1
|
Schmok JC, Yeo GW. Strategies for programmable manipulation of alternative splicing. Curr Opin Genet Dev 2024; 89:102272. [PMID: 39471777 DOI: 10.1016/j.gde.2024.102272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 11/01/2024]
Abstract
Alternative splicing (AS) plays a pivotal role in protein diversity and mRNA maturation. Programmable control of targeted AS events is of longstanding interest in RNA biology, promising correction of dysregulated splicing in disease and discovery of AS events. This review explores four main strategies for programmable splicing manipulation: (1) inhibiting splicing signals with antisense oligonucleotides (ASOs), exemplified by therapies approved by the U.S. Food and Drug Administration, (2) applying DNA-targeting clustered regularly interspaced short palindromic repeats systems to edit splicing signals, (3) using synthetic splicing factors, including synthetic proteins and ribonucleoproteins, inspired by natural RNA-binding proteins, and (4) guiding endogenous splicing machinery with bifunctional ASOs and engineered small nuclear RNAs. While ASOs remain clinically prominent, emerging technologies aim for broad, scalable, durable, and precise splicing modulation, holding promise for transformative advancements in RNA biology and therapeutic interventions.
Collapse
Affiliation(s)
- Jonathan C Schmok
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; UCSD Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Findlay AR. Dominantly inherited muscle disorders: understanding their complexity and exploring therapeutic approaches. Dis Model Mech 2024; 17:dmm050720. [PMID: 39501809 PMCID: PMC11574355 DOI: 10.1242/dmm.050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Treatments for disabling and life-threatening hereditary muscle disorders are finally close to becoming a reality. Research has thus far focused primarily on recessive forms of muscle disease. The gene replacement strategies that are commonly employed for recessive, loss-of-function disorders are not readily translatable to most dominant myopathies owing to the presence of a normal chromosome in each nucleus, hindering the development of novel treatments for these dominant disorders. This is largely due to their complex, heterogeneous disease mechanisms that require unique therapeutic approaches. However, as viral and RNA interference-based therapies enter clinical use, key tools are now in place to develop treatments for dominantly inherited disorders of muscle. This article will review what is known about dominantly inherited disorders of muscle, specifically their genetic basis, how mutations lead to disease, and the pathomechanistic implications for therapeutic approaches.
Collapse
Affiliation(s)
- Andrew R Findlay
- Washington University Saint Louis, Neuromuscular Disease Center, 660 S. Euclid Ave., St Louis, MO 63110, USA
| |
Collapse
|
3
|
Beck SL, Yokota T. Oligonucleotide Therapies for Facioscapulohumeral Muscular Dystrophy: Current Preclinical Landscape. Int J Mol Sci 2024; 25:9065. [PMID: 39201751 PMCID: PMC11354670 DOI: 10.3390/ijms25169065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an inherited myopathy, characterized by progressive and asymmetric muscle atrophy, primarily affecting muscles of the face, shoulder girdle, and upper arms before affecting muscles of the lower extremities with age and greater disease severity. FSHD is a disabling condition, and patients may also present with various extramuscular symptoms. FSHD is caused by the aberrant expression of double homeobox 4 (DUX4) in skeletal muscle, arising from compromised epigenetic repression of the D4Z4 array. DUX4 encodes the DUX4 protein, a transcription factor that activates myotoxic gene programs to produce the FSHD pathology. Therefore, sequence-specific oligonucleotides aimed at reducing DUX4 levels in patients is a compelling therapeutic approach, and one that has received considerable research interest over the last decade. This review aims to describe the current preclinical landscape of oligonucleotide therapies for FSHD. This includes outlining the mechanism of action of each therapy and summarizing the preclinical results obtained regarding their efficacy in cellular and/or murine disease models. The scope of this review is limited to oligonucleotide-based therapies that inhibit the DUX4 gene, mRNA, or protein in a way that does not involve gene editing.
Collapse
Affiliation(s)
- Samuel L. Beck
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
4
|
Shimo T, Ueda O, Yamamoto S. Design and evaluation of antisense sequence length for modified mouse U7 small nuclear RNA to induce efficient pre-messenger RNA splicing modulation in vitro. PLoS One 2024; 19:e0305012. [PMID: 38980892 PMCID: PMC11232981 DOI: 10.1371/journal.pone.0305012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/21/2024] [Indexed: 07/11/2024] Open
Abstract
Pre-messenger RNA (pre-mRNA) splicing modulation is an attractive approach for investigating the mechanisms of genetic disorders caused by mis-splicing. Previous reports have indicated that a modified U7 small nuclear RNA (U7 snRNA) is a prospective tool for modulating splicing both in vitro and in vivo. To date, very few studies have investigated the role of antisense sequence length in modified U7 snRNA. In this study, we designed a series of antisense sequences with various lengths and evaluated their efficiency in inducing splicing modulation. To express modified U7 snRNAs, we constructed a series of plasmid DNA sequences which codes cytomegalovirus (CMV) enhancer, human U1 promoter, and modified mouse U7 snRNAs with antisense sequences of different lengths. We evaluated in vitro splicing modulation efficiency using a luciferase reporter system for simple and precise evaluation as well as reverse transcription-polymerase chain reaction to monitor splicing patterns. Our in vitro assay findings suggest that antisense sequences of modified mouse U7 snRNAs have an optimal length for efficient splicing modulation, which depends on the target exon. In addition, antisense sequences that were either too long or too short decreased splicing modulation efficiency. To confirm reproducibility, we performed an in vitro assay using two target genes, mouse Fas and mouse Dmd. Together, our data suggests that the antisense sequence length should be optimized for modified mouse U7 snRNAs to induce efficient splicing modulation.
Collapse
Affiliation(s)
- Takenori Shimo
- Research Division, Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| | - Otoya Ueda
- Research Division, Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| | - Satoshi Yamamoto
- Research Division, Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| |
Collapse
|
5
|
Yang H, Patel DJ. Structures, mechanisms and applications of RNA-centric CRISPR-Cas13. Nat Chem Biol 2024; 20:673-688. [PMID: 38702571 PMCID: PMC11375968 DOI: 10.1038/s41589-024-01593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/27/2024] [Indexed: 05/06/2024]
Abstract
Prokaryotes are equipped with a variety of resistance strategies to survive frequent viral attacks or invading mobile genetic elements. Among these, CRISPR-Cas surveillance systems are abundant and have been studied extensively. This Review focuses on CRISPR-Cas type VI Cas13 systems that use single-subunit RNA-guided Cas endonucleases for targeting and subsequent degradation of foreign RNA, thereby providing adaptive immunity. Notably, distinct from single-subunit DNA-cleaving Cas9 and Cas12 systems, Cas13 exhibits target RNA-activated substrate RNase activity. This Review outlines structural, biochemical and cell biological studies toward elucidation of the unique structural and mechanistic principles underlying surveillance effector complex formation, precursor CRISPR RNA (pre-crRNA) processing, self-discrimination and RNA degradation in Cas13 systems as well as insights into suppression by bacteriophage-encoded anti-CRISPR proteins and regulation by endogenous accessory proteins. Owing to its programmable ability for RNA recognition and cleavage, Cas13 provides powerful RNA targeting, editing, detection and imaging platforms with emerging biotechnological and therapeutic applications.
Collapse
Affiliation(s)
- Hui Yang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
6
|
Zambon AA, Falzone YM, Bolino A, Previtali SC. Molecular mechanisms and therapeutic strategies for neuromuscular diseases. Cell Mol Life Sci 2024; 81:198. [PMID: 38678519 PMCID: PMC11056344 DOI: 10.1007/s00018-024-05229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/14/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024]
Abstract
Neuromuscular diseases encompass a heterogeneous array of disorders characterized by varying onset ages, clinical presentations, severity, and progression. While these conditions can stem from acquired or inherited causes, this review specifically focuses on disorders arising from genetic abnormalities, excluding metabolic conditions. The pathogenic defect may primarily affect the anterior horn cells, the axonal or myelin component of peripheral nerves, the neuromuscular junction, or skeletal and/or cardiac muscles. While inherited neuromuscular disorders have been historically deemed not treatable, the advent of gene-based and molecular therapies is reshaping the treatment landscape for this group of condition. With the caveat that many products still fail to translate the positive results obtained in pre-clinical models to humans, both the technological development (e.g., implementation of tissue-specific vectors) as well as advances on the knowledge of pathogenetic mechanisms form a collective foundation for potentially curative approaches to these debilitating conditions. This review delineates the current panorama of therapies targeting the most prevalent forms of inherited neuromuscular diseases, emphasizing approved treatments and those already undergoing human testing, offering insights into the state-of-the-art interventions.
Collapse
Affiliation(s)
- Alberto Andrea Zambon
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Yuri Matteo Falzone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Bolino
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Stefano Carlo Previtali
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy.
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
7
|
Cohen J, Huang S, Koczwara KE, Woods KT, Ho V, Woodman KG, Arbiser JL, Daman K, Lek M, Emerson CP, DeSimone AM. Flavones provide resistance to DUX4-induced toxicity via an mTor-independent mechanism. Cell Death Dis 2023; 14:749. [PMID: 37973788 PMCID: PMC10654915 DOI: 10.1038/s41419-023-06257-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 10/10/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is among the most common of the muscular dystrophies, affecting nearly 1 in 8000 individuals, and is a cause of profound disability. Genetically, FSHD is linked to the contraction and/or epigenetic de-repression of the D4Z4 repeat array on chromosome 4, thereby allowing expression of the DUX4 gene in skeletal muscle. If the DUX4 transcript incorporates a stabilizing polyadenylation site the myotoxic DUX4 protein will be synthesized, resulting in muscle wasting. The mechanism of toxicity remains unclear, as many DUX4-induced cytopathologies have been described, however cell death does primarily occur through caspase 3/7-dependent apoptosis. To date, most FSHD therapeutic development has focused on molecular methods targeting DUX4 expression or the DUX4 transcript, while therapies targeting processes downstream of DUX4 activity have received less attention. Several studies have demonstrated that inhibition of multiple signal transduction pathways can ameliorate DUX4-induced toxicity, and thus compounds targeting these pathways have the potential to be developed into FSHD therapeutics. To this end, we have screened a group of small molecules curated based on their reported activity in relevant pathways and/or structural relationships with known toxicity-modulating molecules. We have identified a panel of five compounds that function downstream of DUX4 activity to inhibit DUX4-induced toxicity. Unexpectedly, this effect was mediated through an mTor-independent mechanism that preserved expression of ULK1 and correlated with an increase in a marker of active cellular autophagy. This identifies these flavones as compounds of interest for therapeutic development, and potentially identifies the autophagy pathway as a target for therapeutics.
Collapse
Affiliation(s)
- Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | | | - Kristen T Woods
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Disease Research University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Keryn G Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | | | - Katelyn Daman
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Disease Research University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Disease Research University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alec M DeSimone
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA.
- Modalis Therapeutics, Waltham, MA, USA.
| |
Collapse
|
8
|
Butterfield RJ, Dunn DM, Duval B, Moldt S, Weiss RB. Deciphering D4Z4 CpG methylation gradients in fascioscapulohumeral muscular dystrophy using nanopore sequencing. Genome Res 2023; 33:1439-1454. [PMID: 37798116 PMCID: PMC10620044 DOI: 10.1101/gr.277871.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/02/2023] [Indexed: 10/07/2023]
Abstract
Fascioscapulohumeral muscular dystrophy (FSHD) is caused by a unique genetic mechanism that relies on contraction and hypomethylation of the D4Z4 macrosatellite array on the Chromosome 4q telomere allowing ectopic expression of the DUX4 gene in skeletal muscle. Genetic analysis is difficult because of the large size and repetitive nature of the array, a nearly identical array on the 10q telomere, and the presence of divergent D4Z4 arrays scattered throughout the genome. Here, we combine nanopore long-read sequencing with Cas9-targeted enrichment of 4q and 10q D4Z4 arrays for comprehensive genetic analysis including determination of the length of the 4q and 10q D4Z4 arrays with base-pair resolution. In the same assay, we differentiate 4q from 10q telomeric sequences, determine A/B haplotype, identify paralogous D4Z4 sequences elsewhere in the genome, and estimate methylation for all CpGs in the array. Asymmetric, length-dependent methylation gradients were observed in the 4q and 10q D4Z4 arrays that reach a hypermethylation point at approximately 10 D4Z4 repeat units, consistent with the known threshold of pathogenic D4Z4 contractions. High resolution analysis of individual D4Z4 repeat methylation revealed areas of low methylation near the CTCF/insulator region and areas of high methylation immediately preceding the DUX4 transcriptional start site. Within the DUX4 exons, we observed a waxing/waning methylation pattern with a 180-nucleotide periodicity, consistent with phased nucleosomes. Targeted nanopore sequencing complements recently developed molecular combing and optical mapping approaches to genetic analysis for FSHD by adding precision of the length measurement, base-pair resolution sequencing, and quantitative methylation analysis.
Collapse
Affiliation(s)
- Russell J Butterfield
- Department of Pediatrics, University of Utah, Salt Lake City, Utah 84108, USA;
- Department of Neurology, University of Utah, Salt Lake City, Utah 84132, USA
| | - Diane M Dunn
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Brett Duval
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sarah Moldt
- Department of Pediatrics, University of Utah, Salt Lake City, Utah 84108, USA
| | - Robert B Weiss
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
9
|
Findlay AR, Paing MM, Daw JA, Haller M, Bengoechea R, Pittman SK, Li S, Wang F, Miller TM, True HL, Chou TF, Weihl CC. DNAJB6 isoform specific knockdown: Therapeutic potential for limb girdle muscular dystrophy D1. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:937-948. [PMID: 37346979 PMCID: PMC10280091 DOI: 10.1016/j.omtn.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/10/2023] [Indexed: 06/23/2023]
Abstract
Dominant missense mutations in DNAJB6, a co-chaperone of HSP70, cause limb girdle muscular dystrophy (LGMD) D1. No treatments are currently available. Two isoforms exist, DNAJB6a and DNAJB6b, each with distinct localizations in muscle. Mutations reside in both isoforms, yet evidence suggests that DNAJB6b is primarily responsible for disease pathogenesis. Knockdown treatment strategies involving both isoforms carry risk, as DNAJB6 knockout is embryonic lethal. We therefore developed an isoform-specific knockdown approach using morpholinos. Selective reduction of each isoform was achieved in vitro in primary mouse myotubes and human LGMDD1 myoblasts, as well as in vivo in mouse skeletal muscle. To assess isoform specific knockdown in LGMDD1, we created primary myotube cultures from a knockin LGMDD1 mouse model. Using mass spectrometry, we identified an LGMDD1 protein signature related to protein homeostasis and myofibril structure. Selective reduction of DNAJB6b levels in LGMDD1 myotubes corrected much of the proteomic disease signature toward wild type levels. Additional in vivo functional data is required to determine if selective reduction of DNAJB6b is a viable therapeutic target for LGMDD1.
Collapse
Affiliation(s)
- Andrew R. Findlay
- Department of Neurology, Neuromuscular Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - May M. Paing
- Department of Neurology, Neuromuscular Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jil A. Daw
- Department of Neurology, Neuromuscular Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Meade Haller
- Department of Neurology, Neuromuscular Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Rocio Bengoechea
- Department of Neurology, Neuromuscular Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sara K. Pittman
- Department of Neurology, Neuromuscular Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Feng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Timothy M. Miller
- Department of Neurology, Neuromuscular Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Heather L. True
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8228, St. Louis, MO 63110, USA
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Conrad C. Weihl
- Department of Neurology, Neuromuscular Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
10
|
Erdmann H, Scharf F, Gehling S, Benet-Pagès A, Jakubiczka S, Becker K, Seipelt M, Kleefeld F, Knop KC, Prott EC, Hiebeler M, Montagnese F, Gläser D, Vorgerd M, Hagenacker T, Walter MC, Reilich P, Neuhann T, Zenker M, Holinski-Feder E, Schoser B, Abicht A. Methylation of the 4q35 D4Z4 repeat defines disease status in facioscapulohumeral muscular dystrophy. Brain 2023; 146:1388-1402. [PMID: 36100962 DOI: 10.1093/brain/awac336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/06/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic diagnosis of facioscapulohumeral muscular dystrophy (FSHD) remains a challenge in clinical practice as it cannot be detected by standard sequencing methods despite being the third most common muscular dystrophy. The conventional diagnostic strategy addresses the known genetic parameters of FSHD: the required presence of a permissive haplotype, a size reduction of the D4Z4 repeat of chromosome 4q35 (defining FSHD1) or a pathogenic variant in an epigenetic suppressor gene (consistent with FSHD2). Incomplete penetrance and epistatic effects of the underlying genetic parameters as well as epigenetic parameters (D4Z4 methylation) pose challenges to diagnostic accuracy and hinder prediction of clinical severity. In order to circumvent the known limitations of conventional diagnostics and to complement genetic parameters with epigenetic ones, we developed and validated a multistage diagnostic workflow that consists of a haplotype analysis and a high-throughput methylation profile analysis (FSHD-MPA). FSHD-MPA determines the average global methylation level of the D4Z4 repeat array as well as the regional methylation of the most distal repeat unit by combining bisulphite conversion with next-generation sequencing and a bioinformatics pipeline and uses these as diagnostic parameters. We applied the diagnostic workflow to a cohort of 148 patients and compared the epigenetic parameters based on FSHD-MPA to genetic parameters of conventional genetic testing. In addition, we studied the correlation of repeat length and methylation level within the most distal repeat unit with age-corrected clinical severity and age at disease onset in FSHD patients. The results of our study show that FSHD-MPA is a powerful tool to accurately determine the epigenetic parameters of FSHD, allowing discrimination between FSHD patients and healthy individuals, while simultaneously distinguishing FSHD1 and FSHD2. The strong correlation between methylation level and clinical severity indicates that the methylation level determined by FSHD-MPA accounts for differences in disease severity among individuals with similar genetic parameters. Thus, our findings further confirm that epigenetic parameters rather than genetic parameters represent FSHD disease status and may serve as a valuable biomarker for disease status.
Collapse
Affiliation(s)
- Hannes Erdmann
- Medical Genetics Center (MGZ), 80335 Munich, Germany
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | | | | | - Anna Benet-Pagès
- Medical Genetics Center (MGZ), 80335 Munich, Germany
- Institute of Neurogenomics, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Sibylle Jakubiczka
- Institute of Human Genetics, Universitätsklinikum Magdeburg, Otto-von-Guericke Universität, 39120 Magdeburg, Germany
| | | | - Maria Seipelt
- Department of Neurology, Universitätsklinikum Marburg, Philipps-University Marburg, 35043 Marburg, Germany
| | - Felix Kleefeld
- Department of Neurology and Experimental Neurology, Charité Berlin, 10117 Berlin, Germany
| | | | | | - Miriam Hiebeler
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Federica Montagnese
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | | | - Matthias Vorgerd
- Department of Neurology, Berufgenossenschaftliches Universitätsklinikum Bergmannsheil, Ruhr-Universität Bochum, 44789 Bochum, Germany
| | - Tim Hagenacker
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, 45147 Essen, Germany
| | - Maggie C Walter
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Peter Reilich
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | | | - Martin Zenker
- Institute of Human Genetics, Universitätsklinikum Magdeburg, Otto-von-Guericke Universität, 39120 Magdeburg, Germany
| | - Elke Holinski-Feder
- Medical Genetics Center (MGZ), 80335 Munich, Germany
- Department of Medicine IV, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Angela Abicht
- Medical Genetics Center (MGZ), 80335 Munich, Germany
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| |
Collapse
|
11
|
Butterfield RJ, Dunn DM, Duval B, Moldt S, Weiss RB. Deciphering D4Z4 CpG methylation gradients in fascioscapulohumeral muscular dystrophy using nanopore sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528868. [PMID: 36824722 PMCID: PMC9949141 DOI: 10.1101/2023.02.17.528868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Fascioscapulohumeral muscular dystrophy (FSHD) is caused by a unique genetic mechanism that relies on contraction and hypomethylation of the D4Z4 macrosatellite array on the chromosome 4q telomere allowing ectopic expression of the DUX4 gene in skeletal muscle. Genetic analysis is difficult due to the large size and repetitive nature of the array, a nearly identical array on the 10q telomere, and the presence of divergent D4Z4 arrays scattered throughout the genome. Here, we combine nanopore long-read sequencing with Cas9-targeted enrichment of 4q and 10q D4Z4 arrays for comprehensive genetic analysis including determination of the length of the 4q and 10q D4Z4 arrays with base-pair resolution. In the same assay, we differentiate 4q from 10q telomeric sequences, determine A/B haplotype, identify paralogous D4Z4 sequences elsewhere in the genome, and estimate methylation for all CpGs in the array. Asymmetric, length-dependent methylation gradients were observed in the 4q and 10q D4Z4 arrays that reach a hypermethylation point at approximately 10 D4Z4 repeat units, consistent with the known threshold of pathogenic D4Z4 contractions. High resolution analysis of individual D4Z4 repeat methylation revealed areas of low methylation near the CTCF/insulator region and areas of high methylation immediately preceding the DUX4 transcriptional start site. Within the DUX4 exons, we observed a waxing/waning methylation pattern with a 180-nucleotide periodicity, consistent with phased nucleosomes. Targeted nanopore sequencing complements recently developed molecular combing and optical mapping approaches to genetic analysis for FSHD by adding precision of the length measurement, base-pair resolution sequencing, and quantitative methylation analysis.
Collapse
Affiliation(s)
- Russell J Butterfield
- Department of Pediatrics, University of Utah, Salt Lake City, UT
- Department of Neurology, University of Utah, Salt Lake City, UT
| | - Diane M Dunn
- University of Utah, Department of Human Genetics, Salt Lake City, UT
| | - Brett Duval
- University of Utah, Department of Human Genetics, Salt Lake City, UT
| | - Sarah Moldt
- Department of Pediatrics, University of Utah, Salt Lake City, UT
| | - Robert B Weiss
- University of Utah, Department of Human Genetics, Salt Lake City, UT
| |
Collapse
|
12
|
Tihaya MS, Mul K, Balog J, de Greef JC, Tapscott SJ, Tawil R, Statland JM, van der Maarel SM. Facioscapulohumeral muscular dystrophy: the road to targeted therapies. Nat Rev Neurol 2023; 19:91-108. [PMID: 36627512 PMCID: PMC11578282 DOI: 10.1038/s41582-022-00762-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Advances in the molecular understanding of facioscapulohumeral muscular dystrophy (FSHD) have revealed that FSHD results from epigenetic de-repression of the DUX4 gene in skeletal muscle, which encodes a transcription factor that is active in early embryonic development but is normally silenced in almost all somatic tissues. These advances also led to the identification of targets for disease-altering therapies for FSHD, as well as an improved understanding of the molecular mechanism of the disease and factors that influence its progression. Together, these developments led the FSHD research community to shift its focus towards the development of disease-modifying treatments for FSHD. This Review presents advances in the molecular and clinical understanding of FSHD, discusses the potential targeted therapies that are currently being explored, some of which are already in clinical trials, and describes progress in the development of FSHD-specific outcome measures and assessment tools for use in future clinical trials.
Collapse
Affiliation(s)
- Mara S Tihaya
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Karlien Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jessica C de Greef
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jeffrey M Statland
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | | |
Collapse
|
13
|
Mul K. Facioscapulohumeral Muscular Dystrophy. Continuum (Minneap Minn) 2022; 28:1735-1751. [PMID: 36537978 DOI: 10.1212/con.0000000000001155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW This article reviews the current knowledge on the clinical characteristics and disease mechanism of facioscapulohumeral muscular dystrophy (FSHD), as well as advances in targeted therapy development. RECENT FINDINGS FSHD has a wide range of severity, yet a distinct phenotype characterized by weakness of the facial, shoulder, and upper arm muscles, followed by weakness of the trunk and leg muscles. It can be caused by two genetic mechanisms that share a common downstream pathway, namely, the epigenetic derepression and subsequent misexpression of the myotoxic DUX4 transcription factor. Treatment is currently supportive and outlined in evidence-based guidelines. Advances in the understanding of the pathogenic mechanism of FSHD are paving the way for targeted therapy development. Approaches for targeted therapies to reduce DUX4 expression that are currently being explored include small molecules, antisense oligonucleotides, vector-based RNA interference, and gene therapy. In anticipation of more clinical trials, "clinical trial preparedness," including the development of sensitive biomarkers and clinical outcome measures, are needed. SUMMARY The cornerstones of the diagnosis of FSHD are clinical observation and genetic testing. Management is currently supportive, but progress in the understanding of the disease mechanism has shifted the field of FSHD toward targeted therapy development.
Collapse
|
14
|
Mariot V, Dumonceaux J. Gene Editing to Tackle Facioscapulohumeral Muscular Dystrophy. Front Genome Ed 2022; 4:937879. [PMID: 35910413 PMCID: PMC9334676 DOI: 10.3389/fgeed.2022.937879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Facioscapulohumeral dystrophy (FSHD) is a skeletal muscle disease caused by the aberrant expression of the DUX4 gene in the muscle tissue. To date, different therapeutic approaches have been proposed, targeting DUX4 at the DNA, RNA or protein levels. The recent development of the clustered regularly interspaced short-palindromic repeat (CRISPR) based technology opened new avenues of research, and FSHD is no exception. For the first time, a cure for genetic muscular diseases can be considered. Here, we describe CRISPR-based strategies that are currently being investigated for FSHD. The different approaches include the epigenome editing targeting the DUX4 gene and its promoter, gene editing targeting the polyadenylation of DUX4 using TALEN, CRISPR/cas9 or adenine base editing and the CRISPR-Cas9 genome editing for SMCHD1. We also discuss challenges facing the development of these gene editing based therapeutics.
Collapse
Affiliation(s)
- Virginie Mariot
- NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, University College London, London, United Kingdom
| | - Julie Dumonceaux
- NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, University College London, London, United Kingdom
| |
Collapse
|
15
|
Lu-Nguyen N, Dickson G, Malerba A, Popplewell L. Long-Term Systemic Treatment of a Mouse Model Displaying Chronic FSHD-like Pathology with Antisense Therapeutics That Inhibit DUX4 Expression. Biomedicines 2022; 10:biomedicines10071623. [PMID: 35884928 PMCID: PMC9313434 DOI: 10.3390/biomedicines10071623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022] Open
Abstract
Silencing the expression of the double homeobox 4 (DUX4) gene offers great potential for the treatment of facioscapulohumeral muscular dystrophy (FSHD). Several research groups have recently reported promising results using systemic antisense therapy in a transgenic small animal model of FSHD, the ACTA1-MCM/FLExDUX4 mouse model. However, the treatment was applied in non-DUX4-induced mice or shortly after DUX4 activation, which resulted in conditions that do not correctly represent the situation in a clinic. Here, we generated progressive FSHD-like pathology in ACTA1-MCM/FLExDUX4 mice and then treated the animals with vivoPMO-PACS4, an antisense compound that efficiently downregulates DUX4. To best mimic the translation of this treatment in clinical settings, the systemic antisense oligonucleotide administration was delayed to 3 weeks after the DUX4 activation so that the pathology was established at the time of the treatment. The chronic administration of vivoPMO-PACS4 for 8 weeks downregulated the DUX4 expression by 60%. Consequently, the treated mice showed an increase by 18% in body-wide muscle mass and 32% in muscle strength, and a reduction in both myofiber central nucleation and muscle fibrosis by up to 29% and 37%, respectively. Our results in a more suitable model of FSHD pathology confirm the efficacy of vivoPMO-PACS4 administration, and highlight the significant benefit provided by the long-term treatment of the disease.
Collapse
Affiliation(s)
- Ngoc Lu-Nguyen
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (N.L.-N.); (G.D.)
| | - George Dickson
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (N.L.-N.); (G.D.)
| | - Alberto Malerba
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (N.L.-N.); (G.D.)
- Correspondence: (A.M.); (L.P.)
| | - Linda Popplewell
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (N.L.-N.); (G.D.)
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
- Correspondence: (A.M.); (L.P.)
| |
Collapse
|
16
|
Himeda CL, Jones PL. FSHD Therapeutic Strategies: What Will It Take to Get to Clinic? J Pers Med 2022; 12:jpm12060865. [PMID: 35743650 PMCID: PMC9225474 DOI: 10.3390/jpm12060865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is arguably one of the most challenging genetic diseases to understand and treat. The disease is caused by epigenetic dysregulation of a macrosatellite repeat, either by contraction of the repeat or by mutations in silencing proteins. Both cases lead to chromatin relaxation and, in the context of a permissive allele, pathogenic misexpression of DUX4 in skeletal muscle. The complex nature of the locus and the fact that FSHD is a toxic, gain-of-function disease present unique challenges for the design of therapeutic strategies. There are three major DUX4-targeting avenues of therapy for FSHD: small molecules, oligonucleotide therapeutics, and CRISPR-based approaches. Here, we evaluate the preclinical progress of each avenue, and discuss efforts being made to overcome major hurdles to translation.
Collapse
|
17
|
Ashoti A, Limone F, van Kranenburg M, Alemany A, Baak M, Vivié J, Piccioni F, Dijkers PF, Creyghton M, Eggan K, Geijsen N. Considerations and practical implications of performing a phenotypic CRISPR/Cas survival screen. PLoS One 2022; 17:e0263262. [PMID: 35176052 PMCID: PMC8853573 DOI: 10.1371/journal.pone.0263262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/17/2022] [Indexed: 12/26/2022] Open
Abstract
Genome-wide screens that have viability as a readout have been instrumental to identify essential genes. The development of gene knockout screens with the use of CRISPR-Cas has provided a more sensitive method to identify these genes. Here, we performed an exhaustive genome-wide CRISPR/Cas9 phenotypic rescue screen to identify modulators of cytotoxicity induced by the pioneer transcription factor, DUX4. Misexpression of DUX4 due to a failure in epigenetic repressive mechanisms underlies facioscapulohumeral muscular dystrophy (FHSD), a complex muscle disorder that thus far remains untreatable. As the name implies, FSHD generally starts in the muscles of the face and shoulder girdle. Our CRISPR/Cas9 screen revealed no key effectors other than DUX4 itself that could modulate DUX4 cytotoxicity, suggesting that treatment efforts in FSHD should be directed towards direct modulation of DUX4 itself. Our screen did however reveal some rare and unexpected genomic events, that had an important impact on the interpretation of our data. Our findings may provide important considerations for planning future CRISPR/Cas9 phenotypic survival screens.
Collapse
MESH Headings
- CRISPR-Cas Systems
- Cell Survival
- Gene Expression Regulation
- Homeodomain Proteins/antagonists & inhibitors
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Muscle Cells/metabolism
- Muscle Cells/pathology
- Muscular Dystrophy, Facioscapulohumeral/genetics
- Muscular Dystrophy, Facioscapulohumeral/metabolism
- Muscular Dystrophy, Facioscapulohumeral/pathology
- Myoblasts/metabolism
- Myoblasts/pathology
Collapse
Affiliation(s)
- Ator Ashoti
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
- * E-mail: (AA); (FL); (NG); (KE)
| | - Francesco Limone
- Department of Stem Cell and Regenerative Biology, Harvard University Cambridge, MA, United States of America
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
- * E-mail: (AA); (FL); (NG); (KE)
| | - Melissa van Kranenburg
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | - Anna Alemany
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | - Mirna Baak
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | - Judith Vivié
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
- Single Cell Discoveries, Utrecht, The Netherlands
| | | | - Pascale F. Dijkers
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | - Menno Creyghton
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University Cambridge, MA, United States of America
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
- * E-mail: (AA); (FL); (NG); (KE)
| | - Niels Geijsen
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
- * E-mail: (AA); (FL); (NG); (KE)
| |
Collapse
|
18
|
Masteika IF, Sathya A, Homma S, Miller BM, Boyce FM, Miller JB. Downstream events initiated by expression of FSHD-associated DUX4: Studies of nucleocytoplasmic transport, γH2AX accumulation, and Bax/Bak-dependence. Biol Open 2022; 11:274475. [PMID: 35191484 PMCID: PMC8890089 DOI: 10.1242/bio.059145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 12/15/2022] Open
Abstract
Abnormal expression in skeletal muscle of the double homeobox transcription factor DUX4 underlies pathogenesis in facioscapulohumeral muscular dystrophy (FSHD). Though multiple changes are known to be initiated by aberrant DUX4 expression, the downstream events initiated by DUX4 remain incompletely understood. In this study, we examined plausible downstream events initiated by DUX4. First, we found that nucleocytoplasmic protein export appeared to be decreased upon DUX4 expression as indicated by nuclear accumulation of a shuttle-GFP reporter. Second, building on studies from other labs, we showed that phospho(Ser139)-H2AX (γH2AX), an indicator of double-strand DNA breaks, accumulated both in human FSHD1 myotube nuclei upon endogenous DUX4 expression and in Bax-/-;Bak-/- (double knockout), SV40-immortalized mouse embryonic fibroblasts upon exogenous DUX4 expression. In contrast, DUX4-induced caspase 3/7 activation was prevented in Bax-/-;Bak-/- double knockout SV40-MEFs, but not by single knockouts of Bax, Bak, or Bid. Thus, aberrant DUX4 expression appeared to alter nucleocytoplasmic protein transport and generate double-strand DNA breaks in FSHD1 myotube nuclei, and the Bax/Bak pathway is required for DUX4-induced caspase activation but not γH2AX accumulation. These results add to our knowledge of downstream events induced by aberrant DUX4 expression and suggest possibilities for further mechanistic investigation.
Collapse
Affiliation(s)
- Isabel F Masteika
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Anvitha Sathya
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Sachiko Homma
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Bess M Miller
- Biological & Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Frederick M Boyce
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Jeffrey Boone Miller
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| |
Collapse
|
19
|
Lu-Nguyen N, Malerba A, Antoni Pineda M, Dickson G, Popplewell LJ. Improving molecular and histopathology in diaphragm muscle of the double transgenic ACTA1-MCM/FLExDUX4 mouse model of FSHD with systemic antisense therapy. Hum Gene Ther 2022; 33:923-935. [PMID: 35078334 DOI: 10.1089/hum.2021.251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a rare muscle dystrophy causing muscle weakness initially in the face, shoulders and upper arms, and extended to lower body muscles as the disease progresses. Respiratory restriction in FSHD is increasingly reported to be more common and severe than previously thought, with the involvement of diaphragm weakness in pulmonary insufficiency being under debate. As aberrant expression of the double homeobox 4 (DUX4) gene is the prime cause of FSHD, we and others have developed numerous strategies and reported promising results on downregulating DUX4 expression in both cellular and animal models of FSHD. However, the effect of DUX4 and anti-DUX4 approaches on diaphragm muscle has not been elucidated. Here we show that toxic DUX4 expression causes pathology that affects the diaphragm of ACTA1-MCM/FLExDUX4 mouse model of FSHD at both molecular and histological levels. Of importance, a systemic antisense treatment that suppresses DUX4 and target genes expression by 50% significantly improves muscle regeneration and muscle fibrosis, and prevents modification in myofiber type composition, supporting its development as a treatment for FSHD.
Collapse
Affiliation(s)
- Ngoc Lu-Nguyen
- Royal Holloway University of London, 3162, Department of Biological Sciences, Egham, Surrey, United Kingdom of Great Britain and Northern Ireland;
| | - Alberto Malerba
- Royal Holloway University of London, 3162, Department of Biological Sciences, Egham, Surrey, United Kingdom of Great Britain and Northern Ireland;
| | - Marina Antoni Pineda
- Royal Holloway University of London, 3162, Department of Biological Sciences, Egham, Surrey, United Kingdom of Great Britain and Northern Ireland;
| | - George Dickson
- Royal Holloway University of London, 3162, Department of Biological Sciences, Egham, Surrey, United Kingdom of Great Britain and Northern Ireland;
| | - Linda J Popplewell
- Royal Holloway University of London, 3162, Department of Biological Sciences, Egham, Surrey, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
20
|
Adenine base editing of the DUX4 polyadenylation signal for targeted genetic therapy in facioscapulohumeral muscular dystrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:342-354. [PMID: 34484861 PMCID: PMC8399085 DOI: 10.1016/j.omtn.2021.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by chromatin relaxation of the D4Z4 repeat resulting in misexpression of the D4Z4-encoded DUX4 gene in skeletal muscle. One of the key genetic requirements for the stable production of full-length DUX4 mRNA in skeletal muscle is a functional polyadenylation signal (ATTAAA) in exon three of DUX4 that is used in somatic cells. Base editors hold great promise to treat DNA lesions underlying genetic diseases through their ability to carry out specific and rapid nucleotide mutagenesis even in postmitotic cells such as skeletal muscle. In this study, we present a simple and straightforward strategy for mutagenesis of the somatic DUX4 polyadenylation signal by adenine base editing in immortalized myoblasts derived from independent FSHD-affected individuals. We show that mutating this critical cis-regulatory element results in downregulation of DUX4 mRNA and its direct transcriptional target genes. Our findings identify the somatic DUX4 polyadenylation signal as a therapeutic target and represent the first step toward clinical application of the CRISPR-Cas9 base editing platform for FSHD gene therapy.
Collapse
|
21
|
Lu-Nguyen N, Malerba A, Herath S, Dickson G, Popplewell L. Systemic antisense therapeutics inhibiting DUX4 expression ameliorates FSHD-like pathology in an FSHD mouse model. Hum Mol Genet 2021; 30:1398-1412. [PMID: 33987655 PMCID: PMC8283208 DOI: 10.1093/hmg/ddab136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Aberrant expression of the double homeobox 4 (DUX4) gene in skeletal muscle causes muscle deterioration and weakness in Facioscapulohumeral muscular dystrophy (FSHD). Since the presence of a permissive pLAM1 polyadenylation signal is essential for stabilization of DUX4 mRNA and translation of DUX4 protein, disrupting the function of this structure can prevent expression of DUX4. We and others have shown promising results using antisense approaches to reduce DUX4 expression in vitro and in vivo following local intramuscular administration. Here we demonstrate that further development of the antisense chemistries enhances in vitro antisense efficacy. The optimal chemistry was conjugated to a cell-penetrating moiety and was systemically administered into the tamoxifen-inducible Cre-driver FLExDUX4 double-transgenic mouse model of FSHD. After four weekly treatments, mRNA quantities of DUX4 and target genes were reduced by 50% that led to 12% amelioration in muscle atrophy, 52% improvement in in situ muscle strength, 17% reduction in muscle fibrosis and prevention of shift in the myofiber type profile. Systemic DUX4 inhibition also significantly improved the locomotor activity and reduced the fatigue level by 22%. Our data demonstrate that the optimized antisense approach has potential of being further developed as a therapeutic strategy for FSHD.
Collapse
Affiliation(s)
- Ngoc Lu-Nguyen
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Alberto Malerba
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Shan Herath
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - George Dickson
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Linda Popplewell
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|