhibit the effect of miRNA suppression on specific mRNAs. Overall, non-coding RNAs (especially miRNAs) could help to create innovative therapeutic methods for the control of oral cancer metastases.
Collapse
Affiliation(s)
- Meghdad Eslami
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Khazeni
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Xaniar Mohammadi Khanaghah
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Asadi
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Amin Ansari
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Hayati Garjan
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mobina Bayat
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Gourishetti K, Balaji Easwaran V, Mostakim Y, Ranganath Pai KS, Bhere D. MicroRNA (miR)-124: A Promising Therapeutic Gateway for Oncology. BIOLOGY 2023; 12:922. [PMID: 37508353 PMCID: PMC10376116 DOI: 10.3390/biology12070922] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
MicroRNA (miR) are a class of small non-coding RNA that are involved in post-transcriptional gene regulation. Altered expression of miR has been associated with several pathological conditions. MicroRNA-124 (miR-124) is an abundantly expressed miR in the brain as well as the thymus, lymph nodes, bone marrow, and peripheral blood mono-nuclear cells. It plays a key role in the regulation of the host immune system. Emerging studies show that dysregulated expression of miR-124 is a hallmark in several cancer types and it has been attributed to the progression of these malignancies. In this review, we present a comprehensive summary of the role of miR-124 as a promising therapeutic gateway in oncology.
Collapse
Affiliation(s)
- Karthik Gourishetti
- Biotherapeutics Laboratory, School of Medicine Columbia, University of South Carolina, Columbia, SC 29209, USA
- Department of Pathology, Microbiology, and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, SC 29209, USA
| | - Vignesh Balaji Easwaran
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Youssef Mostakim
- Biotherapeutics Laboratory, School of Medicine Columbia, University of South Carolina, Columbia, SC 29209, USA
- Department of Pathology, Microbiology, and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, SC 29209, USA
- College of Arts and Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - K. Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Deepak Bhere
- Biotherapeutics Laboratory, School of Medicine Columbia, University of South Carolina, Columbia, SC 29209, USA
- Department of Pathology, Microbiology, and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, SC 29209, USA
| |
Collapse
|
3
|
Tang X, Qi C, Zhou H, Liu Y. Critical roles of PTPN family members regulated by non-coding RNAs in tumorigenesis and immunotherapy. Front Oncol 2022; 12:972906. [PMID: 35957898 PMCID: PMC9360549 DOI: 10.3389/fonc.2022.972906] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 12/22/2022] Open
Abstract
Since tyrosine phosphorylation is reversible and dynamic in vivo, the phosphorylation state of proteins is controlled by the opposing roles of protein tyrosine kinases (PTKs) and protein tyrosine phosphatase (PTPs), both of which perform critical roles in signal transduction. Of these, intracellular non-receptor PTPs (PTPNs), which belong to the largest class I cysteine PTP family, are essential for the regulation of a variety of biological processes, including but not limited to hematopoiesis, inflammatory response, immune system, and glucose homeostasis. Additionally, a substantial amount of PTPNs have been identified to hold crucial roles in tumorigenesis, progression, metastasis, and drug resistance, and inhibitors of PTPNs have promising applications due to striking efficacy in antitumor therapy. Hence, the aim of this review is to summarize the role played by PTPNs, including PTPN1/PTP1B, PTPN2/TC-PTP, PTPN3/PTP-H1, PTPN4/PTPMEG, PTPN6/SHP-1, PTPN9/PTPMEG2, PTPN11/SHP-2, PTPN12/PTP-PEST, PTPN13/PTPL1, PTPN14/PEZ, PTPN18/PTP-HSCF, PTPN22/LYP, and PTPN23/HD-PTP, in human cancer and immunotherapy and to comprehensively describe the molecular pathways in which they are implicated. Given the specific roles of PTPNs, identifying potential regulators of PTPNs is significant for understanding the mechanisms of antitumor therapy. Consequently, this work also provides a review on the role of non-coding RNAs (ncRNAs) in regulating PTPNs in tumorigenesis and progression, which may help us to find effective therapeutic agents for tumor therapy.
Collapse
Affiliation(s)
- Xiaolong Tang
- Department of Clinical Laboratory Diagnostics, Binzhou Medical University, Binzhou, China
| | - Chumei Qi
- Department of Clinical Laboratory, Dazhou Women and Children’s Hospital, Dazhou, China
| | - Honghong Zhou
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Honghong Zhou, ; Yongshuo Liu,
| | - Yongshuo Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- *Correspondence: Honghong Zhou, ; Yongshuo Liu,
| |
Collapse
|
4
|
Sellner F, Thalhammer S, Klimpfinger M. Isolated Pancreatic Metastases of Renal Cell Cancer: Genetics and Epigenetics of an Unusual Tumour Entity. Cancers (Basel) 2022; 14:1539. [PMID: 35326690 PMCID: PMC8945920 DOI: 10.3390/cancers14061539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/14/2022] [Indexed: 12/16/2022] Open
Abstract
Isolated pancreatic metastases of renal cell carcinoma (isPMRCC) are a rare manifestation of metastatic renal cell carcinoma (mRCC) characterized by two peculiarities: (1). The definite or at least long-term exclusive occurrence of metastases in the pancreas and (2). an unusual low tumour aggressiveness with slow tumour progression and consecutive, good treatment results. According to current knowledge, the exclusive occurrence of pancreatic metastases is due to a highly specific and highly selective seed and soil mechanism, which does not allow metastases settlement outside the pancreas, and whose detailed genetic/epigenetic causes are not yet elucidated. Recent studies have shed light on some of the pathways involved for the protracted course of the disease and highlighted a special genetic profile (lack of loss of 9p, lower weight genome instability index, low frequency of BAP1 alterations, and a high frequency of PBRM1 loss), which deviates from the conventional mRCC profile. Finally, the question of the reasons for the long-term relative genetic stability of the involved cell clones, which is an essential prerequisite for a favourable prognosis, remains unanswered.
Collapse
Affiliation(s)
- Franz Sellner
- Department of General-, Visceral- and Vascular Surgery, Clinic Favoriten—Kaiser Franz Josef Hospital, 1100 Vienna, Austria;
| | - Sabine Thalhammer
- Department of General-, Visceral- and Vascular Surgery, Clinic Favoriten—Kaiser Franz Josef Hospital, 1100 Vienna, Austria;
| | - Martin Klimpfinger
- Clinical Institute of Pathology, Medical University, 1090 Vienna, Austria;
| |
Collapse
|
5
|
Chao X, Wang P, Ma X, Li Z, Xia Y, Guo Y, Ge L, Tian L, Zheng H, Du Y, Li J, Zuo Z, Xie L, Guo X. Comprehensive analysis of lncRNAs as biomarkers for diagnosis, prognosis, and treatment response in clear cell renal cell carcinoma. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:209-218. [PMID: 34514100 PMCID: PMC8424129 DOI: 10.1016/j.omto.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/12/2021] [Indexed: 10/27/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common histological type of renal carcinoma and has a high recurrence rate and poor outcome. Accurate patient risk stratification based on genetic markers can help to identify the high-risk patient for early and further treatments and would promote patient survival. Long non-coding RNAs (lncRNAs) have attracted widespread attention as biomarkers for early diagnosis, treatment, and prognosis because of their high specificity and sensitivity. Here, we performed a systematic search in NCBI PubMed and found 44 lncRNAs as oncogenes, 18 lncRNAs as tumor suppressors, 199 lncRNAs as diagnostic biomarkers, 62 lncRNAs as prognostic biomarkers, and 3 lncRNAs as predictive biomarkers for ccRCC. We also comprehensively discuss the biological functions and molecular regulatory mechanisms of lncRNAs in ccRCC. Overall, the present study is a systemic analysis to assess the expression and clinical value of lncRNAs in ccRCC, and lncRNAs hold promise to be diagnostic, prognostic, and predictive biomarkers.
Collapse
Affiliation(s)
- Xiaoyu Chao
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Pei Wang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xiaoyu Ma
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Zhenfen Li
- Kaifeng Tumor Hospital, Kaifeng 475004, China
| | - Yubing Xia
- Kaifeng Tumor Hospital, Kaifeng 475004, China
| | - Ying Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Linna Ge
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Linzhu Tian
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Hong Zheng
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yaowu Du
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Jitian Li
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou 450000, China
| | - Zhanjie Zuo
- Thoracic Cancer Treatment Center, Armed police Beijing Corps Hospital, Beijing 100027, China
| | - Longxiang Xie
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
6
|
Zhang J, Liu X, Gao Y. The long noncoding RNA MEG3 regulates Ras-MAPK pathway through RASA1 in trophoblast and is associated with unexplained recurrent spontaneous abortion. Mol Med 2021; 27:70. [PMID: 34238211 PMCID: PMC8265043 DOI: 10.1186/s10020-021-00337-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/30/2021] [Indexed: 12/28/2022] Open
Abstract
Background Maternally Expressed Gene 3 (MEG3) is expressed at low levels in placental villi during preeclampsia; however, its roles in unexplained recurrent spontaneous abortion (URSA) remain unclear. In this study, we aimed to explore the relationship between MEG3 and URSA. Methods The differentially expressed lncRNAs (MEG3) and its downstream genes (RASA1) were identified using bioinformatics analysis of Genomic Spatial Event (GSE) database. The expression levels of MEG3 in embryonic villis (with gestational ages of 49–63 days) and primary trophoblasts were determined using quantitative RT-PCR assay. A mouse model of Embryo implantation, Cell Counting Kit-8 (CCK-8), flow cytometry, and Transwell migration assays were performed to determine the implantation, proliferative, apoptotic, and invasive capacities of trophoblast. The level of phosphorylated core proteins in the RAS-MAPK pathway were analyzed using Western blot assay. The mechanisms of MEG3 in the regulation of RASA1 were studied by RNA pulldown, RNA immunoprecipitation (RIP), DNA pulldown, and chromatin immunoprecipitation (ChIP) assays. Results MEG3 had a low expression level in embryonic villis of 102 URSA patients compared with those of 102 normal pregnant women. MEG3 could promote proliferation and invasion, inhibit the apoptosis of primary trophoblast of URSA patients (PT-U cells), as well as promote embryo implantation of mouse. Besides, MEG3 also promoted the phosphorylation of rapidly accelerated fibrosarcoma (Raf), mitogen-activated protein kinase kinase (MEK), and extracellular-signal-regulated kinase (ERK) proteins. The results of RNA pull down and RIP assays showed that MEG3 bound with the enhancer of zeste homolog 2 (EZH2). The DNA pulldown assay revealed that MEG3 could bind to the promoter sequence of the RAS P21 Protein Activator 1 (RASA1) gene. Further, the ChIP assay showed that MEG3 promoted the binding of EZH2 to the promoter region of the RASA1 gene. Conclusions The inactivation of MEG3 in embryonic villi association with URSA; MEG3 inhibited the expression of RASA1 by mediating the histone methylation of the promoter of RASA1 gene by EZH2, thereby activating the RAS-MAPK pathway and enhancing the proliferative and invasive capacities of trophoblasts. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00337-9.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Obstetrics and Gynecology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, 518020, People's Republic of China
| | - Xinqiong Liu
- Department of Obstetrics and Gynecology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, 518020, People's Republic of China
| | - Yali Gao
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, 518020, People's Republic of China.
| |
Collapse
|
7
|
Sellner F, Thalhammer S, Klimpfinger M. Tumour Evolution and Seed and Soil Mechanism in Pancreatic Metastases of Renal Cell Carcinoma. Cancers (Basel) 2021; 13:1342. [PMID: 33809634 PMCID: PMC8002056 DOI: 10.3390/cancers13061342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/06/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
In metastatic renal cell carcinoma, pancreatic metastases can appear in two clinical manifestations: (a) very rarely as isolated pancreatic metastases and (b) in the context with multi-organ metastatic disease. Both courses are characterised by rare, unusual clinical features. For isolated pancreatic metastases, the literature shows no effect on survival in all 11 publications that examined the effect of singular versus multiple pancreatic metastases; a lack of effect on survival time was also present in all 8 studies on pancreatic metastases size, in 7 of 8 studies on the influence of disease-free interval (DFI), and in 6 of 7 studies on the influence of synchronous versus metachronous metastases. In multi-organ site metastases observations, on the other hand, all five available references showed significantly better results in patients with concurrent pancreatic metastases compared to those without pancreatic metastases, although the total number of affected organs in the pancreatic metastases cohort was larger. Tumour volume-dependent risk factors thus remain surprisingly ineffective in both groups, which contradicts the usual behaviour of solid tumours. The reasons for this unusual behaviour and possible relations to tumour evolution and the hypothesis of an influence of a seed and soil mechanism in the occurrence of pancreatic metastases in metastatic renal cell carcinoma are discussed.
Collapse
Affiliation(s)
- Franz Sellner
- Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Sabine Thalhammer
- Department of General-, Visceral- and Vascular Surgery, Clinic Favoriten—Kaiser Franz Josef Hospital, 1100 Vienna, Austria;
| | - Martin Klimpfinger
- Clinical Institute of Pathology, Medical University, 1090 Vienna, Austria;
| |
Collapse
|
8
|
Xu Y, Jiang E, Shao Z, Shang Z. Long Noncoding RNAs in the Metastasis of Oral Squamous Cell Carcinoma. Front Oncol 2021; 10:616717. [PMID: 33520725 PMCID: PMC7845733 DOI: 10.3389/fonc.2020.616717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common malignant tumor worldwide. Metastasis is the main cause of the death of OSCC patients. Long noncoding RNAs (lncRNAs), one of the key factors affecting OSCC metastasis, are a subtype of RNA with a length of more than 200 nucleotides that has little or no coding potential. In recent years, the important role played by lncRNAs in biological processes, such as chromatin modification, transcription regulation, RNA stability regulation, and mRNA translation, has been gradually revealed. More and more studies have shown that lncRNAs can regulate the metastasis of various tumors including OSCC at epigenetic, transcriptional, and post-transcriptional levels. In this review, we mainly discussed the role and possible mechanisms of lncRNAs in OSCC metastasis. Most lncRNAs act as oncogenes and only a few lncRNAs have been shown to inhibit OSCC metastasis. Besides, we briefly introduced the research status of cancer-associated fibroblasts-related lncRNAs in OSCC metastasis. Finally, we discussed the research prospects of lncRNAs-mediated crosstalk between OSCC cells and the tumor microenvironment in OSCC metastasis, especially the potential research value of exosomes and lymphangiogenesis. In general, lncRNAs are expected to be used for screening, treatment, and prognosis monitoring of OSCC metastasis, but more work is still required to better understand the biological function of lncRNAs.
Collapse
Affiliation(s)
- Yuming Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Erhui Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhe Shao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Sellner F. Isolated Pancreatic Metastases of Renal Cell Carcinoma-A Paradigm of a Seed and Soil Mechanism: A Literature Analysis of 1,034 Observations. Front Oncol 2020; 10:709. [PMID: 32547940 PMCID: PMC7273884 DOI: 10.3389/fonc.2020.00709] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/15/2020] [Indexed: 12/15/2022] Open
Abstract
Previously documented arguments, in favor of the suspected impact of a seed and soil mechanism, in the development and progression of isolated pancreatic metastasis of renal cell carcinomas (isPM) are: (1) uniform and independent from the side of the primary tumor distribution of isPM within the pancreas and, (2) the similar survival rates for singular and multiple isPM. In addition, the present study adds new arguments that further confirm the importance of an seed and soil mechanism in isPM: (1) Within the singular isPM, the size of the metastasis does not affect the overall survival; (2) Within the group of multiple isPMs, the overall survival does not depend on the number of metastases; (3) For synchronous and metachronous isPM, survival rates are also not different, and (4) Within the group of metachronous isPM there is also no correlation between the overall survival and interval until metastases occurs. This unusual ineffectiveness of otherwise known risk factors of solid cancers can be explained plausibly by the hypothesis of a very selective seed and soil mechanism in isPM. It only allows embolized renal carcinoma cells in the pancreas to complete all steps required to grow into clinically manifest metastases. In all other organs, on the other hand, the body is able to eliminate the embolized tumor cells or at least put them into a dormant state for many years. This minimizes the risk of occult micrometastases in distant organs, which could later—after isPM treatment—grow into clinically manifest metastases, so that the prognosis of the isPM is only determined by an adequate therapy of the pancreatic foci, and prognostic factors, such as total tumor burden or interval until the occurrence of the isPM remain ineffective.
Collapse
Affiliation(s)
- Franz Sellner
- Surgical Department, Kaiser Franz Josef Hospital, Vienna, Austria
| |
Collapse
|
10
|
Siouda M, Dujardin AD, Barbollat-Boutrand L, Mendoza-Parra MA, Gibert B, Ouzounova M, Bouaoud J, Tonon L, Robert M, Foy JP, Lavergne V, Manie SN, Viari A, Puisieux A, Ichim G, Gronemeyer H, Saintigny P, Mulligan P. CDYL2 Epigenetically Regulates MIR124 to Control NF-κB/STAT3-Dependent Breast Cancer Cell Plasticity. iScience 2020; 23:101141. [PMID: 32450513 PMCID: PMC7251929 DOI: 10.1016/j.isci.2020.101141] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/31/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Epigenetic deregulation of gene transcription is central to cancer cell plasticity and malignant progression but remains poorly understood. We found that the uncharacterized epigenetic factor chromodomain on Y-like 2 (CDYL2) is commonly over-expressed in breast cancer, and that high CDYL2 levels correlate with poor prognosis. Supporting a functional role for CDYL2 in malignancy, it positively regulated breast cancer cell migration, invasion, stem-like phenotypes, and epithelial-to-mesenchymal transition. CDYL2 regulation of these plasticity-associated processes depended on signaling via p65/NF-κB and STAT3. This, in turn, was downstream of CDYL2 regulation of MIR124 gene transcription. CDYL2 co-immunoprecipitated with G9a/EHMT2 and GLP/EHMT1 and regulated the chromatin enrichment of G9a and EZH2 at MIR124 genes. We propose that CDYL2 contributes to poor prognosis in breast cancer by recruiting G9a and EZH2 to epigenetically repress MIR124 genes, thereby promoting NF-κB and STAT3 signaling, as well as downstream cancer cell plasticity and malignant progression. Up-regulation of CDYL2 is common in breast cancer and correlates with poor prognosis CDYL2 regulates enrichment of methyltransferases G9a and EZH2 at MIR124 genes microRNA-124 regulation by CDYL2 impacts STAT3 and NF-κB signaling CDYL2 regulation of EMT, migration, invasion, and stemness is STAT3/NF-κB dependent
Collapse
Affiliation(s)
- Maha Siouda
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Audrey D Dujardin
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Laetitia Barbollat-Boutrand
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Marco A Mendoza-Parra
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, University of Strasbourg, Illkirch, France
| | - Benjamin Gibert
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Maria Ouzounova
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Equipe Labellisée Ligue Contre le Cancer, LabEx DEVweCAN
| | - Jebrane Bouaoud
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Department of Maxillo-facial Surgery and Stomatology, Pitié-Salpétrière Hospital, Pierre et Marie Curie University Paris 6, Sorbonne Paris Cite University, AP-HP, Paris 75013, France
| | - Laurie Tonon
- Synergie Lyon Cancer, Plateforme de Bioinformatique "Gilles Thomas", Centre Léon Bérard, 28 rue Lannec, Lyon 69008, France; INRIA Grenoble-Rhône-Alpes, 655 Avenue de l'Europe, Montbonnot-Saint-Martin 38330, France
| | - Marie Robert
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Equipe Labellisée Ligue Contre le Cancer, LabEx DEVweCAN
| | - Jean-Philippe Foy
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Equipe Labellisée Ligue Contre le Cancer, LabEx DEVweCAN
| | - Vincent Lavergne
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Equipe Labellisée Ligue Contre le Cancer, LabEx DEVweCAN
| | - Serge N Manie
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Alain Viari
- Synergie Lyon Cancer, Plateforme de Bioinformatique "Gilles Thomas", Centre Léon Bérard, 28 rue Lannec, Lyon 69008, France; INRIA Grenoble-Rhône-Alpes, 655 Avenue de l'Europe, Montbonnot-Saint-Martin 38330, France
| | - Alain Puisieux
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Equipe Labellisée Ligue Contre le Cancer, LabEx DEVweCAN
| | - Gabriel Ichim
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Hinrich Gronemeyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, University of Strasbourg, Illkirch, France
| | - Pierre Saintigny
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Equipe Labellisée Ligue Contre le Cancer, LabEx DEVweCAN
| | - Peter Mulligan
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Epigenetics and Cancer Team, Cheney A, 5e étage, 28 rue Laennec, Lyon Cedex 08 69373, France.
| |
Collapse
|
11
|
Wang W, Hu W, Wang Y, An Y, Song L, Shang P, Yue Z. Long non-coding RNA UCA1 promotes malignant phenotypes of renal cancer cells by modulating the miR-182-5p/DLL4 axis as a ceRNA. Mol Cancer 2020; 19:18. [PMID: 31996265 PMCID: PMC6988374 DOI: 10.1186/s12943-020-1132-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/05/2020] [Indexed: 01/13/2023] Open
Abstract
Background Accumulating literatures have indicated that long non-coding RNAs (lncRNAs) are potential biomarkers that play key roles in tumor development and progression. Urothelial cancer associated 1 (UCA1) is a novel lncRNA that acts as a potential biomarker and is involved in the development of cancers. However, the molecular mechanism of UCA1 in renal cancer is still needed to further explore. Methods The relative expression level of UCA1 was determined by Real-Time qPCR in a total of 88 patients with urothelial renal cancer and in different renal cancer cell lines. Loss-of-function experiments were performed to investigate the biological roles of UCA1 and miR-182-5p on renal cancer cell proliferation, migration, apoptosis and tumorigenicity. Comprehensive transcriptional analysis, dual-luciferase reporter assay and western blot etc. were performed to explore the molecular mechanisms underlying the functions of UCA1. Results In this study, we found that UCA1 was significantly up-regulated in renal cancer. Moreover, increased UCA1 expression was positively correlated with differentiation and advanced TNM stage. Further experiments demonstrated that knockdown of UCA1 inhibited malignant phenotypes and Notch signal path of renal cancer cells, and miR-182-5p was reverse function as UCA1. UCA1 functioned as a miRNA sponge to positively regulate the expression of Delta-like ligand 4(DLL4) through sponging miR-182-5p and subsequently promoted malignant phenotypes of renal cancer cells, thus UCA1 playing an oncogenic role and miR-182-5p as an antioncogenic one in renal cancer pathogenesis. Conclusion UCA1-miR-182-5p-DLL4 axis is involved in proliferation and progression of renal cancer. Thus, this study demonstrated that UCA1 plays a critical regulatory role in renal cancer cell and UCA1 may serve as a potential diagnostic biomarker and therapeutic target of renal cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-020-1132-x.
Collapse
Affiliation(s)
- Wei Wang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Wentao Hu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Ya Wang
- Department of Nephrology, Second Hospital Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
| | - Yong An
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Lei Song
- Medical School, Northwest Min Zu University, Lanzhou, 730030, Gansu, China
| | - Panfeng Shang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| | - Zhongjin Yue
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
12
|
Cheng G, Liu D, Liang H, Yang H, Chen K, Zhang X. A cluster of long non-coding RNAs exhibit diagnostic and prognostic values in renal cell carcinoma. Aging (Albany NY) 2019; 11:9597-9615. [PMID: 31727869 PMCID: PMC6874440 DOI: 10.18632/aging.102407] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023]
Abstract
Kidney cancer ranked in the top 10 for both men and women in the estimated numbers of new cancer cases in the United States in 2018. Targeted therapies have recently been administered to patients with clear cell renal cell carcinoma (ccRCC), but the overall survival of patients at the terminal stage of the disease has not been as good as expected. It is therefore necessary to uncover efficient biomarkers for early diagnosis, and to clarify the molecular mechanisms underlying ccRCC progression and metastasis. Increased evidence has shown that long non-coding RNAs (lncRNAs) play important roles during tumor progression. In this study, 10 candidate lncRNAs with diagnostic and prognostic values in ccRCC were identified: IGFL2-AS1, AC023043.1, AP000439.2, AC124854.1, AL355102.4, TMEM246-AS1, AL133467.3, ZNF582-AS1, LINC01510 and PSMG3-AS1. Enrichment analysis revealed metabolic and functional pathways, which may be closely associated with kidney cancer tumorigenesis. Six representative processes were summarized, namely glycolysis, amino acid metabolism, lipid synthesis, reductive carboxylation, nucleotide metabolism, transmembrane transport and signal transduction. In combination, the present results provided prognostic and diagnostic biomarkers for ccRCC and might pave the way for targeted intervention and molecular therapies in the future.
Collapse
Affiliation(s)
- Gong Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Di Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
13
|
Development of a membrane lipid metabolism-based signature to predict overall survival for personalized medicine in ccRCC patients. EPMA J 2019; 10:383-393. [PMID: 31832113 DOI: 10.1007/s13167-019-00189-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cell carcinoma and is characterized by a dysregulation of changes in cellular metabolism. Altered lipid metabolism contributes to ccRCC progression and malignancy. Method Associations among survival potential and each gene ontology (GO) term were analyzed by univariate Cox regression. The results revealed that membrane lipid metabolism had the greatest hazard ratio (HR). Weighted gene co-expression network analysis (WGCNA) was applied to determine the key genes associated with membrane lipid metabolism. Consensus clustering was used to identify novel molecular subtypes based on the key genes. LASSO Cox regression was performed to build a membrane lipid metabolism-based signature. The random forest algorithm was applied to find the most important mutations associated with membrane lipid metabolism. Decision trees and nomograms were constructed to quantify risks for individual patients. Result Membrane lipid metabolism stratified ccRCC patients into high- and low-risk groups. Key genes were identified by WGCNA. Membrane lipid metabolism-based signatures exhibited higher prediction efficiency than other clinicopathological traits in both whole cohort and subgroup analyses. The random forest algorithm revealed high associations among the membrane lipid metabolism-based signature and BAP1, PBRM1 and VHL mutations. Decision trees and nomograms indicated high efficiency for risk stratification. Conclusion Our study might contribute to the optimization of risk stratification for survival and personalized management of ccRCC patients.
Collapse
|
14
|
Silva LBAR, Pinheiro-Castro N, Novaes GM, Pascoal GDFL, Ong TP. Bioactive food compounds, epigenetics and chronic disease prevention: Focus on early-life interventions with polyphenols. Food Res Int 2019; 125:108646. [DOI: 10.1016/j.foodres.2019.108646] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022]
|
15
|
Sellner F. Observations on Solitary Versus Multiple Isolated Pancreatic Metastases of Renal Cell Carcinoma: Another Indication of a Seed and Soil Mechanism? Cancers (Basel) 2019; 11:E1379. [PMID: 31533220 PMCID: PMC6770877 DOI: 10.3390/cancers11091379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022] Open
Abstract
Isolated pancreas metastases are a rare type of metastasis of renal cell carcinoma, characterized by the presence of pancreatic metastases, while all other organs remain unaffected. In a previous study, we determined arguments from the literature which (a) indicate a systemic-haematogenic metastasis route (uniform distribution of the metastases across the pancreas and independence of the metastatic localization in the pancreas of the side of the renal carcinoma); and (b) postulate a high impact of a seed and soil mechanism (SSM) on isolated pancreatic metastasis of renal cell carcinoma (isPM) as an explanation for exclusive pancreatic metastases, despite a systemic haematogenous tumor cell embolization. The objective of the study presented was to search for further arguments in favor of an SSM with isPM. For that purpose, the factor's histology, grading, and singular/multiple pancreas metastases were analyzed on the basis of 814 observations published up to 2018. While histology and grading allowed for no conclusions regarding the importance of an SSM, the comparison of singular/multiple pancreas metastases produced arguments in favor of an SSM: 1. The multiple pancreas metastases observed in 38.1% prove that multiple tumor cell embolisms occur with isPM, the exclusive "maturation" of which in the pancreas requires an SSM; 2. The survival rates (SVR), which are consistent with singular and multiple pancreas metastases (despite the higher total tumor load with the latter), prove that the metastasized tumor cells are not able to survive in all other organs because of an SSM, which results in identical SVR when the pancreatic foci are treated adequately.
Collapse
Affiliation(s)
- Franz Sellner
- Surgical Department, Kaiser-Franz-Josef-Hospital, 1100 Wien, Austria.
| |
Collapse
|