1
|
Israni DK, Patel ML, Dodiya RK. Exploring the versatility of miRNA-128: a comprehensive review on its role as a biomarker and therapeutic target in clinical pathways. Mol Biol Rep 2024; 51:860. [PMID: 39068606 DOI: 10.1007/s11033-024-09822-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
MicroRNAs (miRNAs/ miRs) are short, noncoding RNAs, usually consisting of 18 to 24 nucleotides, that control gene expression after the process of transcription and have crucial roles in several clinical processes. This article seeks to provide an in-depth review and evaluation of the many activities of miR-128, accentuating its potential as a versatile biomarker and target for therapy; The circulating miR-128 has garnered interest because of its substantial influence on gene regulation and its simplicity in extraction. Several miRNAs, such as miR-128, have been extracted from circulating blood cells, cerebrospinal fluid, and plasma/serum. The miR-128 molecule can specifically target a diverse range of genes, enabling it to have intricate physiological impacts by concurrently regulating many interrelated pathways. It has a vital function in several biological processes, such as modulating the immune system, regulating brain plasticity, organizing the cytoskeleton, and inducing neuronal death. In addition, miR-128 modulates genes associated with cell proliferation, the cell cycle, apoptosis, plasma LDL levels, and gene expression regulation in cardiac development. The dysregulation of miR-128 expression and activity is associated with the development of immunological responses, changes in neural plasticity, programmed cell death, cholesterol metabolism, and heightened vulnerability to autoimmune illnesses, neuroimmune disorders, cancer, and cardiac problems; The paper highlights the importance of studying the consequences of miR-128 dysregulation in these specific locations. By examining the implications of miRNA-128 dysregulation in these areas, the article underscores its significance in diagnosis and treatment, providing a foundation for research and clinical applications.
Collapse
Affiliation(s)
- Dipa K Israni
- Department of Pharmacology, L.J. Institute of Pharmacy, LJ University, SG Highway, Sanand Cross-Road, Ahmedabad, Gujarat, 382210, India.
| | - Manish L Patel
- LJ Institute of Pharmacy, LJ University, Ahmedabad, Gujarat, India
| | - Rohinee K Dodiya
- Department of Pharmacology, L.J. Institute of Pharmacy, LJ University, SG Highway, Sanand Cross-Road, Ahmedabad, Gujarat, 382210, India
| |
Collapse
|
2
|
Wang Y, Guo L, Zhang Z, Fu S, Huang P, Wang A, Liu M, Ma X. A bibliometric analysis of myocardial ischemia/reperfusion injury from 2000 to 2023. Front Cardiovasc Med 2023; 10:1180792. [PMID: 37383699 PMCID: PMC10293770 DOI: 10.3389/fcvm.2023.1180792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Background Myocardial ischemia/reperfusion injury (MIRI) refers to the more severe damage that occurs in the previously ischemic myocardium after a short-term interruption of myocardial blood supply followed by restoration of blood flow within a certain period of time. MIRI has become a major challenge affecting the therapeutic efficacy of cardiovascular surgery. Methods A scientific literature search on MIRI-related papers published from 2000 to 2023 in the Web of Science Core Collection database was conducted. VOSviewer was used for bibliometric analysis to understand the scientific development and research hotspots in this field. Results A total of 5,595 papers from 81 countries/regions, 3,840 research institutions, and 26,202 authors were included. China published the most papers, but the United States had the most significant influence. Harvard University was the leading research institution, and influential authors included Lefer David J., Hausenloy Derek J., Yellon Derek M., and others. All keywords can be divided into four different directions: risk factors, poor prognosis, mechanisms and cardioprotection. Conclusion Research on MIRI is flourishing. It is necessary to conduct an in-depth investigation of the interaction between different mechanisms and multi-target therapy will be the focus and hotspot of MIRI research in the future.
Collapse
Affiliation(s)
- Yifei Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lijun Guo
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Zhibo Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Shuangqing Fu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Pingping Huang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Anzhu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mi Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
3
|
Ferrostatin-1 improves BMSC survival by inhibiting ferroptosis. Arch Biochem Biophys 2023; 736:109535. [PMID: 36708941 DOI: 10.1016/j.abb.2023.109535] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To investigate the effect of ferroptosis in BMSCs and explore the protective metabolism of ferrostatin-1 under GSDH treatment. METHODS BMSCs were treated with GSDH to simulate the damaged microenvironment in vivo to establish a cell injury model. Propidium iodide and CCK8 were utilized to detect the ratio of dead cells and cell viability. DCFH-DA and Amplex Red, FerroOrange, and BPDIPY were used to visualize the cellular fluorescent images of ROS, Fe2+, and lipid droplets, respectively. The quantified detection of MDA was conducted by a Lipid Peroxidation MDA Assay Kit. JC-1 staining, Mito-Tracker staining, and TEM were implemented to detect the membrane potential, morphology, and ultrastructure of mitochondria, respectively. The expression levels of ferroptosis-related proteins such as GPX4 and FTH1 were measured by Western blotting. RESULTS GSDH treatment induced ferroptosis in BMSCs based on an increased ratio of cell death, Fe2+, ROS, lipid droplets, and MDA in cells plus decreased protein levels of antioxidant systems, such as GPX4, and increased protein levels related to fatty acid synthesis. Compared to the blank group, mitochondria in the GSDH group underwent lower membrane potential, damaged morphology, and shrunken ultrastructure; Ferr-1 rescued the injured BMSCs to a certain extent as the declined ratio of cell death, Fe2+, ROS, lipid droplets, MDA, and the increased level antioxidant protein. AMPK was phosphorylated and activated after Ferr-1 treatment, and its downstream lipid peroxidation and antioxidation proteins changed accordingly. Inhibition of AMPK hindered the curative effect of Ferr-1. CONCLUSION Ferr-1 rescued ferroptosis-induced injury to BMSCs under GSDH conditions, and AMPK might have a relationship with the mitigative effect of Ferr-1.
Collapse
|
4
|
Yu M, Sun Y, Shan X, Yang F, Chu G, Chen Q, Han L, Guo Z, Wang G. Therapeutic overexpression of miR-92a-2-5p ameliorated cardiomyocyte oxidative stress injury in the development of diabetic cardiomyopathy. Cell Mol Biol Lett 2022; 27:85. [PMID: 36209049 PMCID: PMC9548149 DOI: 10.1186/s11658-022-00379-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background Diabetic cardiomyopathy (DCM) results from pathological changes in cardiac structure and function caused by diabetes. Excessive oxidative stress is an important feature of DCM pathogenesis. MicroRNAs (miRNAs) are key regulators of oxidative stress in the cardiovascular system. In the present study, we screened for the expression of oxidative stress-responsive miRNAs in the development of DCM. Furthermore, we aimed to explore the mechanism and therapeutic potential of miR-92a-2-5p in preventing diabetes-induced myocardial damage. Methods An experimental type 2 diabetic (T2DM) rat model was induced using a high-fat diet and low-dose streptozotocin (30 mg/kg). Oxidative stress injury in cardiomyocytes was induced by high glucose (33 mmol/L). Oxidative stress-responsive miRNAs were screened by quantitative real-time PCR. Intervention with miR-92a-2-5p was accomplished by tail vein injection of agomiR in vivo or adenovirus transfection in vitro. Results The expression of miR-92a-2-5p in the heart tissues was significantly decreased in the T2DM group. Decreased miR-92a-2-5p expression was also detected in high glucose-stimulated cardiomyocytes. Overexpression of miR-92a-2-5p attenuated cardiomyocyte oxidative stress injury, as demonstrated by increased glutathione level, and reduced reactive oxygen species accumulation, malondialdehyde and apoptosis levels. MAPK interacting serine/threonine kinase 2 (MKNK2) was verified as a novel target of miR-92a-2-5p. Overexpression of miR-92a-2-5p in cardiomyocytes significantly inhibited MKNK2 expression, leading to decreased phosphorylation of p38-MAPK signaling, which, in turn, ameliorated cardiomyocyte oxidative stress injury. Additionally, diabetes-induced myocardial damage was significantly alleviated by the injection of miR-92a-2-5p agomiR, which manifested as a significant improvement in myocardial remodeling and function. Conclusions miR-92a-2-5p plays an important role in cardiac oxidative stress, and may serve as a therapeutic target in DCM. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00379-9.
Collapse
Affiliation(s)
- Manli Yu
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yangyong Sun
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Xinghua Shan
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Fan Yang
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Guojun Chu
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Qian Chen
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Lin Han
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Zhifu Guo
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Guokun Wang
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
5
|
Chen B, Zheng L, Zhu T, Jiao K. LncRNA FOXD3-AS1 aggravates myocardial ischemia/reperfusion injury by inactivating the Redd1/AKT/GSK3β/Nrf2 signaling pathway via the miR-128/TXNIP axis. J Biochem Mol Toxicol 2022; 36:e23218. [PMID: 36098178 DOI: 10.1002/jbt.23218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/07/2022] [Accepted: 08/30/2022] [Indexed: 11/09/2022]
Abstract
Long noncoding RNA forkhead box D3-antisense RNA 1 (FOXD3-AS1) is associated with cardiovascular diseases, but its roles in myocardial ischemia/reperfusion (I/R) injury and the related signaling pathway have not been fully reported. We aimed to investigate the roles and mechanism of action of FOXD3-AS1 in myocardial I/R injury. An in vivo myocardial I/R injury mouse model and an in vitro hypoxia/reoxygenation (H/R) cardiomyocyte model was established. Quantitative reverse transcription-polymerase chain reaction, western blotting, and immunofluorescent assays were performed to examine the expression levels of FOXD3-AS1, microRNA (miR)-128, thioredoxin-interacting protein/regulation of development and DNA damage response 1/protein kinase B/glycogen synthase kinase 3β/nuclear factor erythroid 2-related factor 2 (TXNIP/Redd1/AKT/GSK3β/Nrf2) pathway-related proteins and apoptosis-related proteins. The interactions between FOXD3-AS1 and miR-128 and miR-128 and TXNIP were analyzed by Spearman's correlation test, predicted by ENCORI, and verified by dual-luciferase reporter assay. In addition, the levels of cardiac injury markers and oxidative stress markers were evaluated by corresponding kits. Cell Counting Kit-8 assays and flow cytometry were performed to assess cell viability and apoptosis. Hematoxylin and eosin staining was applied to observe the effect of FOXD3-AS1 on the morphology of myocardial I/R injured tissues. The results showed that the FOXD3-AS1 and TXNIP were highly expressed, whereas miR-128 was expressed at low levels in I/R myocardial tissues and H/R-induced H9c2 cells. FOXD3-AS1 directly targeted miR-128 to reduce its expression. TXNIP was confirmed as a downstream target of miR-128. Knockdown of FOXD3-AS1 led to the alleviation of I/R injury in vivo and in vitro. FOXD3-AS1 enhanced the expression of TXNIP by sponging miR-128, which inhibited the Redd1/AKT/GSK3β/Nrf2 pathway. Both inhibition of miR-128 and overexpression of TXNIP reversed the cardioprotective effect of FOXD3-AS1 small interfering RNA in H/R-induced H9c2 cells.
Collapse
Affiliation(s)
- Baozeng Chen
- Department of Cardiology, The second people's hospital of Liaocheng, Liaocheng, Shandong, China
| | - Lingling Zheng
- Department of Cardiovascular Medicine, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Teng Zhu
- Department of Cardiovascular Medicine, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Kai Jiao
- Department of Cardiovascular Medicine, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| |
Collapse
|
6
|
Zhang C, Ni C, Lu H. Polo-Like Kinase 2: From Principle to Practice. Front Oncol 2022; 12:956225. [PMID: 35898867 PMCID: PMC9309260 DOI: 10.3389/fonc.2022.956225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
Polo-like kinase (PLK) 2 is an evolutionarily conserved serine/threonine kinase that shares the n-terminal kinase catalytic domain and the C-terminal Polo Box Domain (PBD) with other members of the PLKs family. In the last two decades, mounting studies have focused on this and tried to clarify its role in many aspects. PLK2 is essential for mitotic centriole replication and meiotic chromatin pairing, synapsis, and crossing-over in the cell cycle; Loss of PLK2 function results in cell cycle disorders and developmental retardation. PLK2 is also involved in regulating cell differentiation and maintaining neural homeostasis. In the process of various stimuli-induced stress, including oxidative and endoplasmic reticulum, PLK2 may promote survival or apoptosis depending on the intensity of stimulation and the degree of cell damage. However, the role of PLK2 in immunity to viral infection has been studied far less than that of other family members. Because PLK2 is extensively and deeply involved in normal physiological functions and pathophysiological mechanisms of cells, its role in diseases is increasingly being paid attention to. The effect of PLK2 in inhibiting hematological tumors and fibrotic diseases, as well as participating in neurodegenerative diseases, has been gradually recognized. However, the research results in solid organ tumors show contradictory results. In addition, preliminary studies using PLK2 as a disease predictor and therapeutic target have yielded some exciting and promising results. More research will help people better understand PLK2 from principle to practice.
Collapse
Affiliation(s)
- Chuanyong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Chuangye Ni
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hao Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
- *Correspondence: Hao Lu,
| |
Collapse
|
7
|
CircNCX1: the "Lord of the Ring" in the Heart - Insight into Its Sequence Characteristic, Expression, Molecular Mechanisms, and Clinical Application. J Cardiovasc Transl Res 2021; 15:571-586. [PMID: 34642871 DOI: 10.1007/s12265-021-10176-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022]
Abstract
Circular RNAs (circRNAs) are covalently closed single-stranded RNAs with regulatory activity and regarded as new types of therapeutic targets in diseases such as cancers. By means of RNA-Seq technology, numerous cardiac circRNAs were discovered. Although some candidates were detected to involve in heart disease in murine model, relative low sequence conservation and expression level of their human homologs might result in an insignificant, even distinct effect in the human heart. Therefore, the therapeutic significance of circRNAs should be more strictly considered. It is also necessary to discuss which circRNA is suitable for being applied in heart disease treatment. Here, we are willing to introduce a ~ 1830 nt circular transcript generated from single exon of sodium/calcium exchanger 1 (ncx1) gene (also called solute carrier family 8 member A1, slc8a1), usually named circNCX1 or circSLC8A1, which is gradually coming into our view. circNCX1 is one of the most cardiac-enriched circRNAs. It is widely existent in vertebrate and relatively conserved, indicating its indispensability during the evolution of species. Indeed, circNCX1 was shown to involve in heart development by some expression analysis. It was further revealed that the dysregulation of circNCX1 is one of the key pathogeneses of heart diseases including ischemic cardiac injury and hypertrophic cardiomyopathy. To make the significance of circNCX1 in the heart clear, we comprehensively dissected circNCX1 in the aspects of its parental gene structure, conservation, biogenesis and expression profiles, function, molecular mechanisms, and clinical application in this review. New medicine or therapeutic schedules based on circNCX1 are expected in the future.
Collapse
|
8
|
Zhan H, Huang F, Niu Q, Jiao M, Han X, Zhang K, Ma W, Mi S, Guo S, Zhao Z. Downregulation of miR-128 Ameliorates Ang II-Induced Cardiac Remodeling via SIRT1/PIK3R1 Multiple Targets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8889195. [PMID: 34646427 PMCID: PMC8505057 DOI: 10.1155/2021/8889195] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/22/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022]
Abstract
Recent studies reported that miR-128 was differentially expressed in cardiomyocytes in response to pathologic stress. However, its function and mechanism remain to be fully elucidated. The aim of the present study was to investigate the role of miR-128 in chronic angiotensin II (Ang II) infusion-induced cardiac remodeling and its underlying mechanism. The cardiac remodeling and heart failure in vivo were established in C57BL/6 mice by chronic subcutaneous Ang II delivery. Knocking down miR-128 was conducted in the hearts of the mice by intravenous injection of HBAAV2/9-miR-128-GFP sponge (miR-128 inhibitor). In vitro experiments of cardiac hypertrophy, apoptosis, and aberrant autophagy were performed in cultured cells after Ang II treatment or transfection of miR-128 antagomir. Our results showed that chronic Ang II delivery for 28 days induced cardiac dysfunction, hypertrophy, fibrosis, apoptosis, and oxidative stress in the mice, while the miR-128 expression was notably enhanced in the left ventricle. Silencing miR-128 in the hearts of mice ameliorated Ang II-induced cardiac dysfunction, hypertrophy, fibrosis apoptosis, and oxidative stress injury. Moreover, Ang II induced excessive autophagy in the mouse hearts, which was suppressed by miR-128 knockdown. In cultured cells, Ang II treatment induced a marked elevation in the miR-128 expression. Downregulation of miR-128 in the cells by transfection with miR-128 antagomir attenuated Ang II-induced apoptosis and oxidative injury probably via directly targeting on the SIRT1/p53 pathway. Intriguingly, we found that miR-128 inhibition activated PIK3R1/Akt/mTOR pathway and thereby significantly damped Ang II-stimulated pathological autophagy in cardiomyocytes, which consequently mitigated cell oxidative stress and apoptosis. In conclusion, downregulation of miR-128 ameliorates Ang II-provoked cardiac oxidative stress, hypertrophy, fibrosis, apoptosis, and dysfunction in mice, likely through targeting on PIK3R1/Akt/mTORC1 and/or SIRT1/p53 pathways. These results indicate that miR-128 inhibition might be a potent therapeutic strategy for maladaptive cardiac remodeling and heart failure.
Collapse
Affiliation(s)
- Heqin Zhan
- Department of Pharmacology, School of Basic Medicine Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Feng Huang
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Qian Niu
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
- Department of Pharmacy, Sanmenxia Central Hospital, Sanmenxia, Henan 472000, China
| | - Mingli Jiao
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Xumeng Han
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Kaina Zhang
- Department of Pharmacology, School of Basic Medicine Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - WenZhuo Ma
- Department of Pharmacology, School of Basic Medicine Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Shan Mi
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Shiyu Guo
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Zhenghang Zhao
- Department of Pharmacology, School of Basic Medicine Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| |
Collapse
|
9
|
Wang H, Maimaitiaili R, Yao J, Xie Y, Qiang S, Hu F, Li X, Shi C, Jia P, Yang H, Wei M, Zhao J, Zhou Z, Xie J, Jiang J, Cai H, Sluijter JPG, Xu Y, Zhang Y, Xiao J. Percutaneous Intracoronary Delivery of Plasma Extracellular Vesicles Protects the Myocardium Against Ischemia-Reperfusion Injury in Canis. Hypertension 2021; 78:1541-1554. [PMID: 34488435 DOI: 10.1161/hypertensionaha.121.17574] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Hongyun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science (H.W., J.J., J.X.), Shanghai University, China
| | - Rusitanmujiang Maimaitiaili
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianhua Yao
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuling Xie
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
| | - Sujing Qiang
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fan Hu
- Department of Nuclear Medicine (F.H., H.C.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiang Li
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chao Shi
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
| | - Peng Jia
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haotian Yang
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Meng Wei
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
| | - Juan Zhao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
| | - Zheng Zhou
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jinxin Xie
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
| | - Jizong Jiang
- Shanghai Engineering Research Center of Organ Repair, School of Life Science (H.W., J.J., J.X.), Shanghai University, China
| | - Haidong Cai
- Department of Nuclear Medicine (F.H., H.C.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, the Netherlands (J.P.G.S.)
- UMC Utrecht Regenerative Medicine Center, University Medical Center, Utrecht University, the Netherlands (J.P.G.S.)
| | - Yawei Xu
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Zhang
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science (H.W., J.J., J.X.), Shanghai University, China
| |
Collapse
|
10
|
Fan Y, Wang J, He N, Feng H. PLK2 protects retinal ganglion cells from oxidative stress by potentiating Nrf2 signaling via GSK-3β. J Biochem Mol Toxicol 2021; 35:e22815. [PMID: 34047419 DOI: 10.1002/jbt.22815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/15/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022]
Abstract
Oxidative stress of retinal ganglion cells (RGCs) has been established as a main contributor to retinal degeneration in the pathogenesis of glaucoma. Polo-like kinase 2 (PLK2) has recently been reported to be a potent antioxidant protein that enhances cell survival in response to oxidative stress. To date, the involvement of PLK2 in RGC-associated oxidative stress is undermined. In the present work, we evaluated whether PLK2 regulates oxidative stress evoked by hydrogen peroxide (H2 O2 ) in RGCs. PLK2 expression was induced by H2 O2 stimulation in RGCs. Upregulation of PLK2 had a profoundly cytoprotective effect on H2 O2 -stimulated RGCs by attenuating cellular apoptosis and reactive oxygen species (ROS) level. Further data revealed that upregulation of PLK2 strikingly enhanced the activation of Nrf2 signaling. Moreover, PLK2 overexpression promoted glycogen synthase kinase (GSK)-3β phosphorylation, whereas PLK2 knockdown reduced the levels of GSK-3β phosphorylation. Notably, GSK-3β inhibition using a chemical inhibitor markedly abrogated the suppressive effects of PLK2 knockdown on Nrf2 activation. Repression of Nrf2 blocked the PLK2 overexpression-induced protective effects in H2 O2 -stimulated RGCs. Overall, this study elucidates that upregulation of PLK2 protects RGCs against H2 O2 -induced oxidative stress injury by upregulating Nrf2 activation via modulation of GSK-3β phosphorylation. These findings underline the pivotal role of PLK2 in mediating oxidative stress-evoked retinal degeneration in the pathogenesis of glaucoma.
Collapse
Affiliation(s)
- Yazhi Fan
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianming Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Na He
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haixiao Feng
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
11
|
Gao Z, Zhang J, Wu Y. TFAP2A inhibits microRNA-126 expression at the transcriptional level and aggravates ischemic neuronal injury. Biochem Cell Biol 2020; 99:403-413. [PMID: 33264079 DOI: 10.1139/bcb-2020-0361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuronal injury induced by cerebral ischemia poses a serious health risk globally, and there is no effective clinical therapy. This study was performed to investigate the role of transcription factor AP-2 alpha (TFAP2A) in cerebral ischemia, and the underlying mechanisms, using an in-vitro model (PC-12 cells) of oxygen-glucose deprivation (OGD), and an in-vivo model (rat) of transient global cerebral ischemia (tGCI). The results for CCK-8 and Hoechst staining showed that silencing of TFAP2A enhanced the viability and decreased the rate of apoptosis of PC12 cells subjected to OGD. ChIP assays were performed to evaluate the binding of TFAP2A to the promoter region of microRNA (miR)-126, and we found that TFAP2A inhibits the expression of miR-126. Further mechanistic investigation revealed that miR-126 targets polo like kinase 2 (PLK2), and that overexpression of PLK2 activates the IκBα-NF-κB signaling pathway and suppresses the growth of PC12 cells subjected to OGD. For our in-vivo assay, we used TTC staining to analyze the infarction area in the brain tissues of rats, and Nissl staining to evaluate the number of surviving brain neurons. The pathological conditions associated with neuronal injury in rat brain tissues were assessed by staining the tissues with hematoxylin-eosin. Our results indicate that TFAP2A downregulates miR-126, and thereby upregulates PLK2 and activates the IκBα-NF-κB pathway, which increased neuronal injury following cerebral ischemia.
Collapse
Affiliation(s)
- Zhiqiang Gao
- Department of Neurology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China.,Department of Neurology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Jiang Zhang
- Department of Neurology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China.,Department of Neurology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Yunxia Wu
- Department of Neurology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China.,Department of Neurology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| |
Collapse
|
12
|
Ghafouri-Fard S, Shoorei H, Taheri M. Non-coding RNAs participate in the ischemia-reperfusion injury. Biomed Pharmacother 2020; 129:110419. [PMID: 32563988 DOI: 10.1016/j.biopha.2020.110419] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
Ischemia, being defined as blood supply deficiency is involved in the pathogenesis of a number of life-threatening conditions such as myocardial infarction and cerebral stroke. Assessment of the molecular pathology of these conditions has led to identification of the role of reperfusion in induction and aggravation of tissue injury and necrosis. Thus, the term "ischemia/ reperfusion (I/R) injury" has been introduced. This process involves aberrant regulation of the mitochondrial function, apoptotic and autophagic pathways and signal transducers. More recently, non-coding RNAs including long non-coding RNAs (lncRNAs) ad microRNAs (miRNAs) have been shown to influence I/R injury. Animal studies and clinical investigations have shown up-/down-regulation of tens of lncRNAs and miRNAs in this process. In the current study, we summarize the role of these transcripts in the pathophysiology of I/R injury and their potential as biomarkers for detection of extent of tissue injury.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Zhao D, Zheng H, Greasley A, Ling F, Zhou Q, Wang B, Ni T, Topiwala I, Zhu C, Mele T, Liu K, Zheng X. The role of miR-711 in cardiac cells in response to oxidative stress and its biogenesis: a study on H9C2 cells. Cell Mol Biol Lett 2020; 25:26. [PMID: 32308692 PMCID: PMC7146913 DOI: 10.1186/s11658-020-00206-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Background Oxidative stress results in cell apoptosis/death and plays a detrimental role in disease development and progression. Stressors alter the miRNA expression profile and miRNAs play a role in the cell response to stress. We previously showed that miR-711 is significantly over-expressed in extended cold ischemia reperfusion injured hearts in heart transplant. In this study, we aimed to investigate the role of miR-711 in cardiac cell damage in response to oxidative stress and how miR-711 is regulated. Methods Rat cardiac cell line H9c2 cells were cultured and exposed to oxidative conditions (Antimycin A (AA), H2O2, CoCl2, or cold hypoxia/reoxygenation (H/R)) in vitro. H9c2 cells were transfected with miR-711 mimics, miR-711 inhibitors, or small interference RNA, using transfection reagents. The expression of miR-711 was measured by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Cell apoptosis/death was detected by flow cytometry and an IncuCyte system. Mitochondrial damage was detected by measuring the mitochondria membrane potential by flow cytometry. Gene expression was detected by qRT-PCR at the mRNA level and Western blotting and immunocytochemistry staining at the protein level. Results We found that miR-711 was significantly up-regulated in cells treated with H2O2, AA, CoCl2, and cold H/R. Over-expression of miR-711 increased cell apoptosis/death induced by AA and H/R whereas cell death was reduced by miR-711 inhibitors. MiR-711 induced cell death through negative regulation of angiopoietin 1 (Ang-1), fibroblast growth factor 14 (FGF14) and calcium voltage-gated channel subunit alpha1C (Cacna1c) genes. Both knockdown of hypoxia inducible factor 1α (HIF-1α) and inactivation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NFКB) pathway inhibited over-expression of miR-711. Conclusion Oxidative stress increases the expression of miR-711. Over-expression of miR-711 induces cell apoptosis/death. HIF-1α and NFКB regulate miR-711 in H9c2 cells during oxidative stress. miR-711 is a new target for preventing oxidative stress.
Collapse
Affiliation(s)
- Duo Zhao
- 1Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, 130041 China.,2Department of Pathology and Laboratory Medicine, Western University, London, Ontario Canada.,3Department of Cardiovascular Surgery, The First People's Hospital of Foshan, Foshan, Guangdong China
| | - Hao Zheng
- 2Department of Pathology and Laboratory Medicine, Western University, London, Ontario Canada
| | - Adam Greasley
- 2Department of Pathology and Laboratory Medicine, Western University, London, Ontario Canada
| | - Fengjun Ling
- 2Department of Pathology and Laboratory Medicine, Western University, London, Ontario Canada
| | - Qinfeng Zhou
- 2Department of Pathology and Laboratory Medicine, Western University, London, Ontario Canada.,Department of Laboratory Medicine, Zhangjiagang TCM Hospital Affiliated to Nanking University of Chinese Medicine, Zhangjiagang, Jiangsu China
| | - Bowen Wang
- 2Department of Pathology and Laboratory Medicine, Western University, London, Ontario Canada
| | - Tiffany Ni
- 2Department of Pathology and Laboratory Medicine, Western University, London, Ontario Canada
| | - Ishita Topiwala
- 2Department of Pathology and Laboratory Medicine, Western University, London, Ontario Canada
| | - Cuilin Zhu
- 1Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, 130041 China.,2Department of Pathology and Laboratory Medicine, Western University, London, Ontario Canada
| | - Tina Mele
- 5Department of Surgery, Western University, Ontario, London Canada
| | - Kexiang Liu
- 1Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, 130041 China
| | - Xiufen Zheng
- 2Department of Pathology and Laboratory Medicine, Western University, London, Ontario Canada.,5Department of Surgery, Western University, Ontario, London Canada.,6London Health Sciences Centre, London, Ontario Canada.,7Department of Oncology, Western University, Ontario, London Canada.,8Lawson Health Research Institute, Ontario, London Canada
| |
Collapse
|