1
|
Tolentino-Molina BX, Loaeza-Loaeza J, Ortega-Soto A, Castro-Coronel Y, Fernández-Tilapa G, Hernández-Sotelo D. Hsa_circ_0009910 knockdown in HeLa cells increases miR‑198 expression levels and decreases c‑Met expression levels and cell viability. Oncol Lett 2025; 29:74. [PMID: 39650233 PMCID: PMC11622005 DOI: 10.3892/ol.2024.14820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/09/2024] [Indexed: 12/11/2024] Open
Abstract
Cervical cancer (CC) is considered a public health problem. Circular RNAs (circRNAs) serve important roles in different types of cancer, including CC. However, the mechanisms used by circRNAs to facilitate CC progression are currently unclear. The present study analyzed the effects of hsa_circ_0009910 knockdown on microRNA (miRNA/miR)-198 and mesenchymal-epithelial transition factor (c-Met) expression levels and its impact on apoptosis and the viability of HeLa cells. Differentially expressed circRNAs in CC were identified using analysis of circRNA microarray data. Bioinformatics analysis was performed to predict circRNA-microRNA (miRNA) and miRNA-mRNA interactions. The knockdown of hsa_circ_0009910 in HeLa cells was performed using small interfering RNA and the expression levels of hsa_circ_0009910, miR-198 and c-Met were assessed using reverse transcription-quantitative PCR. The viability and apoptosis of HeLa cells were evaluated using MTT, neutral red uptake and ApoLive-Glo™ multiplex assays. Hsa_circ_0009910 was significantly upregulated in HeLa cells and the knockdown of hsa_circ_0009910 increased miRNA-198 expression levels, reduced c-Met expression levels and decreased cellular viability, but not apoptosis, in HeLa cells. Overall, these results indicated that hsa_circ_0009910 could act as a molecular sponge of miRNA-198 and contribute to the upregulation of c-Met expression levels. The hsa_circ_0009910/miRNA-198/c-Met interaction network affects the viability, but not apoptosis, of HeLa cells. Based on this mechanism, the present study suggests that hsa_circ_0009910 may be a promising biomarker for CC.
Collapse
Affiliation(s)
- Bernardo Xavier Tolentino-Molina
- Laboratory of Cancer Epigenetics, School of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39070, Mexico
| | - Jaqueline Loaeza-Loaeza
- Laboratory of Neurotoxicology, Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07300, Mexico
| | - Arturo Ortega-Soto
- Laboratory of Neurotoxicology, Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07300, Mexico
| | - Yaneth Castro-Coronel
- Laboratory of Cytopathology and Histochemistry, School of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39070, Mexico
| | - Gloria Fernández-Tilapa
- Clinical Research Laboratory, School of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39070, Mexico
| | - Daniel Hernández-Sotelo
- Laboratory of Cancer Epigenetics, School of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39070, Mexico
| |
Collapse
|
2
|
Zou H, Hu F, Wu X, Xu B, Shang G, An D, Qin D, Zhang X, Yang A. LINC01089 governs the miR-1287-5p/HSPA4 axis to negatively regulate osteogenic differentiation of mesenchymal stem cells. Bone Joint Res 2024; 13:779-789. [PMID: 39679709 DOI: 10.1302/2046-3758.1312.bjr-2023-0272.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Aims The involvement of long non-coding RNA (lncRNA) in bone marrow mesenchymal stem cell (MSC) osteogenic differentiation during osteoporosis (OP) development has attracted much attention. In this study, we aimed to disclose how LINC01089 functions in human mesenchymal stem cell (hMSC) osteogenic differentiation, and to study the mechanism by which LINC01089 regulates MSC osteogenesis. Methods Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blotting were performed to analyze LINC01089, miR-1287-5p, and heat shock protein family A (HSP70) member 4 (HSPA4) expression. The osteogenic differentiation of MSCs was assessed through alkaline phosphatase (ALP) activity, alizarin red S (ARS) staining, and by measuring the levels of osteogenic gene marker expressions using commercial kits and RT-qPCR analysis. Cell proliferative capacity was evaluated via the Cell Counting Kit-8 (CCK-8) assay. The binding of miR-1287-5p with LINC01089 and HSPA4 was verified by performing dual-luciferase reporter and RNA immunoprecipitation (RIP) experiments. Results LINC01089 expression was reinforced in serum samples of OP patients, but it gradually diminished while hMSCs underwent osteogenic differentiation. LINC01089 knockdown facilitated hMSC osteogenic differentiation. This was substantiated by: the increase in ALP activity; ALP, runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), and osteopontin (OPN) messenger RNA (mRNA) levels; and level of ARS staining. Meanwhile, LINC01089 upregulation resulted in the opposite effects. LINC01089 targeted miR-1287-5p, and the LINC01089 knockdown-induced hMSC osteogenic differentiation was repressed by miR-1287-5p depletion. HSPA4 is a downstream function molecule of the LINC01089/miR-1287-5p pathway; miR-1287-5p negatively modulated HSPA4 levels and attenuated its functional effects. Conclusion LINC01089 negatively regulated hMSC osteogenic differentiation, at least in part, via governing miR-1287-5p/HSPA4 signalling. These findings provide new insights into hMSC osteogenesis and bone metabolism.
Collapse
Affiliation(s)
- Hao Zou
- Department of Orthopedics, Xiangyang Hospital of Integrated Traditional Chinese and Western Medicine, Xiangyang, China
| | - Fei Hu
- Department of Orthopedics, Xiangyang Hospital of Integrated Traditional Chinese and Western Medicine, Xiangyang, China
| | - Xin Wu
- Department of Orthopedics, Xiangyang Hospital of Integrated Traditional Chinese and Western Medicine, Xiangyang, China
| | - Bin Xu
- Department of Orthopedics, Xiangyang Hospital of Integrated Traditional Chinese and Western Medicine, Xiangyang, China
| | - Guifeng Shang
- Department of Orthopedics, Xiangyang Hospital of Integrated Traditional Chinese and Western Medicine, Xiangyang, China
| | - Dong An
- Department of Orthopedics, Xiangyang Hospital of Integrated Traditional Chinese and Western Medicine, Xiangyang, China
| | - Dehao Qin
- Department of Orthopedics, Xiangyang Hospital of Integrated Traditional Chinese and Western Medicine, Xiangyang, China
| | - Xiaolei Zhang
- Department of Orthopedics, Xiangyang Hospital of Integrated Traditional Chinese and Western Medicine, Xiangyang, China
| | - Aofei Yang
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Orthopedics, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
3
|
Guo Z, Liu B, Wei Y, Wang H, Zhang Q, Hong X. The multifaceted role of quaking protein in neuropsychiatric disorders and tumor progression. Front Neurosci 2024; 18:1341114. [PMID: 39479357 PMCID: PMC11521838 DOI: 10.3389/fnins.2024.1341114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/11/2024] [Indexed: 11/02/2024] Open
Abstract
The Quaking protein (QKI) belongs to the STAR protein family and plays a significant role in the development of the nervous system. It serves as a crucial regulator in the processes of tumor progression and cardiovascular system development. Within the central nervous system, QKI has been associated with the onset and progression of numerous neuropsychiatric disorders, including schizophrenia, depression, ataxia, and Alzheimer's disease. In malignant tumors, the methylation of the QKI promoter inhibits its expression. QKI primarily involves in the generation, stability, and selective splicing of non-coding RNA, as well as in mRNA translation. The role of QKI in the tumor microenvironment should not be overlooked. Especially in Glioblastoma Multiforme (GBM), although QKI is not the primary mutation, it still plays a vital role in maintaining the stemness of GBM. However, the mechanisms and further studies on this topic demand extensive basic and clinical trials.
Collapse
Affiliation(s)
- Zeshang Guo
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Bo Liu
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Ying Wei
- Department of Radiology, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - HeFei Wang
- Cancer Center, First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Qingquan Zhang
- Department of Pharmacy, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xinyu Hong
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Liu D, Wang X, Cui L, Zhang M, Lei K, Aierken N. SPECC1 as a pan-cancer biomarker: unraveling its role in drug sensitivity and resistance mechanisms. Discov Oncol 2024; 15:552. [PMID: 39397181 PMCID: PMC11471742 DOI: 10.1007/s12672-024-01426-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Previous studies have shown a relationship between SPECC1 and the prognosis of breast cancer, indicating a potential function for SPECC1 in the initiation and progression of cancer. However, the role played by SPECC1 in other tumors is not yet known. Therefore, we used bioinformatics techniques to conduct a thorough investigation into the possible mechanism of SPECC1 in pan-cancer, analyzing data reported in the literature as well as databases such as GTEx and CCLE, cBioportal, TCGA, and UCSC XENA. Comparing the results with matching normal tissues, the majority of cancers, including pancreatic adenocarcinoma (PAAD) and breast invasive carcinoma (BRCA), exhibited higher levels of SPECC1, while hepatocellular carcinoma (HCC) showed lower expression levels. SPECC1 was also found to be genetically mutated in endometrial cancer, sarcoma, and esophageal cancer. The prognosis of lung adenocarcinoma, kidney papillary cell carcinoma, and breast cancer is highly correlated with dysregulation of SPECC1 expression. This work helps guide clinical therapy by highlighting the sensitivity of tumor-treating medicines and the prognostic importance of SPECC1 in various malignancies. KEGG pathway enrichment analysis revealed focused adhesion, collagen-containing extracellular matrix (collagen), and the primary enrichment domains for SPECC1-related genes. These findings were obtained through gene annotation (GO) examination of SPECC1 expression. Primary mediators of the cytokine-cytokine receptor interaction include PICOC1-associated genes, cell-substrate junction genes, and extracellular matrix containing collagen. PICOC1-associated genes primarily mediate the PI3K-AKT signaling pathway. Drug sensitivity assay showed that SPECC1 high-expressing cell lines were more sensitive to docetaxel, doxorubicin, etc. In conclusion, the current study shows how SPECC1 is expressed in different cancers and how this expression relates to the prognosis of the tumor. It also revealed the mutations and copy number variations of SPECC1 in various tumors and its potential involvement in cellular pathway regulatory networks and cytological processes. This study examines the relationship between immune genes, cellular infiltration, and immunological scores in the tumor microenvironment, which explain the severity of the disease. This study looks at the response of SPEC1 expression to anticancer therapy. Explains the prognostic significance and drug response of SPECC-1.
Collapse
Affiliation(s)
- Dongwei Liu
- Department of General Practice, The seventh Affiliated Hospital of sun yat-sen university, Shenzhen, 518107, China
| | - Xidi Wang
- Department of Thyroid and Breast surgery, The seventh Affiliated Hospital of sun yat-sen university, Shenzhen, 518107, China
| | - Lingfei Cui
- Department of Thyroid and Breast surgery, The seventh Affiliated Hospital of sun yat-sen university, Shenzhen, 518107, China
| | - Mingxia Zhang
- Department of Thyroid and Breast surgery, The seventh Affiliated Hospital of sun yat-sen university, Shenzhen, 518107, China
| | - Kefeng Lei
- Department of Thyroid and Breast surgery, The seventh Affiliated Hospital of sun yat-sen university, Shenzhen, 518107, China.
| | - Nijiati Aierken
- Department of Thyroid and Breast surgery, The seventh Affiliated Hospital of sun yat-sen university, Shenzhen, 518107, China.
| |
Collapse
|
5
|
Cheng C, Zhang Z, Wang J, Wang C, Liu T, Yang C, Wang G, Huang H, Li Y. CircPGM5 regulates Foxo3a phosphorylation via MiR-21-5p/MAPK10 axis to inhibit bladder cancer progression. Cell Signal 2024; 121:111297. [PMID: 39004326 DOI: 10.1016/j.cellsig.2024.111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/08/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Bladder cancer (BC) is one of the most prevalent malignant tumors worldwide, and the incidence is especially higher in males. Extensive evidence has demonstrated the pivotal role of circular RNAs (circRNAs) in BC progression. However, the exact regulatory mechanism of circRNAs in BC remains incompletely elucidated and warrants further exploration. This study screened a novel circRNA-circPGM5 from thousands of circRNAs by high-throughput sequencing. We found that circPGM5, originating from the PGM5 gene, was significantly lower expressed in BC tissues. Quantitative real-time PCR (qRT-PCR) verified that circPGM5 showed relatively low expression in 50 pairs of BC tissues and EJ and T24 cells. Notably, circPGM5 expression was correlated with stage, grade, and lymphatic metastasis of BC. Through RNA-FISH assay, we confirmed that circPGM5 predominantly localized in the cytoplasm. Functionally, overexpression of circPGM5 inhibited the proliferation, migration, and invasion of BC cells in vitro. Remarkably, circPGM5 demonstrated markedly significant tumor growth and metastasis suppression in vivo. Mechanistically, we discovered that circPGM5 upregulated the mitogen-activated protein kinase 10 (MAPK10) expression by influencing the oncogenic miR-21-5p activity through miR-21-5p absorption. This modulation of MAPK10 impacted the phosphorylation of the tumor suppressor Foxo3a in BC. In conclusion, our findings uncovered the tumor-suppressing role of circPGM5 in BC via the miR-21-5p/MAPK10/Foxo3a axis.
Collapse
Affiliation(s)
- Chao Cheng
- Department of Urology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, 519000, Guangdong, PR China; Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China; Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Ze Zhang
- Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Jiawei Wang
- Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Chong Wang
- Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Tiantian Liu
- Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Chenglin Yang
- Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Guowei Wang
- Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Houbao Huang
- Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Yawei Li
- Department of Urology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, 519000, Guangdong, PR China.
| |
Collapse
|
6
|
Lu Y, Yang Z, Zhang J, Ma X, Bi X, Xu L, Feng K, Wu Z, Ma X, Zhuang L. RNA-binding protein QKI promotes the progression of HCC by interacting with long non-coding RNA EGOT. Int Immunopharmacol 2024; 136:112297. [PMID: 38810307 DOI: 10.1016/j.intimp.2024.112297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND RNA-binding proteins are revealed to play important roles during the progression of hepatocellular carcinoma (HCC). However, the regulatory mechanisms of RNA-binding protein Quaking (QKI) in the expression and role of long non-coding RNAs (lncRNAs) in HCC cells remain not well understood. METHODS Cell Counting Kit-8, wound-healing, Transwell and colony-forming assays were performed to evaluate the effects of QKI and lncRNA EGOT on proliferation and migration of HCC cells. Tumor growth of HCC was analyzed using a mouse xenograft model. Immunoprecipitation (RIP) assay was used to investigate the interaction between QKI and EGOT. RESULTS The expression of QKI was significantly upregulated in HCC tissues and the higher QKI level was significantly associated with a poorer prognosis. Overexpression of QKI promoted the proliferation, migration, and colony-forming ability of HCC cells in vitro and tumor growth of HCC in vivo. Mechanistically, QKI protein could bind to EGOT RNA and increase its expression. Inhibition of EGOT attenuated the effects of QKI on the malignant phenotypes of HCC cells. In addition, both QKI and EGOT could activate the SAPK/JNK signaling pathway in HCC cells. CONCLUSIONS Our findings indicated that QKI exerted promotive effects on the malignant phenotypes of HCC through its interaction with EGOT.
Collapse
Affiliation(s)
- Yi Lu
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Zhenpeng Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Jie Zhang
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Xuefeng Ma
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Xiaoye Bi
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Longhai Xu
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Keqing Feng
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Zehua Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Xiang Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266071, China.
| | - Likun Zhuang
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
7
|
Tong Y, Jia L, Li M, Li H, Wang S. Identification of exosomal circSLC26A4 as a liquid biopsy marker for cervical cancer. PLoS One 2024; 19:e0305050. [PMID: 38861540 PMCID: PMC11166277 DOI: 10.1371/journal.pone.0305050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/20/2024] [Indexed: 06/13/2024] Open
Abstract
OBJECTIVE Circular RNA SLC26A4 (circSLC26A4) functions as an oncogene in the initiation and progression of cervical cancer (CC). However, the clinical role of plasma exosomal circSLC26A4 in CC is poorly known. This study aims to develop an accurate diagnostic method based on circulating exosomal circSLC26A4. METHODS In this study, exosomal circSLC26A4 derived from CC cell lines (CaSki, SiHa, and HeLa) and human cervical epithelial cells (HcerEpic) was measured and compared using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Additionally, 56 volunteers, including 18 CC patients, 18 cervical high-grade squamous intraepithelial lesion (HSIL) patients, and 20 healthy volunteers, were enrolled. qRT-PCR was also performed to measure the plasma exosomal circSLC26A4 levels in all participants. RESULTS The exosomal circSLC26A4 expression level derived from CC cells was significantly elevated compared to it derived from HcerEpic cells. Plasma exosomal circSLC26A4 levels in CC patients were significantly higher than in healthy women and HSIL patients (P < 0.05). In addition, high plasma exosomal circSLC26A4 expression was positively associated with lymph node metastasis and FIGO stage (all P < 0.05). However, no significant correlation was found between plasma exosomal circSLC26A4 expression and age, intravascular cancerous embolus, and perineural invasion (P > 0.05). CONCLUSIONS The high exosomal circSLC26A4 expression is closely related to the occurrence of CC. Plasma exosomal circSLC26A4 can be used as a diagnostic marker for CC.
Collapse
Affiliation(s)
- Yutong Tong
- Xinxiang Medical University, Xinxiang, Henan, P.R. China
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Lanlan Jia
- Xinxiang Medical University, Xinxiang, Henan, P.R. China
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Minghui Li
- Xinxiang Medical University, Xinxiang, Henan, P.R. China
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Hongjuan Li
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Shuli Wang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, P.R. China
| |
Collapse
|
8
|
Lizano M, Carrillo-García A, De La Cruz-Hernández E, Castro-Muñoz LJ, Contreras-Paredes A. Promising predictive molecular biomarkers for cervical cancer (Review). Int J Mol Med 2024; 53:50. [PMID: 38606495 PMCID: PMC11090266 DOI: 10.3892/ijmm.2024.5374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Cervical cancer (CC) constitutes a serious public health problem. Vaccination and screening programs have notably reduced the incidence of CC worldwide by >80%; however, the mortality rate in low‑income countries remains high. The staging of CC is a determining factor in therapeutic strategies: The clinical management of early stages of CC includes surgery and/or radiotherapy, whereas radiotherapy and/or concurrent chemotherapy are the recommended therapeutic strategies for locally advanced CC. The histopathological characteristics of tumors can effectively serve as prognostic markers of radiotherapy response; however, the efficacy rate of radiotherapy may significantly differ among cancer patients. Failure of radiotherapy is commonly associated with a higher risk of recurrence, persistence and metastasis; therefore, radioresistance remains the most important and unresolved clinical problem. This condition highlights the importance of precision medicine in searching for possible predictive biomarkers to timely identify patients at risk of treatment response failure and provide tailored therapeutic strategies according to genetic and epigenetic characteristics. The present review aimed to summarize the evidence that supports the role of several proteins, methylation markers and non‑coding RNAs as potential predictive biomarkers for CC.
Collapse
Affiliation(s)
- Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Adela Carrillo-García
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico
| | - Erick De La Cruz-Hernández
- Laboratorio de Investigación en Enfermedades Metabólicas e Infecciosas, División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Ranchería Sur Cuarta Sección, Comalcalco City, Tabasco 86650, Mexico
| | | | - Adriana Contreras-Paredes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico
| |
Collapse
|
9
|
Jin M, Yuan T, Tian K, Li J, Huang Q, Chi Y, Huang G. Oncogenic circ-SLC16A1 promotes progression of non-small cell lung cancer via regulation of the miR-1287-5p/profilin 2 axis. Cell Mol Biol Lett 2024; 29:43. [PMID: 38539084 PMCID: PMC10976772 DOI: 10.1186/s11658-024-00549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/13/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are single-stranded RNAs with covalently closed structures that have been implicated in cancer progression. However, the regulatory mechanisms remain largely unclear. So, the aim of this study was to reveal the role and regulatory mechanisms of circ-SLC16A1. METHODS In this study, next-generation sequencing was used to identify abnormally expressed circRNAs between cancerous and para-carcinoma tissues. Fluorescence in situ hybridization and quantitative reverse transcription polymerase chain reaction were performed to assess the expression patterns of circ-solute carrier family 16 member 1 (SLC16A1) in non-small cell lung cancer (NSCLC) cells and tissue specimens. The dual-luciferase reporter assay was utilized to identify downstream targets of circ-SLC16A1. Transwell migration, wound healing, 5-ethynyl-2'-deoxyuridine incorporation, cell counting, and colony formation assays were conducted to assess the proliferation and migration of NSCLC cells. A mouse tumor xenograft model was employed to determine the roles of circ-SLC16A1 in NSCLC progression and metastasis in vivo. RESULTS The results found that circ-SLC16A1 was upregulated in NSCLC cells and tissues. Downregulation of circ-SLC16A1 inhibited tumor growth by reducing proliferation, lung metastasis, and lymphatic metastasis of NSCLC cells, and arrested the cell cycle in the G1 phase. Also, silencing of circ-SLC16A1 promoted apoptosis of NSCLC cells. The results of bioinformatics analysis and the dual-luciferase reporter assay confirmed that microRNA (miR)-1287-5p and profilin 2 (PFN2) are downstream targets of circ-SLC16A1. PFN2 overexpression or circ-SLC16A1 inhibition restored proliferation and migration of NSCLC cells after silencing of circ-SLC16A1. PFN2 overexpression restored migration and proliferation of NSCLC cells post miR-1287-5p overexpression. CONCLUSIONS Collectively, these findings show that miR-1287-5p/PFN2 signaling was associated with downregulation of circ-SLC16A1 and reduced invasion and proliferation of NSCLC cells. So, circ-SLC16A1 is identified as a mediator of multiple pro-oncogenic signaling pathways in NSCLC and can be targeted to suppress tumor progression.
Collapse
Affiliation(s)
- Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Tailei Yuan
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
- Postgraduate Training Base of Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, 200135, People's Republic of China
- Department of Clinical Lab, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, People's Republic of China
- Jiangbei Hospital Affiliated to Xinglin College, Nantong University, Jiangsu, 210048, People's Republic of China
| | - Kaisai Tian
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
- Postgraduate Training Base of Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, 200135, People's Republic of China
- Department of Clinical Lab, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, People's Republic of China
| | - Jingjing Li
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Qingqing Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China.
| | - Yongbin Chi
- Postgraduate Training Base of Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, 200135, People's Republic of China.
- Department of Clinical Lab, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, People's Republic of China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China.
| |
Collapse
|
10
|
Begliarzade S, Sufianov A, Ilyasova T, Shumadalova A, Sufianov R, Beylerli O, Yan Z. Circular RNA in cervical cancer: Fundamental mechanism and clinical potential. Noncoding RNA Res 2024; 9:116-124. [PMID: 38035041 PMCID: PMC10686810 DOI: 10.1016/j.ncrna.2023.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
CC (CC) remains a significant global health concern, imposing a substantial health burden on women worldwide due to its high incidence and mortality rates. To address this issue, there is a need for ongoing research to uncover the underlying molecular mechanisms of CC and to discover novel diagnostic and therapeutic strategies. Recent progress in non-coding RNAs (ncRNAs) has opened new avenues for investigation, and circular RNAs (circRNAs) have emerged as molecules with diverse roles in various cellular processes. These circRNAs are distinct in structure, forming a closed loop, setting them apart from their linear counterparts. They are intricately involved in regulating different aspects of cellular functions, particularly in cell growth and development. Remarkably, circRNAs can have varying functions, either promoting or inhibiting oncogenic processes, depending on the specific cellular context. Recent studies have identified abnormal circRNAs expression patterns associated with CC, indicating their significant involvement in disease development. The differing circRNAs profiles linked to CC present promising opportunities for early detection, precise prognosis evaluation, and personalized treatment strategies. In this comprehensive review, we embark on a detailed exploration of CC-related circRNAs, elucidating their distinct roles and providing insights into the intricate molecular mechanisms governing CC's onset and progression. A growing body of evidence strongly suggests that circRNAs can serve as valuable biomarkers for early CC detection and hold potential as therapeutic targets for intervention. By delving into the complex interplay between circRNAs and CC, we are paving the way for innovative, individualized approaches to combat this serious disease, with the goal of reducing its impact on women's health globally and improving patient outcomes. As our understanding of circRNAs in the context of CC continues to deepen, the outlook for breakthroughs in diagnosis and treatment becomes increasingly promising.
Collapse
Affiliation(s)
- Sema Begliarzade
- Department of Oncology, Radiology and Radiotherapy, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | - Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Rinat Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Neurooncology, N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Ozal Beylerli
- Central Research Laboratory, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Zhongrui Yan
- Department of Gynecology, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, 301800, China
| |
Collapse
|
11
|
Heidari-Ezzati S, Moeinian P, Ahmadian-Nejad B, Maghbbouli F, Abbasi S, Zahedi M, Afkhami H, Shadab A, Sajedi N. The role of long non-coding RNAs and circular RNAs in cervical cancer: modulating miRNA function. Front Cell Dev Biol 2024; 12:1308730. [PMID: 38434620 PMCID: PMC10906305 DOI: 10.3389/fcell.2024.1308730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
Cervical cancer (CC) is a primary global health concern, ranking as the fourth leading cause of cancer-related death in women. Despite advancements in prognosis, long-term outcomes remained poor. Beyond HPV, cofactors like dietary deficiencies, immunosuppression, hormonal contraceptives, co-infections, and genetic variations are involved in CC progression. The pathogenesis of various diseases, including cancer, has brought to light the critical regulatory roles of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). The aberrant expression of these miRNAs, lncRNAs, and circRNAs plays a pivotal role in the initiation and progression of CC. This review provides a comprehensive summary of the recent literature regarding the involvement of lncRNAs and circRNAs in modulating miRNA functions in cervical neoplasia and metastasis. Studies have shown that lncRNAs and circRNAs hold great potential as therapeutic agents and innovative biomarkers in CC. However, more clinical research is needed to advance our understanding of the therapeutic benefits of circRNAs and lncRNAs in CC.
Collapse
Affiliation(s)
- Sama Heidari-Ezzati
- School of Nursing and Midwifery, Bonab University of Medical Sciences, Bonab, Iran
| | - Parisa Moeinian
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahar Ahmadian-Nejad
- School of Nursing and Midwifery, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | | | - Sheida Abbasi
- Department of obstetrics and gynecology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahlagha Zahedi
- Department of Pathology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Iran University of Medical Sciences, Deputy of Health, Tehran, Iran
| | - Nayereh Sajedi
- Department of Anatomy, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| |
Collapse
|
12
|
Heydarnia E, Dorostgou Z, Hedayati N, Mousavi V, Yahyazadeh S, Alimohammadi M, Gheibi M, Heidari P, Igder S, Mafi A, Vakili O. Circular RNAs and cervical cancer: friends or foes? A landscape on circRNA-mediated regulation of key signaling pathways involved in the onset and progression of HPV-related cervical neoplasms. Cell Commun Signal 2024; 22:107. [PMID: 38341592 PMCID: PMC10859032 DOI: 10.1186/s12964-024-01494-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Cervical cancer (CC) is a common gynecologic malignancy, accounting for a significant proportion of women death worldwide. Human papillomavirus (HPV) infection is one of the major etiological causes leading to CC onset; however, genetic, and epigenetic factors are also responsible for disease expansion. Circular RNAs (circRNAs), which are known as a particular subset of non-coding RNA (ncRNA) superfamily, with covalently closed loop structures, have been reported to be involved in the progression of diverse diseases, especially neoplasms. In this framework, abnormally expressed circRNAs are in strong correlation with CC pathogenesis through regulating substantial signaling pathways. Also, these RNA molecules can be considered as promising biomarkers and therapeutic targets for CC diagnosis/prognosis and treatment, respectively. Herein, we first review key molecular mechanisms, including Wnt/β-catenin, MAPK, and PI3K/Akt/mTOR signaling pathways, as well as angiogenesis and metastasis, by which circRNAs interfere with CC development. Then, diagnostic, prognostic, and therapeutic potentials of these ncRNA molecules will be highlighted in depth.
Collapse
Affiliation(s)
- Emad Heydarnia
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Dorostgou
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahide Mousavi
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mobina Gheibi
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Parasta Heidari
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
13
|
Wang Y, Xie Y, Wang X, Yang N, Wu Z, Zhang X. Tumor cells-derived extracellular vesicles carry circ_0064516 competitively inhibit microRNA-6805-3p and promote cervical cancer angiogenesis and tumor growth. Expert Opin Ther Targets 2024; 28:97-112. [PMID: 38270096 DOI: 10.1080/14728222.2024.2306353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND The current study tried to elucidate the regulatory role of tumor cell-derived exosomes (Exos)-circ_0064516 in angiogenesis and growth of cervical cancer. RESEARCH DESIGN AND METHODS Related cirRNAs and downstream target genes were identified through bioinformatics analysis. Exos were isolated from cervical cancer cell line CaSki, followed by co-cultured with human umbilical vein endothelial cells (HUVECs). Then, the roles of circ_0064516, miR-6805-3p, and MAPK1 in migration and angiogenesis of HUVECs were assayed. Furthermore, xenografted tumors were transplanted into nude mice for in vivo validation. RESULTS In vitro assay validated highly expressed circ_0064516 in cervical cancer cells. Tumor cell-derived Exos carried circ_0064516 to HUVECs. circ_0064516 increased MAPK1 expression by binding to miR-6805-3p, thus enhancing migration and angiogenesis. Exos containing circ_0064516 also promoted tumorigenesis of cervical cancer cells in nude mice. CONCLUSIONS We confirmed the oncogenic role of tumor cell-derived Exos carrying circ_0064516 in cervical cancer progression through miR-6805-3p/MAPK1.
Collapse
Affiliation(s)
- Yujue Wang
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yao Xie
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xue Wang
- Department of Obstetrics and Gynecology, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, Sichuan, China
| | - Nian Yang
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhao Wu
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xun Zhang
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
14
|
Li C, Ding L, Wang X, Shu P, Shi X, Zheng Z, Liu J, Zhu J. A RBM47 and IGF2BP1 mediated circular FNDC3B-FNDC3B mRNA imbalance is involved in the malignant processes of osteosarcoma. Cancer Cell Int 2023; 23:334. [PMID: 38129874 PMCID: PMC10740216 DOI: 10.1186/s12935-023-03175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are a class of noncoding RNAs that are involved in the progression of many human cancers. The precise gene locus and the roles of circular RNA from Fibronectin type III domain containing 3B (FNDC3B) in OS and its mechanisms of action have not been fully explored. MATERIALS AND METHODS qRT-qPCR assay was used to determine gene expressions. CCK8 Assay, EdU assay, wound-healing assay, transwell invasion assay and in vivo xenograft assay were used to perform functional investigations. RNA-FISH, immunofluorescence, RIP assay, RNA stability analysis were applied in mechanistic studies. RESULTS We found that circFNDC3B downregulated and FNDC3B mRNA upregulated in OS, and might be potential biomarkers for indicating disease progression and prognosis of OS patients. CircFNDC3B acted as a tumor suppressor gene to restrain OS progression and FNDC3B functioned as an oncogene to promote OS progression in vitro and in vivo. RNA binding protein RNA binding motif protein 47 (RBM47) could bind to the flanking introns of circFNDC3B to facilitate the generation of circFNDC3B, resulting in the reduction of FNDC3B mRNA and the circFNDC3B-FNDC3B mRNA imbalance. CircFNDC3B also inhibited FNDC3B mRNA expression by reducing its stability via competitively binding to Insulin-like growth-factor-2 mRNA binding protein (IGF2BP1). CONCLUSION This study demonstrated that RBM47 and IGF2BP1 mediated circular FNDC3B/FNDC3B mRNA imbalance was involved in the malignant processes of OS.
Collapse
Affiliation(s)
- Congya Li
- Precision Medicine Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, No.1288 of Lushan Road, Beilun District, Ningbo, 315800, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315021, Zhejiang, China
| | - Linchao Ding
- Department of Scientific Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, 365 Renmin East Road, Jinhua, 321000, Zhejiang, China
| | - Xuyao Wang
- Precision Medicine Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, No.1288 of Lushan Road, Beilun District, Ningbo, 315800, Zhejiang, China
| | - Peng Shu
- Precision Medicine Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, No.1288 of Lushan Road, Beilun District, Ningbo, 315800, Zhejiang, China
| | - Xuchao Shi
- Department of Orthopaedics Surgery, Beilun People's Hospital, Ningbo, Zhejiang, China
| | - Zhijian Zheng
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Jian Liu
- Precision Medicine Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, No.1288 of Lushan Road, Beilun District, Ningbo, 315800, Zhejiang, China.
| | - Junlan Zhu
- Precision Medicine Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, No.1288 of Lushan Road, Beilun District, Ningbo, 315800, Zhejiang, China.
- Health Science Center, Ningbo University, Ningbo, 315021, Zhejiang, China.
| |
Collapse
|
15
|
Wang Y, Zhao J, Wu J, Liu J, Wang Y, Xu T, Zhang M, Zhuang M, Zou L, Sun W, Han P, Song X. Genome-wide perturbations of A-to-I RNA editing dysregulated circular RNAs promoting the development of cervical cancer. Comput Biol Med 2023; 166:107546. [PMID: 37826952 DOI: 10.1016/j.compbiomed.2023.107546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
Cervical cancer, the second most common female malignant tumor, seriously threatens women's health and lives. Despite the availability of the HPV vaccine, effective treatment options for cervical cancer are still lacking. New research perspectives now clarify that RNA editing dysregulation and changes in circRNA expression are jointly involved in disease pathogenesis, so molecular changes associated with circRNA and RNA editing may provide clues for the development of new therapeutic strategies for cervical cancer. In this study, we designed a series of pipelines to identify and analyze dysregulated RNA editing events in circRNAs. Our findings indicate a decrease in A-to-I RNA editing levels in cervical cancer compared to normal tissues, and editing may influence the back-splicing process of circRNAs through structural modifications of Alu elements. Moreover, our research reveals that RNA editing could modulate circRNA biogenesis by influencing RNA binding protein (RBP) binding on a transcriptome-wide scale, as well as influence the expression and coding potential of circRNAs. Importantly, we identified three RNA editing sites that could serve as potential biomarkers. In summary, our study presents a comprehensive landscape of RNA editing perturbations in circRNAs, providing new insights into the complex relationship between RNA editing and circRNA dysregulation in cervical cancer.
Collapse
Affiliation(s)
- Yulan Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jian Zhao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jing Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Jingjing Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Yixuan Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Tianyi Xu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Meng Zhang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Minhui Zhuang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Lingxiao Zou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Wei Sun
- Department of Gynecology and Obstetrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China.
| | - Ping Han
- Department of Gynecology and Obstetrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China.
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| |
Collapse
|
16
|
George N, Bhandari P, Shruptha P, Jayaram P, Chaudhari S, Satyamoorthy K. Multidimensional outlook on the pathophysiology of cervical cancer invasion and metastasis. Mol Cell Biochem 2023; 478:2581-2606. [PMID: 36905477 PMCID: PMC10006576 DOI: 10.1007/s11010-023-04686-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
Cervical cancer being one of the primary causes of high mortality rates among women is an area of concern, especially with ineffective treatment strategies. Extensive studies are carried out to understand various aspects of cervical cancer initiation, development and progression; however, invasive cervical squamous cell carcinoma has poor outcomes. Moreover, the advanced stages of cervical cancer may involve lymphatic circulation with a high risk of tumor recurrence at distant metastatic sites. Dysregulation of the cervical microbiome by human papillomavirus (HPV) together with immune response modulation and the occurrence of novel mutations that trigger genomic instability causes malignant transformation at the cervix. In this review, we focus on the major risk factors as well as the functionally altered signaling pathways promoting the transformation of cervical intraepithelial neoplasia into invasive squamous cell carcinoma. We further elucidate genetic and epigenetic variations to highlight the complexity of causal factors of cervical cancer as well as the metastatic potential due to the changes in immune response, epigenetic regulation, DNA repair capacity, and cell cycle progression. Our bioinformatics analysis on metastatic and non-metastatic cervical cancer datasets identified various significantly and differentially expressed genes as well as the downregulation of potential tumor suppressor microRNA miR-28-5p. Thus, a comprehensive understanding of the genomic landscape in invasive and metastatic cervical cancer will help in stratifying the patient groups and designing potential therapeutic strategies.
Collapse
Affiliation(s)
- Neena George
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Poonam Bhandari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padival Shruptha
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sima Chaudhari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
17
|
Sun H, Xu F, You D. CircPI4KA Overexpression Enhances Carcinogenesis and Glycolysis Metabolism in Papillary Thyroid Carcinoma by Causing the miR-1287-5p-Mediated NRP2 Expression Elevation. Horm Metab Res 2023; 55:701-710. [PMID: 37813099 DOI: 10.1055/a-2153-7428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Circular RNAs (circRNAs) are implicated in regulating the pathogenesis of papillary thyroid carcinoma (PTC). Herein, we aimed to investigate how circRNA phosphatidylinositol 4-kinase IIIα (circPI4KA, hsa_circ_0062389) functioned as an oncogene in PTC. CircPI4KA, microRNA-1287-5p (miR-1287-5p) and Neuropilin-2 (NRP2) level detection were completed by reverse transcription-quantitative polymerase chain reaction assay. Cell proliferation was assessed through Cell Counting Kit-8 assay, colony formation assay, and EdU assay. Transwell assay was used for detecting migration and invasion abilities. Cell migration was also determined by wound healing assay. Cell apoptosis was assessed using flow cytometry assay. The protein examination was performed using western blot. Glycolysis was evaluated via commercial kits. Dual-luciferase reporter assay and RNA immunoprecipitation assay were conducted for target analysis. The role of circPI4KA in vivo was explored and analyzed via tumor xenograft assay. CircPI4KA was significantly upregulated in PTC tissues and cells. Knockdown of circPI4KA suppressed proliferation, migration, invasion, glycolysis, and induced apoptosis of PTC cells. CircPI4KA interacted with miR-1287-5p in PTC cells. The antitumor function of circPI4KA downregulation was reversed by inhibition of miR-1287-5p. The miR-1287-5p directly targeted NRP2, and circPI4KA elevated the NRP2 expression by sponging miR-1287-5p. PTC progression was impeded by miR-1287-5p via targeting NRP2. Silencing circPI4KA inhibited tumor growth in vivo through the miR-1287-5p/NRP2 axis. The collective results revealed that circPI4KA induced the upregulation of NRP2 via sponging miR-1287-5p, thus acting as a carcinogenic factor in PTC.
Collapse
Affiliation(s)
- Huanhuan Sun
- Head, Neck and Thoracic Tumor Surgery, Huangshi Central Hospital, Edong Healthcare, Affiliated Hospital of Hubei Institute of Technology, Huangshi, China
| | - Fen Xu
- Otorhinolaryngology Head and Neck Surgery, Huangshi Central Hospital, Edong Healthcare, Affiliated Hospital of Hubei Institute of Technology, Huangshi, China
| | - Dongyang You
- Head, Neck and Thoracic Tumor Surgery, Huangshi Central Hospital, Edong Healthcare, Affiliated Hospital of Hubei Institute of Technology, Huangshi, China
| |
Collapse
|
18
|
Song C, Kim KB, Lee GS, Shin S, Kim B. Is HOXA5 a Novel Prognostic Biomarker for Uterine Corpus Endometrioid Adenocarcinoma? Int J Mol Sci 2023; 24:14758. [PMID: 37834206 PMCID: PMC10573156 DOI: 10.3390/ijms241914758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Endometrial cancer (EC) is one of the most pervasive malignancies in females worldwide. HOXA5 is a member of the homeobox (HOX) family and encodes the HOXA5 protein. HOXA5 is associated with various cancers; however, its association with EC remains unclear. This study aimed to determine the association between HOXA5 gene expression and the prognosis of endometrioid adenocarcinoma, a subtype of EC (EAEC). Microarray data of HOXA5 were collected from the Gene Expression Omnibus datasets, consisting of 79 samples from GSE17025 and 20 samples from GSE29981. RNA-sequencing, clinical, and survival data on EC were obtained from The Cancer Genome Atlas cohort. Survival analysis revealed that HOXA5 overexpression was associated with poor overall survival in patients with EAEC (p = 0.044, HR = 1.832, 95% CI = 1.006-3.334). Cox regression analysis revealed that HOXA5 was an independent risk factor for poor prognosis in EAEC. The overexpression of HOXA5 was associated with a higher histological grade of EAEC, and it was also associated with TP53 mutation or the high copy number of EC. Our findings suggest the potential of HOXA5 as a novel biomarker for predicting poor survival outcomes in patients with EAEC.
Collapse
Affiliation(s)
- Changho Song
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan 44033, Republic of Korea;
| | - Kyoung Bo Kim
- Department of Laboratory Medicine, Keimyung University School of Medicine, Daegu 42601, Republic of Korea;
| | - Gi Su Lee
- Department of Obstetrics and Gynecology, Keimyung University School of Medicine, Daegu 42601, Republic of Korea;
| | - Soyoung Shin
- Department of Pediatrics, Keimyung University School of Medicine, Daegu 42601, Republic of Korea;
| | - Byoungje Kim
- Department of Radiology, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| |
Collapse
|
19
|
Luo X, Liu J, Wang X, Wang Y, Yuan J, Zhang Y. Circ_0005615 promotes cervical cancer cell growth and metastasis by modulating the miR-138-5p/KDM2A axis. J Biochem Mol Toxicol 2023; 37:e23410. [PMID: 37393518 DOI: 10.1002/jbt.23410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 04/25/2023] [Accepted: 06/08/2023] [Indexed: 07/03/2023]
Abstract
Cervical cancer (CC) is a highly fatal gynecological malignancy due to its high metastasis and recurrence rate. Circular RNA (circRNA) has been regarded as a regulator of CC. However, the underlying molecular mechanism of circ_0005615 in CC remains unclear. The levels of circ_0005615, miR-138-5p, and lysine demethylase 2A (KDM2A) were measured using qRT-PCR or western blot. Cell proliferation was assessed by Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, and colony formation experiments. Cell invasion and migration were tested by transwell assay and wound healing assay. Flow cytometry and Caspase-Glo 3/7 Assay kit were used to analyze cell apoptosis. The expression of proliferation-related and apoptosis-related markers was detected by western blot. The binding relationships among circ_0005615, miR-138-5p, and KDM2A were verified by dual-luciferase reporter assay or RNA immunoprecipitation assay. Xenograft assay was applied to detect the effect of circ_0005615 in vivo. Circ_0005615 and KDM2A were upregulated, while miR-138-5p was downregulated in CC tissues and cells. Circ_0005615 knockdown retarded cell proliferation, migration, and invasion, while promoting apoptosis. Besides, circ_0005615 sponged miR-138-5p, and miR-138-5p could target KDM2A. miR-138-5p inhibitor reversed the regulation of circ_0005615 knockdown on CC cell growth and metastasis, and KDM2A overexpression also abolished the inhibitory effect of miR-138-5p on CC cell growth and metastasis. In addition, we also discovered that circ_0005615 silencing inhibited CC tumor growth in vivo. Circ_0005615 acted as a tumor promoter in CC by regulating the miR-138-5p/KDM2A pathway.
Collapse
Affiliation(s)
- Xiaoning Luo
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiewen Liu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiangcai Wang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yili Wang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jun Yuan
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yu Zhang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
20
|
Hao L, Zhang J, Liu Z, Zhang Z, Mao T, Guo J. Role of the RNA-binding protein family in gynecologic cancers. Am J Cancer Res 2023; 13:3799-3821. [PMID: 37693158 PMCID: PMC10492115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023] Open
Abstract
Gynecological cancers pose a threat to women's health. Although early-stage gynecological cancers show good outcomes after standardized treatment, the prognosis of patients with advanced, met-astatic, and recurrent cancers is poor. RNA-binding proteins (RBPs) are important cellular proteins that interact with RNA through RNA-binding domains and participate extensively in post-transcriptional regulatory processes, such as mRNA alternative splicing, polyadenylation, intracellular localization and stability, and translation. Abnormal RBP expression affects the normal function of oncogenes and tumor suppressor genes in many malignancies, thus leading to the occurrence or progression of cancers. Similarly, RBPs play crucial roles in gynecological carcinogenesis. We summarize the role of RBPs in gynecological malignancies and explore their potential in the diagnosis and treatment of cancers. The findings summarized in this review may provide a guide for future research on the functions of RBPs.
Collapse
Affiliation(s)
- Linlin Hao
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Jian Zhang
- School of Life Sciences, Department of Biology, Southern University of Science and TechnologyShenzhen 518055, Guangdong, China
| | - Zhongshan Liu
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Zhiliang Zhang
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Tiezhu Mao
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Jie Guo
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| |
Collapse
|
21
|
Li X, Kong Y, Li H, Xu M, Jiang M, Sun W, Xu S. Circ_0081054 facilitates melanoma development via sponging miR-637 and regulating RAB9A. Skin Res Technol 2023; 29:e13313. [PMID: 37231931 PMCID: PMC10157265 DOI: 10.1111/srt.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/18/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Accumulating evidence announces that aberrantly expressed circRNAs were closely related to the development of human cancers. However, the role and mechanism of multiple circRNAs remain unclear. Our work aimed to disclose the functional role and mechanism of circ_0081054 in melanoma. METHODS Quantitative real-time polymerase chain reaction assay was utilized to detect circ_0081054, microRNA-637 (miR-637) and RAB9A (member RAS oncogene family) mRNA expression. Cell proliferative ability was evaluated via Cell Counting Kit-8 and colony formation assay. Cell invasion was assessed by using wound healing assay. RESULTS The significant upregulation of circ_0081054 was detected in melanoma tissues and cells. The proliferation, migration, glycolytic metabolism, and angiogenesis in melanoma cells were suppressed, while apoptosis was promoted following the silence of circ_0081054. In addition, circ_0081054 could target miR-637, and miR-637 inhibitor could reverse the effects of circ_0081054 deficiency. Furthermore, RAB9A was a target gene for miR-637 and RAB9A overexpression could reverse the effects of miR-637 overexpression. In addition, the deficiency of circ_0081054 hampered tumor growth in vivo. Moreover, circ_0081054 could regulate RAB9A expression by sponging miR-637. CONCLUSION All results indicated that circ_0081054 promoted the malignant behaviors of melanoma cells partly by regulating the miR-637/RAB9A molecular axis.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of DermatologyThe Affiliated Huaian NO.1 People's Hospital of Nanjing Medical UniversityHuaianChina
| | - Yinghui Kong
- Department of DermatologyThe Affiliated Huaian NO.1 People's Hospital of Nanjing Medical UniversityHuaianChina
| | - He Li
- Department of DermatologyThe Affiliated Huaian NO.1 People's Hospital of Nanjing Medical UniversityHuaianChina
| | - Manyuan Xu
- Department of DermatologyThe Affiliated Huaian NO.1 People's Hospital of Nanjing Medical UniversityHuaianChina
| | - Ming Jiang
- Department of DermatologyThe Affiliated Huaian NO.1 People's Hospital of Nanjing Medical UniversityHuaianChina
| | - Weiguo Sun
- Department of DermatologyThe Affiliated Huaian NO.1 People's Hospital of Nanjing Medical UniversityHuaianChina
| | - Suping Xu
- Department of DermatologyThe Affiliated Huaian NO.1 People's Hospital of Nanjing Medical UniversityHuaianChina
| |
Collapse
|
22
|
Liu H, Ma H, Li Y, Zhao H. Advances in epigenetic modifications and cervical cancer research. Biochim Biophys Acta Rev Cancer 2023; 1878:188894. [PMID: 37011697 DOI: 10.1016/j.bbcan.2023.188894] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Cervical cancer (CC) is an important public health problem for women, and perspectives and information regarding its prevention and treatment are quickly evolving. Human papilloma virus (HPV) has been recognized as a major contributor to CC development; however, HPV infection is not the only cause of CC. Epigenetics refers to changes in gene expression levels caused by non-gene sequence changes. Growing evidence suggests that the disruption of gene expression patterns which were governed by epigenetic modifications can result in cancer, autoimmune diseases, and various other maladies. This article mainly reviews the current research status of epigenetic modifications in CC based on four aspects, respectively DNA methylation, histone modification, noncoding RNA regulation and chromatin regulation, and we also discuss their functions and molecular mechanisms in the occurrence and progression of CC. This review provides new ideas for early screening, risk assessment, molecular targeted therapy and prognostic prediction of CC.
Collapse
|
23
|
Karami Fath M, Pourbagher Benam S, Kouhi Esfahani N, Shahkarami N, Shafa S, Bagheri H, Shafagh SG, Payandeh Z, Barati G. The functional role of circular RNAs in the pathogenesis of retinoblastoma: a new potential biomarker and therapeutic target? Clin Transl Oncol 2023:10.1007/s12094-023-03144-2. [PMID: 37000290 DOI: 10.1007/s12094-023-03144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/01/2023] [Indexed: 04/01/2023]
Abstract
Retinoblastoma (RB) is a common cancer in infants and children. It is a curable disease; however, a delayed diagnosis or treatment makes the treatment difficult. Genetic mutations have a central role in the pathogenesis of RB. Genetic materials such as RNAs (coding and non-coding RNAs) are also involved in the progression of the tumor. Circular RNA (circRNA) is the most recently identified RNA and is involved in regulating gene expression mainly through "microRNA sponges". The dysregulation of circRNAs has been observed in several diseases and tumors. Also, various studies have shown that circRNAs expression is changed in RB tissues. Due to their role in the pathogenesis of the disease, circRNAs might be helpful as a diagnostic or prognostic biomarker in patients with RB. In addition, circRNAs could be a suitable therapeutic target to treat RB in a targeted therapy approach.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | | | - Negar Shahkarami
- School of Allied Medical Sciences, Fasa University of Medical Sciences, Fasa, Iran
| | - Shahriyar Shafa
- School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Bagheri
- Faculty of Medicine, Islamic Azad University of Tehran Branch, Tehran, Iran
| | | | - Zahra Payandeh
- Division Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
24
|
Exosomal circ-ADRM1 promotes lung adenocarcinoma progression and induces macrophage M2 polarization through regulating MMP14 mRNA and protein. Anticancer Drugs 2023; 34:333-343. [PMID: 36454975 DOI: 10.1097/cad.0000000000001430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
OBJECTIVE Lung adenocarcinoma (LUAD) is one of the frequent subtypes of lung cancer, featuring high rates of incidence and mortality. Matrix metalloproteinase 14 (MMP14) is known as a regulator in multiple cancers, whereas its upstream molecular mechanism remains to be investigated. This study aims to reveal the upstream molecular mechanism of MMP14 in LUSC progression. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were conducted to examine the levels of MMP14 mRNA and protein in LUAD cells, respectively. Cell counting kit-8 (CCK-8), transwell assay and wound healing assay were implemented to unveil LUAD cell proliferation, migration and invasion after indicated transfections. Flow cytometry analysis was applied to evaluate macrophage polarization. Mechanism experiments such as western blot, co-immunoprecipitation (Co-IP), RNA pulldown assay, luciferase reporter assay and RNA-binding protein immunoprecipitation (RIP) assay were used to explore relevant molecular mechanisms. RESULTS MMP14 facilitated LUAD cell proliferation, invasion and migration. MMP14 is the target gene of miR-1287-5p. Circ-ADRM1 upregulates MMP14 expression through sponging miR-1287-5p. Circ-ADRM1 recruits USP12 to impede the ubiquitination of MMP14 protein, thereby enhancing the stability of MMP14 protein. LUAD-derived exosomes induced macrophage M2 polarization by delivering circ-ADRM1. CONCLUSIONS Circ-ADRM1 promotes LUAD cell proliferation, invasion and migration through upregulating MMP14. Additionally, circ-ADRM1 induces macrophage M2 polarization in an exosome-dependent manner.
Collapse
|
25
|
Zhang C, Jiang H, Yuan L, Liao Y, Liu P, Du Q, Pan C, Liu T, Li J, Chen Y, Huang J, Liang Y, Xia M, Xu M, Qin S, Zou Q, Liu Y, Huang H, Pan Y, Li J, Liu J, Wang W, Yao S. CircVPRBP inhibits nodal metastasis of cervical cancer by impeding RACK1 O-GlcNAcylation and stability. Oncogene 2023; 42:793-807. [PMID: 36658304 PMCID: PMC10005957 DOI: 10.1038/s41388-023-02595-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023]
Abstract
Lymph node (LN) metastasis is one of the most malignant clinical features in patients with cervical cancer (CCa). Understanding the mechanism of lymph node metastasis will provide treatment strategies for patients with CCa. Circular RNAs (circRNA) play a critical role in the development of human cancers. However, the role and mechanism of circRNAs in lymph node metastasis remain largely unknown. Here, it is reported that loss expression of circRNA circVPRBP was closely associated with LN metastasis and poor survival of CCa patients. In vitro and in vivo assays showed that circVPRBP overexpression notably inhibited lymphangiogenesis and LN metastasis, whereas RfxCas13d mediated silencing of circVPRBP promoted lymphangiogenesis and the ability of the cervical cancer cells to metastasize to the LNs. Mechanistically, circVPRBP could bind to RACK1 and shield the S122 O-GlcNAcylation site to promote RACK1 degradation, resulting in inhibition of Galectin-1 mediated lymphangiogenesis and LN metastasis in CCa. Taken together, the results demonstrate that circVPRBP is a potential prognostic biomarker and a novel therapeutic target for LN metastasis in CCa patients.
Collapse
Affiliation(s)
- Chunyu Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Hongye Jiang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Li Yuan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Yuandong Liao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Pan Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Qiqiao Du
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Chaoyun Pan
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Tianyu Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Jie Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Yili Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Jiaming Huang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Yanchun Liang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Meng Xia
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Manman Xu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Shuhang Qin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Qiaojian Zou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Yunyun Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Hua Huang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Yuwen Pan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Jiaying Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Junxiu Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.
| | - Wei Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.
| |
Collapse
|
26
|
Wang F, Niu Y, Chen K, Yuan X, Qin Y, Zheng F, Cui Z, Lu W, Wu Y, Xia D. Extracellular Vesicle-Packaged circATP2B4 Mediates M2 Macrophage Polarization via miR-532-3p/SREBF1 Axis to Promote Epithelial Ovarian Cancer Metastasis. Cancer Immunol Res 2023; 11:199-216. [PMID: 36512324 PMCID: PMC9896028 DOI: 10.1158/2326-6066.cir-22-0410] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/07/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
Ovarian cancer is one of the most common gynecologic malignancies with a highly immunosuppressive tumor microenvironment (TME) and poor prognosis. Circular RNA (circRNA) is a type of noncoding RNA with high stability, which has been shown to play an important role in biological processes and TME reprogramming in a variety of tumors. The biological function of a novel circRNA, circATP2B4, in epithelial ovarian cancer (EOC) was detected and evaluated. Transmission electron microscopy, differential ultracentrifugation and qRT-PCR were used to verify the existence of extracellular vesicles (EV)-packaged circATP2B4. Macrophage uptake of circATP2B4 was determined by EVs tracing. Dual luciferase reporter, FISH, Western blotting, and flow cytometry assays were used to investigate the interactions between circATP2B4 and miR-532-3p as well as sterol regulatory element-binding factor 1 (SREBF1) expression in macrophages. CircATP2B4 was upregulated in EOC tissues and positively correlated with ovarian cancer progression. Functionally, circATP2B4 promoted carcinogenic progression and metastasis of EOC both in vitro and in vivo. Mechanistically, EV-packaged circATP2B4 in EOC could be transmitted to infiltrated macrophages and acted as competing endogenous RNA of miR-532-3p to relieve the repressive effect of miR-532-3p on its target SREBF1. Furthermore, circATP2B4 induced macrophage M2 polarization by regulating the miR-532-3p/SREBF1/PI3Kα/AKT axis, thereby leading to immunosuppression and ovarian cancer metastasis. Collectively, these data indicate that circATP2B4-containing EVs generated by EOC cells promoted M2 macrophages polarization and malignant behaviors of EOC cells. Thus, targeting EVs-packaged circATP2B4 may provide a potential diagnosis and treatment strategy for ovarian cancer.
Collapse
Affiliation(s)
- Fang Wang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuequn Niu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelie Chen
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Yuan
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuheng Qin
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Zheng
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenyan Cui
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiguo Lu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihua Wu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Hangzhou, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Zhu Y, Liu L, Chu L, Lan J, Wei J, Li W, Xue C. Microscopic polyangiitis plasma-derived exosomal miR-1287-5p induces endothelial inflammatory injury and neutrophil adhesion by targeting CBL. PeerJ 2023; 11:e14579. [PMID: 36726727 PMCID: PMC9885867 DOI: 10.7717/peerj.14579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/28/2022] [Indexed: 01/28/2023] Open
Abstract
Background An inflammatory environment around the vessel wall caused by leukocyte infiltration is one of the characteristic histopathological features of microscopic polyangiitis (MPA); however, the pathogenic mechanisms are not fully understood. Studies have found that circulating microRNA (miRNA) can be used as potential biomarkers for the diagnosis and classification of anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitides (AAV), and the E3 ubiquitin ligase casitas B-lineage lymphoma (CBL) seems to be associated with inflammation. In addition, evidence indicates that miRNA can be tracked into exosomes and transferred into recipient cells to mediate the process of vascular endothelial injury. Herein, we aimed to identify the profiles of exosomal miRNA, and determine the effect of exosomal miR-1287-5p and its target gene CBL on vascular endothelial cells in MPA. Method We isolated plasma exosomes from patients with MPA (MPA-exo) and healthy controls (HC-exo) by ultracentrifugation and conducted exosome small-RNA sequencing to screen differential miRNA expression in MPA-exo (n = 3) compared to HC-exo (n = 3). We measured the expression levels of miR-1303, miR-1287-5p, and miR-129-1-3p using quantitative reverse transcription-polymerase chain reaction (qRT-PCR, n = 6) and performed dual luciferase reporter gene assays to confirm the downstream target gene of miR-1287-5p. In addition, we treated human umbilical vein endothelial cell (HUVEC) with MPA-exo, or transfected them with miR-1287-5p mimic/inhibitor or with CBL-siRNA/CBL-siRNA+ miR-1287-5p inhibitor. After cell culture, we evaluated the effects on vascular endothelial cells by examining the mRNA levels of IL-6, IL-8, MCP-1, ICAM-1 and E-selectin using qRT-PCR and performed neutrophil adhesion assay with haematoxylin staining. Result Transmission electron microscopy, Western blot and nanoparticle tracking analysis showed that we successfully purified exosomes and MPA-exo could be absorbed into HUVEC. We screened a total of 1,077 miRNA by sequencing and observed a high abundance of miR-1287-5p in the exosomes obtained from MPA plasma. The dual luciferase reporter assay identified CBL as a downstream target gene of miR-1287-5p, and the results revealed that MPA-exo decreased CBL protein expression in HUVEC. In addition, treatment with MPA-exo, up-regulating miR-1287-5p or silencing of CBL in HUVEC significantly increased the mRNA expression of inflammatory factors (including IL-6, IL-8, and MCP-1) and adhesion molecules (including ICAM-1 and E-selection) and promoted the adhesion of neutrophils to HUVEC. However, down-regulating miR-1287-5p had the opposite effect. Conclusion Our study revealed that MPA-exo was involved in the intercellular transfer of miR-1287-5p and subsequently promote the development of acute endothelial injury in MPA. MiR-1287-5p and CBL agonists may be promising therapeutic approach for MPA-induced vascular inflammatory injury.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China,The First Affiliated Hospital, Department of Nephrology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Liu Liu
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Liepeng Chu
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jingjing Lan
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jingsi Wei
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wei Li
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chao Xue
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
28
|
Jiang Q, Tan XP, Zhang CH, Li ZY, Li D, Xu Y, Liu YX, Wang L, Ma Z. Non-Coding RNAs of Extracellular Vesicles: Key Players in Organ-Specific Metastasis and Clinical Implications. Cancers (Basel) 2022; 14:cancers14225693. [PMID: 36428785 PMCID: PMC9688215 DOI: 10.3390/cancers14225693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous membrane-encapsulated vesicles released by most cells. They act as multifunctional regulators of intercellular communication by delivering bioactive molecules, including non-coding RNAs (ncRNAs). Metastasis is a major cause of cancer-related death. Most cancer cells disseminate and colonize a specific target organ via EVs, a process known as "organ-specific metastasis". Mounting evidence has shown that EVs are enriched with ncRNAs, and various EV-ncRNAs derived from tumor cells influence organ-specific metastasis via different mechanisms. Due to the tissue-specific expression of EV-ncRNAs, they could be used as potential biomarkers and therapeutic targets for the treatment of tumor metastasis in various types of cancer. In this review, we have discussed the underlying mechanisms of EV-delivered ncRNAs in the most common organ-specific metastases of liver, bone, lung, brain, and lymph nodes. Moreover, we summarize the potential clinical applications of EV-ncRNAs in organ-specific metastasis to fill the gap between benches and bedsides.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Gastroenterology, First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou 434023, China
- Digestive Disease Research Institution of Yangtze University, Yangtze University, Jingzhou 434023, China
- Department of Cardiovascular Medicine, Honghu Hospital of Traditional Chinese Medicine, Honghu 433200, China
| | - Xiao-Ping Tan
- Department of Gastroenterology, First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou 434023, China
- Digestive Disease Research Institution of Yangtze University, Yangtze University, Jingzhou 434023, China
| | - Cai-Hua Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Zhi-Yuan Li
- Department of Cardiovascular Medicine, Honghu Hospital of Traditional Chinese Medicine, Honghu 433200, China
| | - Du Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Yan Xu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Yu Xuan Liu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore
- Correspondence: (Z.M.); (L.W.)
| | - Zhaowu Ma
- Department of Gastroenterology, First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
- Correspondence: (Z.M.); (L.W.)
| |
Collapse
|
29
|
Zheng D, Ning J, Xia Y, Ruan Y, Cheng F. Comprehensive analysis of a homeobox family gene signature in clear cell renal cell carcinoma with regard to prognosis and immune significance. Front Oncol 2022; 12:1008714. [PMID: 36387262 PMCID: PMC9660242 DOI: 10.3389/fonc.2022.1008714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/04/2022] [Indexed: 12/30/2022] Open
Abstract
The homeobox (HOX) family genes have been linked to multiple types of tumors, while their effect on malignant behaviors of clear cell renal cell carcinoma (ccRCC) and clinical significance remains largely unknown. Here, we comprehensively analyzed the expression profiles and prognostic value of HOX genes in ccRCC using datasets from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. We developed a prognostic signature comprising eight HOX genes (HOXB1, HOXA7, HOXB5, HOXD8, HOXD9, HOXB9, HOXA9, and HOXA11) for overall survival prediction in ccRCC and it allowed patients to be subdivided into high- and low-risk groups. Kaplan-Meier survival analysis in all the internal and external cohorts revealed significant difference in clinical outcome of patients in different risk groups, indicating the satisfactory predictive power of the signature. Additionally, we constructed a prognostic nomogram by integrating signature-derived risk score and clinical factors such as gender, age, T and M status, which might be helpful for clinical decision-making and designing tailored management schedules. Immunological analysis revealed that the regulatory T cells (Tregs) infiltrated differently between the two subgroups in both TCGA and ICGC cohorts. ssGSEA method showed that the enrichment scores for mast cells were significantly lower in high-risk group compared with the low-risk group, which was consistent in both TCGA and ICGC cohorts. As for the related immune function, the enrichment scores of APC co-inhibition, para-inflammation, and type II IFN response were consistently lower in high-risk group in both cohorts. Of the eight HOX genes, the mRNA and protein levels of HOXD8 were downregulated in ccRCC than that in normal tissues, and decreased expression of HOXD8 was associated with increased tumor grade and stage, and lymph node metastasis. Survival analysis revealed that lower expression of HOXD8 predicted worse overall survival in ccRCC. In conclusion, our HOX gene-based signature was a favorable indicator to predict the prognosis of ccRCC cases and associated with immune cell infiltration. HOXD8 might be a tumor suppressor gene in ccRCC and a potential predictor of tumor progression.
Collapse
Affiliation(s)
| | | | | | - Yuan Ruan
- *Correspondence: Fan Cheng, ; Yuan Ruan,
| | - Fan Cheng
- *Correspondence: Fan Cheng, ; Yuan Ruan,
| |
Collapse
|
30
|
Huang Y, Li Y, Lin W, Fan S, Chen H, Xia J, Pi J, Xu JF. Promising Roles of Circular RNAs as Biomarkers and Targets for Potential Diagnosis and Therapy of Tuberculosis. Biomolecules 2022; 12:biom12091235. [PMID: 36139074 PMCID: PMC9496049 DOI: 10.3390/biom12091235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, remains one of the most threatening infectious diseases worldwide. A series of challenges still exist for TB prevention, diagnosis and treatment, which therefore require more attempts to clarify the pathological and immunological mechanisms in the development and progression of TB. Circular RNAs (circRNAs) are a large class of non-coding RNA, mostly expressed in eukaryotic cells, which are generated by the spliceosome through the back-splicing of linear RNAs. Accumulating studies have identified that circRNAs are widely involved in a variety of physiological and pathological processes, acting as the sponges or decoys for microRNAs and proteins, scaffold platforms for proteins, modulators for transcription and special templates for translation. Due to the stable and widely spread characteristics of circRNAs, they are expected to serve as promising prognostic/diagnostic biomarkers and therapeutic targets for diseases. In this review, we briefly describe the biogenesis, classification, detection technology and functions of circRNAs, and, in particular, outline the dynamic, and sometimes aberrant changes of circRNAs in TB. Moreover, we further summarize the recent progress of research linking circRNAs to TB-related pathogenetic processes, as well as the potential roles of circRNAs as diagnostic biomarkers and miRNAs sponges in the case of Mtb infection, which is expected to enhance our understanding of TB and provide some novel ideas about how to overcome the challenges associated TB in the future.
Collapse
Affiliation(s)
- Yifan Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Wensen Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Haorong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaojiao Xia
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (J.P.); (J.-F.X.)
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (J.P.); (J.-F.X.)
| |
Collapse
|
31
|
Shi Q, Ma Y, Zhang X, Yin C. Circ_0060551 promotes the migration and invasion of cervical cancer by Up-regulating TPD52. Am J Reprod Immunol 2022; 88:e13586. [PMID: 35716110 DOI: 10.1111/aji.13586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/28/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
PROBLEM Cervical cancer has been recognized as the second most common cancer in women worldwide. Previous studies have reported that some circular RNAs (circRNAs) can influence the progression of cervical cancer. However, more researches are still required to unveil the underlying mechanism of how circRNAs regulate the progression of such cancer. We aimed at unveiling the mechanism of how circ_0060551 effected the progression of cervical cancer. METHOD OF STUDY RT-qPCR and western blot assays were used to detect the expression and protein levels. Mechanism experiments were conducted to investigate the relationship among circ_0060551, TPD52, miR-520a-5p and ELAVL1. Rescue assays were mainly carried out to verify how circ_0060551 influenced the migration and invasion of cervical cancer cells. RESULTS According to the results, circ_0060551 was up-regulated in cervical cancer cells and could promote the migration and invasion of cells via TPD52. In addition, circ_0060551 could up-regulate TPD52 expression through a ceRNA model to target miR-520a-5p. Moreover, circ_0060551 could stabilize the mRNA expression of TPD52 via recruiting ELAVL1. CONCLUSION Our study proved that circ_0060551 could promote the migration and invasion of cervical cancer cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qi Shi
- Changchun Obstetrics- Gynecology Hospital, No. 555 West Fifth Road, Nanguan District, Changchun, Jilin, 130042, China
| | - Yuanyuan Ma
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Heilongjiang University of Chinese Medicine, No. 2 Xiangjiang Road, Xiangfang District, Harbin, Heilongjiang, 150090, China
| | - Xiaojie Zhang
- Changchun Obstetrics- Gynecology Hospital, No. 555 West Fifth Road, Nanguan District, Changchun, Jilin, 130042, China
| | - Chunxia Yin
- Changchun Obstetrics- Gynecology Hospital, No. 555 West Fifth Road, Nanguan District, Changchun, Jilin, 130042, China
| |
Collapse
|
32
|
Yuan L, Zhang C, Li J, Liao Y, Huang H, Pan Y, Du Q, Chen Y, Wang W, Yao S. Profiling and integrated analysis of differentially expressed circRNAs in cervical cancer. Genomics 2022; 114:110418. [PMID: 35724730 DOI: 10.1016/j.ygeno.2022.110418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Circular RNAs (circRNAs) are a new type of regulatory RNAs, which have been identified to play critical role in various tumors. However, the profiles and roles of circRNAs in cervical cancer (CCa) have not been fully understood and need to be further explored. In the present study, we performed circRNA array and mRNA-sequencing (mRNA-Seq) to profile the differentially expressed circRNAs and mRNAs in CCa tissues. A total of 397 differentially expressed circRNAs and 2138 differentially expressed mRNAs were detected, respectively. Subsequently, a circRNA-miRNA-mRNA regulatory network was constructed and indicated that hsa_circ_0026377 was downregulated in CCa. Overexpression of hsa_circ_0026377 inhibited HeLa and SiHa cells proliferation, migration and invasion. Collectively, this study provided new insights into the circRNA profiles in CCa and suggested that hsa_circ_0026377 might play important roles in CCa development.
Collapse
Affiliation(s)
- Li Yuan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, Guangdong, China
| | - Chunyu Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, Guangdong, China
| | - Jiaying Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, Guangdong, China
| | - Yuandong Liao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, Guangdong, China
| | - Hua Huang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, Guangdong, China
| | - Yuwen Pan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, Guangdong, China
| | - Qiqiao Du
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, Guangdong, China
| | - Yili Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, Guangdong, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, Guangdong, China.
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, Guangdong, China.
| |
Collapse
|
33
|
Najafi S. Circular RNAs as emerging players in cervical cancer tumorigenesis; A review to roles and biomarker potentials. Int J Biol Macromol 2022; 206:939-953. [PMID: 35318084 DOI: 10.1016/j.ijbiomac.2022.03.103] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/08/2022] [Accepted: 03/16/2022] [Indexed: 01/10/2023]
Abstract
Cervical cancer is the most lethal gynecological cancer among women worldwide. Most of the patients are diagnosed at the advanced stages due to late diagnosis and lack of accessible and valuable approaches for early detection of the disease. Circular RNAs (circRNAs) are a distinguishable class of non-coding RNAs with characteristic loop structures. Although their function has not been completely elucidated; however, recent evidence has suggested regulatory functions for circRNAs on gene expression controlling various biological functions like cell growth and apoptosis, development, embryogenesis, and pathogenesis of human diseases particularly cancers. Studies show the role of dysregulated circRNAs in biological processes including cell proliferation, migration, invasion, apoptosis, angiogenesis, and chemoresistance contributing to affect tumorigenesis in ovarian cancer cells, animal, and clinical studies. These effects can be defined as consistent with several tumorigenesis characteristics, which are defined as "hallmarks of cancer". Additionally, dysregulated circRNAs exhibit prognostic, and diagnostic potentials both in the prediction of prognosis in ovarian cancer patients, and also their discrimination from healthy individuals. Furthermore, targeting circRNAs has shown positive results in the suppression of malignant features of cancer cells, and also in overcoming chemoresistance. In this review, I have gathered the majority of studies evaluating the role of circRNAs in the development, and progression of cervical cancer, and also have discussed prognostic, diagnostic, and therapeutic potentials of circRNAs for clinical applications in cervical cancer patients.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Functional Screen for microRNAs Suppressing Anchorage-Independent Growth in Human Cervical Cancer Cells. Int J Mol Sci 2022; 23:ijms23094791. [PMID: 35563182 PMCID: PMC9100801 DOI: 10.3390/ijms23094791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
The progression of anchorage-dependent epithelial cells to anchorage-independent growth represents a critical hallmark of malignant transformation. Using an in vitro model of human papillomavirus (HPV)-induced transformation, we previously showed that acquisition of anchorage-independent growth is associated with marked (epi)genetic changes, including altered expression of microRNAs. However, the laborious nature of the conventional growth method in soft agar to measure this phenotype hampers a high-throughput analysis. We developed alternative functional screening methods using 96- and 384-well ultra-low attachment plates to systematically investigate microRNAs regulating anchorage-independent growth. SiHa cervical cancer cells were transfected with a microRNA mimic library (n = 2019) and evaluated for cell viability. We identified 84 microRNAs that consistently suppressed growth in three independent experiments. Further validation in three cell lines and comparison of growth in adherent and ultra-low attachment plates yielded 40 microRNAs that specifically reduced anchorage-independent growth. In conclusion, ultra-low attachment plates are a promising alternative for soft-agar assays to study anchorage-independent growth and are suitable for high-throughput functional screening. Anchorage independence suppressing microRNAs identified through our screen were successfully validated in three cell lines. These microRNAs may provide specific biomarkers for detecting and treating HPV-induced precancerous lesions progressing to invasive cancer, the most critical stage during cervical cancer development.
Collapse
|
35
|
Zhang Y, Zhang X, Xu Y, Fang S, Ji Y, Lu L, Xu W, Qian H, Liang ZF. Circular RNA and Its Roles in the Occurrence, Development, Diagnosis of Cancer. Front Oncol 2022; 12:845703. [PMID: 35463362 PMCID: PMC9021756 DOI: 10.3389/fonc.2022.845703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
Circular RNAs (circRNAs) are non-coding single-stranded covalently closed circular RNA, mainly produced by reverse splicing of exons of precursor mRNAs (pre-mRNAs). The characteristics of high abundance, strong specificity, and good stability of circRNAs have been discovered. A large number of studies have reported its various functions and mechanisms in biological events, such as the occurrence and development of cancer. In this review, we focus on the classification, characterization, biogenesis, functions of circRNAs, and the latest advances in cancer research. The development of circRNAs as biomarkers in cancer diagnosis and treatment also provides new ideas for studying circRNAs research.
Collapse
Affiliation(s)
- Yue Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinyi Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yumeng Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shikun Fang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ying Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ling Lu
- Child Healthcare Department, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhao Feng Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
36
|
Ji H, Hu N. Circular RNA 0001823 aggravates the growth and metastasis of the cervical cancer cells through modulating the microRNA-613/RAB8A axis. Bioengineered 2022; 13:10335-10349. [PMID: 35435110 PMCID: PMC9161891 DOI: 10.1080/21655979.2022.2063665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Cervical cancer (CC) is a gynecological cancer, which has become the second malignant tumor with mortality in developing countries. The purpose of current study was to explore the influence of Circular RNA 0001823 (circ_0001823) in the CC development. Thirty CC tissues and paracancerous tissues were obtained, and Hela and CaSki CC cells were purchased for this study. The cell growth was analyzed by CCK-8 and colony formation assays. The cell metastasis was determined with Transwell assay. The circ_0001823, miR-613, and RAB8A expression were analyzed with qRT-PCR analysis. The specific mechanisms of circRNA_0001823 were analyzed by Dual luciferase reporter and RNA pull-down assays. The circ_0001823 and RAB8A expressions were increased, and miR-613 were decreased in the CC cells and tissues. Knockdown of circ_0001823 inhibited the malignant behavior of the CC cells, which was antagonized by miR-613 inhibitor. Over-expressed RAB8A reversed the miR-613 effects in the CC cells. Knockdown of circ_0001823 inhibited the malignant behaviors of the CC cells via regulating the miR-613/RAB8A axis.
Collapse
Affiliation(s)
- Hong Ji
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Naijun Hu
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
37
|
Xiao Y, Gu S, Yao W, Qin L, Luo J. Circ_0047921 acts as the sponge of miR-1287-5p to stimulate lung cancer progression by regulating proliferation, migration, invasion, and glycolysis of lung cancer cells. World J Surg Oncol 2022; 20:108. [PMID: 35365169 PMCID: PMC8976346 DOI: 10.1186/s12957-021-02466-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/05/2021] [Indexed: 12/24/2022] Open
Abstract
Background Lung cancer is a common respiratory system disease caused by multiple factors. Circular RNAs (circRNAs) play vital roles in tumorigenesis, including lung cancer. This study aimed to clarify the role and underlying molecular mechanisms of circ_0047921 in lung cancer. Methods Real-time quantitative polymerase chain reaction (RT-qPCR) was used to assess the expression levels of circ_0047921, La-related protein 1 (LARP1), and miR-1287-5p. Cell proliferation was analyzed by CCK-8 and EdU assays. Transwell assay was used to assess migration and invasion. Western blot assay was employed to quantify protein expression. Glycolysis ability of cell was determined by measuring glucose consumption and lactate production with matched kits. The relationship between miR-1287-5p and circ_0047921 or LARP1 was confirmed by dual-luciferase reporter assay. In addition, a xenograft model was established to clarify the functional role of circ_0047921 in vivo. Results Circ_0047921 was highly expressed in lung cancer tissues and cells. Circ_0047921 downregulation repressed proliferation, migration, invasion, epithelial-mesenchymal transition (EMT) and glycolysis in lung cancer cells. Circ_0047921 targeted miR-1287-5p to deplete miR-1287-5p expression. The effects caused by circ_0047921 downregulation were reversed by miR-1287-5p inhibition. In addition, LARP1 was a target of miR-1287-5p, and circ_0047921 could directly interact with miR-1287-5p to increase the expression of LARP1. The effects caused by circ_0047921 downregulation were also reversed by LARP1 overexpression. Circ_0047921 silencing impeded the growth of tumor in vivo. Conclusion Circ_0047921 was overexpressed in lung cancer, and circ_0047921 targeted miR-1287-5p to modulate LARP1 expression, thereby facilitating the development of lung cancer. Trial registration The present study was approved by the ethical review committee of The First People’s Hospital of Chenzhou, Southern Medical University with reference no. 20210106. 1. Circ_0047921 was upregulated in lung cancer tissues and cells. 2. Circ_0047921/miR-1287-5p/LARP1 axis played a key role in proliferation, migration, invasion, EMT and glycolysis of lung cancer cells. 3. Circ_0047921 regulated LARP1 by sponging miR-1287-5p in lung cancer.
Collapse
Affiliation(s)
- Yuehua Xiao
- The First General Surgery Department of Carcinoma, The First People's Hospital of Chenzhou, Southern Medical University, Chenzhou, Hunan, China
| | - Shequn Gu
- The First Department of Medical Oncology, The First People's Hospital of Chenzhou, Southern Medical University, Chenzhou, Hunan, China.
| | - Wenxiu Yao
- Department of Thoracic Oncology, The Cancer Hospital of Sichuan Province, Chengdu, Sichuan, China
| | - Ling Qin
- The First Department of Medical Oncology, The First People's Hospital of Chenzhou, Southern Medical University, Chenzhou, Hunan, China
| | - Jihui Luo
- The Second General Surgery Department of Carcinoma, The First People's Hospital of Chenzhou, Southern Medical University, Chenzhou, 423000, Hunan, China
| |
Collapse
|
38
|
Exosomal circ_0048856 derived from non-small cell lung cancer contributes to aggressive cancer progression through downregulation of miR-1287–5p. Pathol Res Pract 2022; 232:153659. [DOI: 10.1016/j.prp.2021.153659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/27/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
|
39
|
Circ_0000263 facilitates the proliferation and inhibits the apoptosis of cervical cancer depending on the regulation of miR-1179/ABL2 axis. Reprod Sci 2022; 29:2636-2646. [PMID: 35355231 DOI: 10.1007/s43032-022-00920-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/12/2022] [Indexed: 12/09/2022]
Abstract
Circular RNA (circRNA) has been reported to participate in the progression of cervical cancer (CC). Studies on the role and mechanism of circ_0000263 in CC are limited, and more studies are needed. The expression of circ_0000263, microRNA (miR)-1179 and ABL proto-oncogene 2 (ABL2) mRNA in tissues and cells was analyzed by quantitative real-time PCR. The proliferation and apoptosis of CC cells were determined using cell counting kit 8 assay, Edu assay, colony formation assay and flow cytometry. The protein expression of proliferation markers, apoptosis markers and ABL2 was detected by western blot analysis. The interaction between RNAs was estimated via dual-luciferase reporter assay. Xenograft models were applied to explore the effect of circ_0000263 knockdown on CC tumorigenesis. Circ_0000263 was highly expressed in CC tumor tissues. Silencing of circ_0000263 suppressed CC cell proliferation and increased apoptosis. Circ_0000263 served as a sponge for miR-1179, and miR-1179 inhibitor reversed the regulation of si-circ_0000263 on CC cell proliferation and apoptosis. ABL2 could be targeted by miR-1179, and circ_0000263 could sponge miR-1179 to regulate ABL2. Overexpression of ABL2 reversed the anti-proliferation and pro-apoptosis roles of miR-1179 in CC cells. In addition, circ_0000263 knockdown reduced CC tumor growth by miR-1179/ABL2 axis. In brief, the results demonstrated that circ_0000263 exerted an oncogene role in CC, which suggested that circ_0000263 might be a promising therapeutic target for CC.
Collapse
|
40
|
Wang H, Tang Z, Duan J, Zhou C, Xu K, Mu H. Cancer-released exosomal circular RNA circ_0008717 promotes cell tumorigenicity through microRNA-1287-5p/P21-activated kinase 2 (PAK2) axis in non-small cell lung cancer. Bioengineered 2022; 13:8937-8949. [PMID: 35333693 PMCID: PMC9161925 DOI: 10.1080/21655979.2022.2056822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Circular RNA (circRNA) circ_0008717 has been revealed to promote cell carcinogenesis in non-small cell lung cancer (NSCLC). Exosomal circRNA packaged into exosomes has been defined as a potential diagnostic and therapeutic biomarker of cancers. However, little attention is focused on the role of circRNAs within exosomes in NSCLC. Exosomes were isolated by ultracentrifugation method and qualified by nanoparticle tracking analysis and Western blot. Levels of circ_0008717, microRNA (miR)-1287-5p, and P21-activated kinase 2 (PAK2) were detected using qRT-PCR and western blot. The interaction between miR-1287-5p and circ_0008717 or PAK2 was investigated. The phenotypes of NSCLC cells with circ_0008717 downregulation were tested. Circ_0008717 was highly expressed in NSCLC. Functionally, circ_0008717 deficiency suppressed cell malignant phenotypes in NSCLC in vitro and in nude mice. Circ_0008717 sponged miR-1287-5p to elevate PAK2, a downstream target of miR-1287-5p. Silencing of miR-1287-5p blocked the antitumor effects of circ_0008717 knockdown in NSCLC cells. Besides, miR-1287-5p repressed cell oncogenic behaviors in NSCLC by targeting PAK2. Besides that, we confirmed that circ_0008717 was incorporated into exosomes in NSCLC cells. Circ_0008717 knockdown inhibited NSCLC tumorigenesis via miR-1287-5p/PAK2 axis, and the extracellular circulating circ_0008717 was transferred through incorporation in exosomes.
Collapse
Affiliation(s)
- Huimin Wang
- Department of Clinical Laboratory, Tianjin First Center Hospital, Tianjin, Hebei, China
| | - Zhiqin Tang
- Department of Clinical Laboratory, Tianjin First Center Hospital, Tianjin, Hebei, China
| | - Jihui Duan
- Department of Clinical Laboratory, Tianjin First Center Hospital, Tianjin, Hebei, China
| | - Chunlei Zhou
- Department of Clinical Laboratory, Tianjin First Center Hospital, Tianjin, Hebei, China
| | - Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, Hebei, China
| | - Hong Mu
- Department of Clinical Laboratory, Tianjin First Center Hospital, Tianjin, Hebei, China
| |
Collapse
|
41
|
Li Y, Meng F, Sui C, Wang Y, Cheng D. CircWHSC1 expedites cervical cancer progression via miR-532-3p/LTBP2 axis. Mol Cell Biochem 2022; 477:1669-1679. [PMID: 35235125 DOI: 10.1007/s11010-022-04395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/16/2022] [Indexed: 11/29/2022]
Abstract
Dysregulated circRNAs have potential roles in the progression of various cancer types, including cervical cancer (CaCx). The carcinogenic roles of circRNA Wolf-Hirschhorn syndrome candidate gene-1 (circWHSC1) are described in the development of diverse cancers. The objective of this study was to investigate the expression and the underlying role of circWHSC1 in CaCx. The expression of circWHSC1 was detected by real-time PCR. After the suppression of circWHSC1 expression, the changes in the proliferation, migration, invasion, and apoptosis capacities were detected by CCK-8 assay, colony formation assay, Transwell assays, flow cytometry, and the determination of apoptosis-related proteins. The interplay among circWHSC1, miR-532-3p, and latent transforming growth factor-β binding protein 2 (LTBP2) was confirmed by luciferase reporter and biotinylated RNA pull-down assays. A nude mice xenograft tumor model was established to evaluate the anti-tumorigenic role of circWHSC1 silencing in vivo. CircWHSC1 was overexpressed in CaCx tissues and cell lines and its high expression was inversely associated with the survival rate of patients with CaCx. CircWHSC1 silencing was capable of suppressing the proliferation, metastasis, and invasion of tumor cells and inducing apoptosis. Investigation to its molecular mechanism revealed that circWHSC1 functioned as a competitive endogenous RNA (ceRNA), mediating LTBP2 expression by targeting miR-532-3p. The in vivo experiments further confirmed the inhibition of tumor growth and metastasis by circWHSC1 knockdown. The circWHSC1-mediated miR-532-3p/LTBP2 signaling axis might be a novel therapeutic target for CaCx.
Collapse
Affiliation(s)
- Yan Li
- Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Fandong Meng
- Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Chengguang Sui
- Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Yang Wang
- Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Dali Cheng
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110000, Liaoning, China.
| |
Collapse
|
42
|
Ding Y, Wang M, Yang J. Circular RNA midline-1 (circMID1) promotes proliferation, migration, invasion and glycolysis in prostate cancer. Bioengineered 2022; 13:6293-6308. [PMID: 35212614 PMCID: PMC8973952 DOI: 10.1080/21655979.2022.2037367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The key role of circular RNA (circRNA) in the malignant progression of cancers has been demonstrated. However, the role of circRNA midline-1 (circMID1) in prostate cancer (PCa) progression has not been clarified. Quantitative real-time PCR was used to measure relative expression. Function analysis was performed using EdU staining, colony formation assay, flow cytometry, wound healing assay, transwell assay and cell glycolysis detection. The protein levels were detected by Western blot analysis. RNA pull-down assay, dual-luciferase reporter assay and RIP assay were performed to verify RNA interaction. Animal experiments were utilized to explore the effects of circMID1 knockdown on PCa tumorigenesis in vivo. Our results showed that circMID1 was upregulated in PCa tissues and cells and its knockdown inhibited PCa cell proliferation, migration, invasion and glycolysis in vitro, as well as PCa tumorigenesis in vivo. IGF1R and YTHDC2 were highly expressed in PCa tissues and cells, and their expression was positively regulated by circMID1. IGF1R and YTHDC2 overexpression reversed the inhibitory effect of circMID1 silencing on PCa cell progression. In terms of mechanism, circMID1 could sponge miR-330-3p and miR-330-3p could target IGF1R and YTHDC2. Functional experiments showed that circMID1 sponged miR-330-3p to regulate PCa progression via the YTHDC2/IGF1R/AKT axis. In conclusion, our data confirmed that circMID1 might play a pro-cancer role in PCa, which promoted PCa progression through regulating the miR-330-3p/YTHDC2/IGF1R/AKT axis.
Collapse
Affiliation(s)
- Yafei Ding
- Department of Uropoiesis Surgical, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Mi Wang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Jinjian Yang
- Department of Uropoiesis Surgical, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| |
Collapse
|
43
|
Abstract
Etiologically, 5% of all cancers worldwide are caused by the high-risk human papillomaviruses (hrHPVs). These viruses encode two oncoproteins (E6 and E7) whose expression is required for cancer initiation and maintenance. Among their cellular targets are the p53 and the retinoblastoma tumor suppressor proteins. Inhibition of the hrHPV E6-mediated ubiquitylation of p53 through the E6AP ubiquitin ligase results in the stabilization of p53, leading to cellular apoptosis. We utilized a live cell high throughput screen to determine whether exogenous microRNA (miRNA) transfection had the ability to stabilize p53 in hrHPV-positive cervical cancer cells expressing a p53-fluorescent protein as an in vivo reporter of p53 stability. Among the miRNAs whose transfection resulted in the greatest p53 stabilization was 375-3p that has previously been reported to stabilize p53 in HeLa cells, providing validation of the screen. The top 32 miRNAs in addition to 375-3p were further assessed using a second cell-based p53 stability reporter system as well as in non-reporter HeLa cells to examine their effects on endogenous p53 protein levels, resulting in the identification of 23 miRNAs whose transfection increased p53 levels in HeLa cells. While a few miRNAs that stabilized p53 led to decreases in E6AP protein levels, all targeted HPV oncoprotein expression. We further examined subsets of these miRNAs for their abilities to induce apoptosis and determined whether it was p53-mediated. The introduction of specific miRNAs revealed surprisingly heterogeneous responses in different cell lines. Nonetheless, some of the miRNAs described here have potential as therapeutics for treating HPV-positive cancers. Importance Human papillomaviruses cause approximately 5% of all cancers worldwide and encode genes that contribute to both the initiation and maintenance of these cancers. The viral oncoprotein E6 is expressed in all HPV-positive cancers and functions by targeting the degradation of p53 through the engagement of the cellular ubiquitin ligase E6AP. Inhibiting the degradation of p53 leads to apoptosis in HPV-positive cancer cells. Using a high throughput live cell assay we identified several miRNAs whose transfection stabilize p53 in HPV-positive cells. These miRNAs have the potential to be used in the treatment of HPV-positive cancers.
Collapse
|
44
|
Huang Z, Li F, Li Q. Expression profile of RNA binding protein in cervical cancer using bioinformatics approach. Cancer Cell Int 2021; 21:647. [PMID: 34863153 PMCID: PMC8642772 DOI: 10.1186/s12935-021-02319-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND It has been demonstrated by studies globally that RNA binding proteins (RBPs) took part in the development of cervical cancer (CC). Few studies concentrated on the correlation between RBPs and overall survival of CC patients. We retrieved significant DEGs (differently expressed genes, RNA binding proteins) correlated to the process of cervical cancer development. METHODS Expressions level of genes in cervical cancer and normal tissue samples were obtained from GTEx and TCGA database. Differently expressed RNA binding proteins (DEGs) were retrieved by Wilcoxon sum-rank test. ClusterProfiler package worked in R software was used to perform GO and KEGG enrichment analyses. Univariate proportional hazard cox regression and multivariate proportional hazard cox regressions were applied to identify DEGs equipped with prognostic value and other clinical independent risk factors. ROC curve was drawn for comparing the survival predict feasibility of risk score with other risk factors in CC patients. Nomogram was drawn to exhibit the prediction model and validated by C-index and calibration curve. Correlations between differentially expressed RNA binding proteins (DEGs) and other clinical features were investigated by t test or Cruskal Wallis analysis. Correlation between Immune and DEGs in cervical cancer was investigated by ssGSEA. RESULTS 347 differentially expressed RBPs (DEGs) were retrieved from cervical cancer tissue and normal tissue samples. GO enrichment analysis showed that these DEGs involved in RNA splicing, catabolic process and metabolism. Cox regression model showed that there were ten DEGs significantly associated with overall survival of cervical cancer patients. WDR43 (HR = 0.423, P = 0.008), RBM38 (HR = 0.533, P < 0.001), RNASEH2A (HR = 0.474, P = 0.002) and HENMT1 (HR = 0.720, P = 0.071) played protective roles in survival among these ten genes. Stage (Stage IV vs Stage I HR = 3.434, P < 0.001) and risk score (HR = 1.214, P < 0.001) were sorted as independent prognostic risk factors based on multivariate cox regression. ROC curve validated that risk score was preferable to predict survival of CC patients than other risk factors. Additionally, we found some of these ten predictor DEGs were correlated significantly in statistic with tumor grade or stage, clinical T stage, clinical N stage, pathology or risk score (all P < 0.05). Part of immune cells and immune functions showed a lower activity in high risk group than low risk group which is stratified by median risk score. CONCLUSION Our discovery showed that many RNA binding proteins involved in the progress of cervical cancer, which could probably serve as prognostic biomarkers and accelerate the discovery of treatment targets for CC patients.
Collapse
Affiliation(s)
- Zhiyuan Huang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiothoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Fang Li
- Department of Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Qinchuan Li
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Cardiothoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
45
|
Feng J, Ren X, Fu H, Li D, Chen X, Zu X, Liu Q, Wu M. LRRC4 mediates the formation of circular RNA CD44 to inhibitGBM cell proliferation. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:473-487. [PMID: 34631278 PMCID: PMC8479294 DOI: 10.1016/j.omtn.2021.08.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 08/20/2021] [Indexed: 11/19/2022]
Abstract
Mounting evidence reveals that dysregulation of circular RNAs (circRNAs) is involved in the development of glioblastoma. Leucine-rich repeat-containing 4 (LRRC4) has been shown to suppress tumors in glioblastoma. However, whether LRRC4 can regulate the formation of circRNA is not yet understood. In this study, LRRC4 was found to interact with SAM68. LRRC4 promoted the generation of circCD44 by inhibiting the binding between SAM68 and CD44 pre-mRNA. Moreover, downregulated expression of circCD44 was found in glioblastoma multiforme (GBM) tissues and GBM primary cells. Re-expression of circCD44 significantly suppressed the proliferation, colony formation, and invasion of GBM cells and inhibited tumor growth in vivo. Mechanistically, circCD44 could regulate the expression of SMAD6 via sponging miR-326 and miR-330-5p involved in the progression of GBM. Thus, the LRRC4/SAM68/circCD44/miR-326/miR-330-5p/SMAD6 signaling axis could be a potential target for GBM treatment.
Collapse
Affiliation(s)
- Jianbo Feng
- Cancer Research Institute, First Affiliated Hospital, Institute of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Xing Ren
- Cancer Research Institute, First Affiliated Hospital, Institute of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Haijuan Fu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Di Li
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Xiguang Chen
- Cancer Research Institute, First Affiliated Hospital, Institute of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xuyu Zu
- Cancer Research Institute, First Affiliated Hospital, Institute of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qing Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Corresponding author: Qing Liu, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| | - Minghua Wu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
- Corresponding author: Minghua Wu, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
46
|
Feng Y, Zhang T, Wang Y, Xie M, Ji X, Luo X, Huang W, Xia L. Homeobox Genes in Cancers: From Carcinogenesis to Recent Therapeutic Intervention. Front Oncol 2021; 11:770428. [PMID: 34722321 PMCID: PMC8551923 DOI: 10.3389/fonc.2021.770428] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
The homeobox (HOX) genes encoding an evolutionarily highly conserved family of homeodomain-containing transcriptional factors are essential for embryogenesis and tumorigenesis. HOX genes are involved in cell identity determination during early embryonic development and postnatal processes. The deregulation of HOX genes is closely associated with numerous human malignancies, highlighting the indispensable involvement in mortal cancer development. Since most HOX genes behave as oncogenes or tumor suppressors in human cancer, a better comprehension of their upstream regulators and downstream targets contributes to elucidating the function of HOX genes in cancer development. In addition, targeting HOX genes may imply therapeutic potential. Recently, novel therapies such as monoclonal antibodies targeting tyrosine receptor kinases, small molecular chemical inhibitors, and small interfering RNA strategies, are difficult to implement for targeting transcriptional factors on account of the dual function and pleiotropic nature of HOX genes-related molecular networks. This paper summarizes the current state of knowledge on the roles of HOX genes in human cancer and emphasizes the emerging importance of HOX genes as potential therapeutic targets to overcome the limitations of present cancer therapy.
Collapse
Affiliation(s)
- Yangyang Feng
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongyue Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Xie
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Ji
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
47
|
Shanshan W, Hongying M, Jingjing F, Yiming Y, Yu R, Rui Y. CircDTL Functions as an Oncogene and Regulates Both Apoptosis and Ferroptosis in Non-small Cell Lung Cancer Cells. Front Genet 2021; 12:743505. [PMID: 34621297 PMCID: PMC8490767 DOI: 10.3389/fgene.2021.743505] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/18/2021] [Indexed: 01/31/2023] Open
Abstract
Background: Circular RNAs (circRNA) play an essential role in the tumorigenesis of non-small cell lung cancer (NSCLC). CircDTL is a novel identified circRNA with little information regarding its biological role. However, the role of circDTL in NSCLC has not been investigated yet. Method: In this study, the levels of circDTL in tissues and cells were measured by RT-PCR. Cell viability was measured by the CCK-8 assay. Cell migration and invasion were evaluated using the wound healing assay and transwell assay, respectively. Cell death was measured by the cell death ELISA kit. The levels of Fe2+, ROS, MDA and GSH were measured using the commercial kits. The interactions between miR-1287-5p and circDTL/3'UTR GPX4 were verified by dual-luciferase activity assay. The effects of circDTL on tumor growth were evaluated in vivo. Results: CircDTL was found to be upregulated and acted as an oncogene in NSCLC cells. Knockdown of circDTL promoted both apoptosis and ferroptosis of NSCLC cells. It was identified that circDTL exerts its oncogenic effects via the circDTL/miR-1287-5p/GPX4 axis and GPX4 inhibits both ferroptosis and apoptosis. Finally, this study showed that silencing of circDTL promoted the sensitivity of NSCLC cells to chemotherapeutic agents and inhibited the growth of tumors in vivo. Conclusion: CircDTL acts as an oncogene and exerts its effects via the miR-1287-5p/GPX4 axis in NSCLC, providing a potential therapeutic target for NSCLC cancer therapy.
Collapse
Affiliation(s)
- Wang Shanshan
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Ma Hongying
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Fang Jingjing
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Yu Yiming
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Ren Yu
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo, China
| | - Yu Rui
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo, China
| |
Collapse
|
48
|
Liu F, Wu X, Zhu H, Wang F. Dysregulated expression of circular RNAs serve as diagnostic and prognostic markers in ovarian and cervical cancer: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e27352. [PMID: 34596142 PMCID: PMC8483828 DOI: 10.1097/md.0000000000027352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/06/2021] [Accepted: 09/09/2021] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Recent studies have reported a connection between non-coding RNAs such as circular RNAs (circRNAs) and the prognosis of various cancers. However, the mechanism of circRNA in ovarian cancer and cervical cancer has not been consistent. We evaluated the diagnostic and prognostic roles of circRNAs in ovarian and cervical cancer by meta-analysis. METHODS Pooled hazard ratios with 95% confidence intervals were to estimate overall survival. Diagnostic efficacy was estimated by sensitivity, specificity and area under curve. RESULTS By searching PubMed, Embase, the Web of Science databases, and other sources, we obtained a total of 22 studies with 2059 patients from Asia population. High expression levels of oncogenic circRNAs were significantly associated with poor prognoses both in ovarian and cervical cancer. However, elevated expression levels of tumor-suppressor circRNAs were linked with favorable survival time in ovarian cancer. As for diagnostic role, the area under the curve value in ovarian cancer and cervical cancer is 0.89 and 0.93, respectively. CONCLUSIONS CircRNAs have the prospect of becoming a promising biomarker for diagnosis and prognosis of ovarian and cervical cancer. Accordingly, circRNAs might be novel indicators and targets of therapy for ovarian and cervical cancer.
Collapse
Affiliation(s)
- Fengyuan Liu
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xinrui Wu
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Huixia Zhu
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Feng Wang
- Department of Laboratory Medicine, Public Health School of Nantong University, Nantong, Jiangsu, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
49
|
Zhang C, Liu P, Huang J, Liao Y, Pan C, Liu J, Du Q, Liu T, Shang C, Ooi S, Chen R, Xia M, Jiang H, Xu M, Zou Q, Zhou Y, Huang H, Pan Y, Yuan L, Wang W, Yao S. Circular RNA hsa_circ_0043280 inhibits cervical cancer tumor growth and metastasis via miR-203a-3p/PAQR3 axis. Cell Death Dis 2021; 12:888. [PMID: 34588429 PMCID: PMC8481253 DOI: 10.1038/s41419-021-04193-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/26/2021] [Accepted: 09/17/2021] [Indexed: 12/25/2022]
Abstract
Circular RNAs (circRNAs) are known to act as key regulators in a variety of malignancies. However, the role of circRNAs in cervical cancer (CCa) remains largely unknown. Herein, we demonstrated that a circRNA derived from the TADA2A gene (hsa_circ_0043280) was significantly downregulated in CCa and that this reduction in expression was correlated with a poor prognosis. Furthermore, our results demonstrated that hsa_circ_0043280 functions as a tumor suppressor to inhibit tumor growth and metastasis in CCa. Mechanistically, hsa_circ_0043280 competitively sponges miR-203a-3p and prevents miR-203a-3p from reducing the levels of PAQR3. Collectively, our results demonstrate that hsa_circ_0043280 plays a pivotal role in the development and metastasis of CCa, thus suggesting that hsa_circ_0043280 has significant potential as a prognostic biomarker and a therapeutic target for CCa.
Collapse
Affiliation(s)
- Chunyu Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Pan Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Jiaming Huang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Yuandong Liao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Chaoyun Pan
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Junxiu Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Qiqiao Du
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Tianyu Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Chunliang Shang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, 100191, Beijing, China
| | - Shiyin Ooi
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Run Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Meng Xia
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Hongye Jiang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Manman Xu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Qiaojian Zou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Yijia Zhou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Hua Huang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Yuwen Pan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Li Yuan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.
| |
Collapse
|
50
|
Pan Q, Meng X, Li J, Qin X, Chen H, Li Y. CircSAMD11 facilitates progression of cervical cancer via regulating miR-503/SOX4 axis through Wnt/β-catenin pathway. Clin Exp Pharmacol Physiol 2021; 49:175-187. [PMID: 34546569 DOI: 10.1111/1440-1681.13593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/29/2021] [Accepted: 09/16/2021] [Indexed: 01/15/2023]
Abstract
Cervical cancer (CC) is a common gynaecological malignant tumour with a high mortality rate. Circular RNAs (circRNAs) play a critical role in tumour occurrence and development. This study aimed to investigate the function and molecular basis of hsa_circ_0009189 (circSAMD11) in CC development. RNA levels were determined by qRT-PCR, and protein expression was measured by western blot. Cell proliferation, migration, invasion and apoptosis were detected by Cell Counting Kit-8 (CCK-8), colony formation, Transwell and flow cytometry assays. The relationship between miR-503 and circSAMD11/SOX4 was validated via dual-luciferase reporter assay, RIP or RNA pull-down assay. Xenograft assay was conducted to test tumour growth in vivo. CircSAMD11 and SOX4 levels were elevated, while miR-503 level was reduced in CC tissues and cells. Knockdown of circSAMD11 suppressed CC cell proliferation, migration and invasion and accelerated apoptosis. CircSAMD11 was localised in cytoplasm and directly targeted miR-503. Also, circSAMD11 sponged miR-503 to modulate SOX4 expression. Additionally, circSAMD11 regulated CC progression via absorbing miR-503 or modulating SOX4. Besides, depletion of circSAMD11 hindered tumorigenesis in vivo. CircSAMD11 contributed to CC progression by regulating miR-503/SOX4 signalling and activating Wnt/β-catenin pathway, which provides a promising therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Qiwen Pan
- Department of Gynaecology, Hechi Hospital Affiliated to YouJiang Medical University For Nationalities, The People's Hospital of Hechi, Hechi, China
| | - Xia Meng
- Department of Gynaecology, The First People's Hospital of Hechi, Hechi, China
| | - Jianxiang Li
- Department of Gynaecology, Hechi Hospital Affiliated to YouJiang Medical University For Nationalities, The People's Hospital of Hechi, Hechi, China
| | - Xiaoni Qin
- Department of Gynaecology, Hechi Hospital Affiliated to YouJiang Medical University For Nationalities, The People's Hospital of Hechi, Hechi, China
| | - Huifeng Chen
- Department of Gynaecology, Hechi Hospital Affiliated to YouJiang Medical University For Nationalities, The People's Hospital of Hechi, Hechi, China
| | - Yueqing Li
- Department of Gynaecology, Hechi Hospital Affiliated to YouJiang Medical University For Nationalities, The People's Hospital of Hechi, Hechi, China
| |
Collapse
|