1
|
Wang H, Cui W, Yue S, Zhu X, Li X, He L, Zhang M, Yang Y, Wei M, Wu H, Wang S. Malic enzymes in cancer: Regulatory mechanisms, functions, and therapeutic implications. Redox Biol 2024; 75:103273. [PMID: 39142180 PMCID: PMC11367648 DOI: 10.1016/j.redox.2024.103273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Malic enzymes (MEs) are metabolic enzymes that catalyze the oxidation of malate to pyruvate and NAD(P)H. While researchers have well established the physiological metabolic roles of MEs in organisms, recent research has revealed a link between MEs and carcinogenesis. This review collates evidence of the molecular mechanisms by which MEs promote cancer occurrence, including transcriptional regulation, post-transcriptional regulation, post-translational protein modifications, and protein-protein interactions. Additionally, we highlight the roles of MEs in reprogramming energy metabolism, suppressing senescence, and modulating the tumor immune microenvironment. We also discuss the involvement of these enzymes in mediating tumor resistance and how the development of novel small-molecule inhibitors targeting MEs might be a good therapeutic approach. Insights through this review are expected to provide a comprehensive understanding of the intricate relationship between MEs and cancer, while facilitating future research on the potential therapeutic applications of targeting MEs in cancer management.
Collapse
Affiliation(s)
- Huan Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, PR China.
| | - Wanlin Cui
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China.
| | - Song Yue
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning Province, PR China.
| | - Xianglong Zhu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China
| | - Xiaoyan Li
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, PR China
| | - Lian He
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, PR China
| | - Mingrong Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China
| | - Yan Yang
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, No.4, Chongshan Road, Huanggu District, Shenyang, Liaoning Province, PR China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang City, Liaoning Province, PR China.
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China.
| | - Shuo Wang
- Department of Gynecology Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, PR China.
| |
Collapse
|
2
|
Gu X, Li X, Zhang X, Tong L, Feng R, Liu L, Sun H, Zhang Q, Bian T, Zhang J, Gao L, Zhang C, Liu J, Liu Y. Noncoding RNA-Mediated High Expression of PFKFB3 Correlates with Poor Prognosis and Tumor Immune Infiltration of Lung Adenocarcinoma. Onco Targets Ther 2023; 16:767-783. [PMID: 37771939 PMCID: PMC10522466 DOI: 10.2147/ott.s416155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/10/2023] [Indexed: 09/30/2023] Open
Abstract
Background There is growing evidence showing that 6-phosphofructo-2-kinase (PFKFB3) plays crucial roles in different types of human cancers, including LUAD; however, the specific mechanism by which PFKFB3 plays a role in LUAD remains unclear. Methods We investigated the expression of PFKFB3 and explored the underlying mechanism as well as the correlation with immune markers using several online datasets, such as Tumor Immune Estimate Resource (TIMER), UALCAN, and the Cancer Genome Atlas (TCGA) databases, miRWalk, Targetscan, MiRDB and starBase database. Western blot and immunohistochemistry analysis were performed to verify the corresponding outcomes. Results It was shown that the mRNA expression of PFKFB3 was lower in LUAD than in the normal tissues, while its protein expression was not consistent with the mRNA level. The expression of PFKFB3 was correlated with clinicopathological parameters and several signaling pathways. The potential long chain (lnc)RNA/microRNA/PFKFB3 axis and the possible mechanism by which tumor progression in LUAD is promoted was predicted. We obtained the LINC01798/LINC02086/AP000845.1/HAGLR-miR-17-5p-PFKFB3 axis after comprehensive analyses of expression, correlation, and survival. Moreover, the expression of PFKFB3 was positively correlated with immune cells and immune checkpoint expression, including PD-1, PD-L1 and CTLA-4. Conclusion The present study demonstrated that noncoding RNAs mediated the upregulation of PFKFB3 and was associated with a poor prognosis and immune tumor infiltration in LUAD.
Collapse
Affiliation(s)
- Xue Gu
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Xiaoli Li
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Xue Zhang
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Li Tong
- Department of Pathology, Affiliated Hospital of Nantong University, Dalian Medical University, Nantong, 226001, People’s Republic of China
| | - Ran Feng
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Lei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Hui Sun
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Qing Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Tingting Bian
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Jianguo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Lihua Gao
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Chenxi Zhang
- Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Jian Liu
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| |
Collapse
|
3
|
Guo JH, Ma YS, Lin JW, Jiang GX, He J, Lu HM, Wu W, Diao X, Fan QY, Wu CY, Liu JB, Fu D, Hou LK. Whole-exome and targeted gene sequencing of large-cell lung carcinoma reveals recurrent mutations in the PI3K pathway. Br J Cancer 2023; 129:366-373. [PMID: 37179440 PMCID: PMC10338432 DOI: 10.1038/s41416-023-02301-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Large cell lung carcinoma (LCLC) is an exceptionally aggressive disease with a poor prognosis. At present, little is known about the molecular pathology of LCLC. METHODS Ultra-deep sequencing of cancer-related genes and exome sequencing were used to detect the LCLC mutational in 118 tumor-normal pairs. The cell function test was employed to confirm the potential carcinogenic mutation of PI3K pathway. RESULTS The mutation pattern is determined by the predominance of A > C mutations. Genes with a significant non-silent mutation frequency (FDR) < 0.05) include TP53 (47.5%), EGFR (13.6%) and PTEN (12.1%). Moreover, PI3K signaling (including EGFR, FGRG4, ITGA1, ITGA5, and ITGA2B) is the most mutated pathway, influencing 61.9% (73/118) of the LCLC samples. The cell function test confirmed that the potential carcinogenic mutation of PI3K pathway had a more malignant cell function phenotype. Multivariate analysis further revealed that patients with the PI3K signaling pathway mutations have a poor prognosis (P = 0.007). CONCLUSIONS These results initially identified frequent mutation of PI3K signaling pathways in LCLC and indicate potential targets for the treatment of this fatal type of LCLC.
Collapse
Affiliation(s)
- Jun-Hong Guo
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yu-Shui Ma
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China
| | - Jie-Wei Lin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Geng-Xi Jiang
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai Hospital, Shanghai, 200433, China
| | - Juan He
- Pharmacy Department, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Hai-Min Lu
- Department of Thoracic Surgery, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China
| | - Wei Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Xun Diao
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China
| | - Qi-Yu Fan
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China
| | - Chun-Yan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| | - Ji-Bin Liu
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China.
| | - Da Fu
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China.
| | - Li-Kun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| |
Collapse
|
4
|
Sweef O, Zaabout E, Bakheet A, Halawa M, Gad I, Akela M, Tousson E, Abdelghany A, Furuta S. Unraveling Therapeutic Opportunities and the Diagnostic Potential of microRNAs for Human Lung Cancer. Pharmaceutics 2023; 15:2061. [PMID: 37631277 PMCID: PMC10459057 DOI: 10.3390/pharmaceutics15082061] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Lung cancer is a major public health problem and a leading cause of cancer-related deaths worldwide. Despite advances in treatment options, the five-year survival rate for lung cancer patients remains low, emphasizing the urgent need for innovative diagnostic and therapeutic strategies. MicroRNAs (miRNAs) have emerged as potential biomarkers and therapeutic targets for lung cancer due to their crucial roles in regulating cell proliferation, differentiation, and apoptosis. For example, miR-34a and miR-150, once delivered to lung cancer via liposomes or nanoparticles, can inhibit tumor growth by downregulating critical cancer promoting genes. Conversely, miR-21 and miR-155, frequently overexpressed in lung cancer, are associated with increased cell proliferation, invasion, and chemotherapy resistance. In this review, we summarize the current knowledge of the roles of miRNAs in lung carcinogenesis, especially those induced by exposure to environmental pollutants, namely, arsenic and benzopyrene, which account for up to 1/10 of lung cancer cases. We then discuss the recent advances in miRNA-based cancer therapeutics and diagnostics. Such information will provide new insights into lung cancer pathogenesis and innovative diagnostic and therapeutic modalities based on miRNAs.
Collapse
Affiliation(s)
- Osama Sweef
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Elsayed Zaabout
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ahmed Bakheet
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| | - Mohamed Halawa
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ibrahim Gad
- Department of Statistics and Mathematics, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed Akela
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ehab Tousson
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Ashraf Abdelghany
- Biomedical Research Center of University of Granada, Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
| | - Saori Furuta
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| |
Collapse
|
5
|
Sell MC, Ramlogan-Steel CA, Steel JC, Dhungel BP. MicroRNAs in cancer metastasis: biological and therapeutic implications. Expert Rev Mol Med 2023; 25:e14. [PMID: 36927814 PMCID: PMC10407223 DOI: 10.1017/erm.2023.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/02/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Cancer metastasis is the primary cause of cancer-related deaths. The seeding of primary tumours at a secondary site is a highly inefficient process requiring substantial alterations in the genetic architecture of cancer cells. These alterations include significant changes in global gene expression patterns. MicroRNAs are small, non-protein coding RNAs which play a central role in regulating gene expression. Here, we focus on microRNA determinants of cancer metastasis and examine microRNA dysregulation in metastatic cancer cells. We dissect the metastatic process in a step-wise manner and summarise the involvement of microRNAs at each step. We also discuss the advantages and limitations of different microRNA-based strategies that have been used to target metastasis in pre-clinical models. Finally, we highlight current clinical trials that use microRNA-based therapies to target advanced or metastatic tumours.
Collapse
Affiliation(s)
- Marie C. Sell
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Charmaine A. Ramlogan-Steel
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Jason C. Steel
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Bijay P. Dhungel
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
6
|
Shao IH, Peng PH, Wu HH, Chen JL, Lai JCY, Chang JS, Wu HT, Wu KJ, Pang ST, Hsu KW. RP11-367G18.1 V2 enhances clear cell renal cell carcinoma progression via induction of epithelial-mesenchymal transition. Cancer Med 2023; 12:9788-9801. [PMID: 36847128 PMCID: PMC10166984 DOI: 10.1002/cam4.5723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 03/01/2023] Open
Abstract
PURPOSE Metastasis is the end stage of renal cell carcinoma (RCC), and clear cell renal cell carcinoma (ccRCC) is the most common malignant subtype. The hypoxic microenvironment is a common feature in ccRCC and plays an essential role in the regulation of epithelial-mesenchymal transition (EMT). Accumulating evidence manifests that long non-coding RNAs (lncRNAs) participate in RCC tumorigenesis and regulate hypoxia-induced EMT. Here, we identified a lncRNA RP11-367G18.1 induced by hypoxia, that was overexpressed in ccRCC tissues. METHODS A total of 216 specimens, including 149 ccRCC tumor samples and 67 related normal kidney parenchyma tissue samples, were collected. To investigate the biological fucntions of RP11.367G18.1 in ccRCC, migration, invasion, soft agar colony formation, xenograft tumorigenicity assays, and tail vein and orthotopic metastatic mouse models were performed. The relationship between RP11-367G18.1 and downstream signaling was analyzed utilizing reporter assay, RNA pull-down, chromatin immunopreciptation, and chromatin isolation by RNA purification assays. RESULTS Hypoxic conditions and overexpression of HIF-1α increased the level of RP11-367G18.1. RP11-367G18.1 induced EMT and enhanced cell migration and invasion through variant 2. Inhibition of RP11-367G18.1 variant 2 reversed hypoxia-induced EMT phenotypes. An in vivo study revealed that RP11-367G18.1 variant 2 was required for hypoxia-induced tumor growth and metastasis in ccRCC. Mechanistically, RP11-367G18.1 variant 2 interacted with p300 histone acetyltransferase to regulate lysine 16 acetylation on histone 4 (H4K16Ac), thus contributing to hypoxia-regulated gene expression. Clinically, RP11-367G18.1 variant 2 was upregulated in ccRCC tissues, particularly metastatic ccRCC tissues, and it is linked to poor overall survival. CONCLUSION These findings demonstrate the prognostic value and EMT-promoting role of RP11-367G18.1 and indicate that this lncRNA may provide a therapeutic target for ccRCC.
Collapse
Affiliation(s)
- I-Hung Shao
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Division of Urology, Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Hua Peng
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Heng-Hsiung Wu
- Research Center for Cancer Biology, China Medical University, Taichung City, Taiwan.,Program for Cancer Biology and Drug Discovery, China Medical University, Taichung City, Taiwan.,Drug Development Center, China Medical University, Taichung City, Taiwan
| | - Ji-Lin Chen
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Jeng-Shou Chang
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Han-Tsang Wu
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - See-Tong Pang
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Division of Urology, Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kai-Wen Hsu
- Research Center for Cancer Biology, China Medical University, Taichung City, Taiwan.,Drug Development Center, China Medical University, Taichung City, Taiwan.,Institute of Translational Medicine and New Drug Development, China Medical University, Taichung City, Taiwan
| |
Collapse
|
7
|
Jiang X, Yuan Y, Tang L, Wang J, Zhang D, Duan L. Systematic Analysis and Validation of the Prognosis, Immunological Role and Biology Function of the Ferroptosis-Related lncRNA GSEC/miRNA-101-3p/CISD1 Axis in Lung Adenocarcinoma. Front Mol Biosci 2022; 8:793732. [PMID: 35320929 PMCID: PMC8936422 DOI: 10.3389/fmolb.2021.793732] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/22/2021] [Indexed: 01/10/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common type of lung cancer, accounting for approximately 85% of pulmonary malignancies. Emerging evidence has demonstrated that ferroptosis plays a central role in both immunities as well as tumor proliferation. However, the clinical significance, immunological function, and upstream modulatory mechanism of ferroptosis-related genes in LUAD remain unclear. Here, we utilized various bioinformatics data to identify differentially expressed (DEGs) and prognosis-related ferroptosis (FRGs) genes in LUAD. Based upon identified DEGs, FRG, and ceRNA modulatory networks were constructed. Pearson’s correlation analysis was used to evaluate the correlation between FRGs and the tumor mutational burden, microsatellite instability, tumor-infiltrating immunity, cellular checkpoint control, and drug sensitivity in LUAD. A loss-of-function analysis was performed to verify the function of CISD1 in LUAD progression. Our findings revealed that certain FRGs (CISD1, ATP5MC3, PGD, SLC7A11, ACSL3, and FANCD2) are significantly upregulated in LUAD and that their elevated expression is associated with both advanced tumor stage and unfavorable prognosis. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results revealed these FRGs to be primarily involved in ferroptosis and glutathione metabolism in LUAD. We constructed a prognostic FRG-based model capable of accurately predicting LUAD patient overall survival with high specificity. The upstream lncRNA GSEC/miRNA-101-3p regulatory axis involving CISD1, ATP5MC3, and PGD was identified to be relevant in tumor progression. We also found GSEC, CISD1, ATP5MC3, and PGD to be upregulated, with miRNA-101-3p downregulated, in the setting of LUAD. Immunohistochemical analysis revealed CISD1, ATP5MC3, and PGD overexpression in LUAD tissue samples; CISD1 knockdown was noted to significantly inhibit LUAD proliferation and migration. In summary, this study characterizes relevant functional roles of the lncRNA GSEC/miR-101-3p axis in the setting of LUAD and suggests diagnostic and therapeutic biomarkers potentially useful in the clinical management of this illness.
Collapse
Affiliation(s)
- Xiulin Jiang
- The Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, China
| | - Yixiao Yuan
- The Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming, China
| | - Lin Tang
- The Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming, China
| | - Juan Wang
- The Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming, China
| | - Dahang Zhang
- The Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming, China
| | - Lincan Duan
- The Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming, China
- *Correspondence: Lincan Duan,
| |
Collapse
|
8
|
Using bioinformatics approaches to identify survival-related oncomiRs as potential targets of miRNA-based treatments for lung adenocarcinoma. Comput Struct Biotechnol J 2022; 20:4626-4635. [PMID: 36090818 PMCID: PMC9449502 DOI: 10.1016/j.csbj.2022.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Lung cancer is a major cause of cancer-associated deaths worldwide, and lung adenocarcinoma (LUAD) is the most common lung cancer subtype. Micro RNAs (miRNAs) regulate the pattern of gene expression in multiple cancer types and have been explored as potential drug development targets. To develop an oncomiR-based panel, we identified miRNA candidates that show differential expression patterns and are relevant to the worse 5-year overall survival outcomes in LUAD patient samples. We further evaluated various combinations of miRNA candidates for association with 5-year overall survival and identified a four-miRNA panel: miR-9-5p, miR-1246, miR-31-3p, and miR-3136-5p. The combination of these four miRNAs outperformed any single miRNA for predicting 5-year overall survival (hazard ratio [HR]: 3.47, log-rank p-value = 0.000271). Experiments were performed on lung cancer cell lines and animal models to validate the effects of these miRNAs. The results showed that singly transfected antagomiRs largely inhibited cell growth, migration, and invasion, and the combination of all four antagomiRs considerably reduced cell numbers, which is twice as effective as any single miRNA-targeted transfected. The in vivo studies revealed that antagomiR-mediated knockdown of all four miRNAs significantly reduced tumor growth and metastatic ability of lung cancer cells compared to the negative control group. The success of these in vivo and in vitro experiments suggested that these four identified oncomiRs may have therapeutic potential.
Collapse
|
9
|
Papaioannou E, González-Molina MDP, Prieto-Muñoz AM, Gámez-Reche L, González-Martín A. Regulation of Adaptive Tumor Immunity by Non-Coding RNAs. Cancers (Basel) 2021; 13:cancers13225651. [PMID: 34830805 PMCID: PMC8616131 DOI: 10.3390/cancers13225651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer immunology research has mainly focused on the role of protein-coding genes in regulating immune responses to tumors. However, despite more than 70% of the human genome is transcribed, less than 2% encodes proteins. Many non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have been identified as critical regulators of immune cell development and function, suggesting that they might play important roles in orchestrating immune responses against tumors. In this review, we summarize the scientific advances on the role of ncRNAs in regulating adaptive tumor immunity, and discuss their potential therapeutic value in the context of cancer immunotherapy.
Collapse
|