1
|
Huang TS, Wu T, Fu XL, Ren HL, He XD, Zheng DH, Tan J, Shen CH, Xiong SJ, Qian J, Zou Y, Wan JH, Ji YJ, Liu MY, Wu YD, Li XH, Li H, Zheng K, Yang XF, Wang H, Ren M, Cai WB. SREBP1 induction mediates long-term statins therapy related myocardial lipid peroxidation and lipid deposition in TIIDM mice. Redox Biol 2024; 78:103412. [PMID: 39476450 PMCID: PMC11555471 DOI: 10.1016/j.redox.2024.103412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024] Open
Abstract
Statins therapy is efficacious in diminishing the risk of major cardiovascular events in diabetic patients. However, our research has uncovered a correlation between the prolonged administration of statins and an elevated risk of myocardial dysfunction in patients with type II diabetes mellitus (TIIDM). Here, we report the induction of sterol regulatory element-binding protein 1 (SREBP1) activation, associated lipid peroxidation, and the consequent diabetic myocardial dysfunction after statin treatment and explored the underlying mechanisms. In db/db mice, we observed that 40 weeks atorvastatin (5 and 10 mg/kg) and rosuvastatin (20 mg/kg) administration exacerbated diabetic myocardial dysfunction by echocardiography and cardiomyocyte contractility assay, increased myocardial inflammation and fibrosis as shown by CD68, IL-1β, Masson's staining and Collagen1A1 immunohistochemistry (IHC) staining, increased respiratory exchange ratio (RER) by metabolic cage system assessment, exacerbated mitochondrial structural pathological changes by transmission electron microscopy (TEM) examination, increased deposition of lipid and glycogen by TEM, Oil-red and periodic acid-schiff stain (PAS) staining, which were corresponded with augmented levels of myocardial SREBP1 protein and lipid peroxidation marked by 4-hydroxynonenal (4-HNE) staining. Comparable myocardial fibrosis was also observed in KK-ay and low-dose streptozotocin (STZ)-induced TIIDM mice. Elevated SREBP1 levels were observed in the heart tissues from diabetic patients, which was positively correlated with their myocardial dysfunction. To elucidate the role of statin induced SREBP1 in lipid peroxidation and lipid deposition and related mechanism, we cultured neonatal mouse primary cardiomyocytes (NMPCs) and treated them with atorvastatin (10 μM, 24 h), tracing with [U-13C]-glucose and evaluating for SREBP1 expression and localization. We found that statin treatment elevated de novo lipogenesis (DNL) and the levels of SREBP1 cleavage-activating protein (SCAP), reduced the interaction of SCAP with insulin-induced gene 1 (Insig1), and enhance SCAP/SREBP1 translocation to the Golgi, which facilitate SREBP1 cleavage leading to its nuclear trans-localization and activation in NMPCs. Ultimately, SREBP1 knockdown or l-carnitine mitigated long-term statins therapy induced lipid peroxidation and myocardial fibrosis in low-dose STZ treated SREBP1+/- mice and l-carnitine treated db/db mice. In conclusion, we demonstrated that statin therapy may augment DNL by activating SREBP1, resulting in myocardial lipid peroxidation and lipid deposition.
Collapse
Affiliation(s)
- Tong-Sheng Huang
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Guangzhou, 510080, Guangdong, PR China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, PR China
| | - Teng Wu
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Guangzhou, 510080, Guangdong, PR China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, PR China
| | - Xin-Lu Fu
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Guangzhou, 510080, Guangdong, PR China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, PR China
| | - Hong-Lin Ren
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Guangzhou, 510080, Guangdong, PR China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, PR China
| | - Xiao-Dan He
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Ding-Hao Zheng
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Jing Tan
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Guangzhou, 510080, Guangdong, PR China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, PR China
| | - Cong-Hui Shen
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Guangzhou, 510080, Guangdong, PR China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, PR China
| | - Shi-Jie Xiong
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Guangzhou, 510080, Guangdong, PR China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, PR China
| | - Jiang Qian
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Guangzhou, 510080, Guangdong, PR China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, PR China
| | - Yan Zou
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Guangzhou, 510080, Guangdong, PR China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, PR China
| | - Jun-Hong Wan
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Guangzhou, 510080, Guangdong, PR China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, PR China
| | - Yuan-Jun Ji
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Guangzhou, 510080, Guangdong, PR China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, PR China
| | - Meng-Ying Liu
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Guangzhou, 510080, Guangdong, PR China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, PR China
| | - Yan-di Wu
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Guangzhou, 510080, Guangdong, PR China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, PR China
| | - Xing-Hui Li
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Guangzhou, 510080, Guangdong, PR China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, PR China
| | - Hui Li
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Guangzhou, 510080, Guangdong, PR China
| | - Kai Zheng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong, PR China
| | - Xiao-Feng Yang
- Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Hong Wang
- Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA.
| | - Meng Ren
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China.
| | - Wei-Bin Cai
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Guangzhou, 510080, Guangdong, PR China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, PR China.
| |
Collapse
|
2
|
Zhan J, Zhou Y, Chen Y, Jin K, Chen Z, Chen C, Li H, Wang DW. Subcellular mass spectrometric detection unveils hyperglycemic memory in the diabetic heart. J Diabetes 2024; 16:e70033. [PMID: 39539089 PMCID: PMC11561303 DOI: 10.1111/1753-0407.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 09/24/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Intensive glycemic control is insufficient to reduce the risk of heart failure in patients with diabetes mellitus. While the hyperglycemic memory in the diabetic cardiomyopathy has been well documented, its underlying mechanisms are not fully understood. The present study tried to investigate whether the dysregulated proteins/biological pathways, which persistently altered in diabetic hearts during normoglycemia, participate in the hyperglycemic memory. METHODS Hearts of streptozotocin-induced diabetic mice, with or without intensive glycemic control using slow-release insulin implants, were collected. Proteins from total heart samples and subcellular fractions were assessed by mass spectrometry, Western blotting, and KEGG pathway enrichment analysis. mRNA sequencing was used to determine whether the persistently altered proteins were regulated at the transcriptional or post-transcriptional level. RESULTS Western blot validation of several proteins with high pathophysiological importance, including MYH7, HMGCS2, PDK4, and BDH1, indicated that mass spectrometry was able to qualitatively, but not quantitatively, reflect the fold changes of certain proteins in diabetes. Pathway analysis revealed that the peroxisome, PPAR pathway, and fatty acid metabolism could be efficiently rescued by glycemic control. However, dysregulation of oxidative phosphorylation and reactive oxygen species persisted even after normalization of hyperglycemia. Notably, mRNA sequencing revealed that dysregulated proteins in the oxidative phosphorylation pathway were not accompanied by coordinated changes in mRNA levels, indicating post-transcriptional regulation. Moreover, literature review and bioinformatics analysis suggested that hyperglycemia-induced persistent alterations of miRNAs targeted genes from the persistently dysregulated oxidative phosphorylation pathway, whereas, oxidative phosphorylation dysfunction-induced ROS regulated miRNA expression, which thereby might sustained the dysregulation of miRNAs. CONCLUSIONS Glycemic control cannot rescue hyperglycemia-induced alterations of subcellular proteins in the diabetic heart, and persistently altered proteins are involved in multiple functional pathways, including oxidative phosphorylation. These findings might provide novel insights into hyperglycemic memory in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Jiabing Zhan
- Division of Cardiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhanChina
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart DiseaseFujian Medical University Union HospitalFuzhouChina
| | - Yufei Zhou
- Division of Cardiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhanChina
| | - Yifan Chen
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart DiseaseFujian Medical University Union HospitalFuzhouChina
| | - Kunying Jin
- Division of Cardiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhanChina
| | - Zhaoyang Chen
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart DiseaseFujian Medical University Union HospitalFuzhouChina
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhanChina
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhanChina
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhanChina
| |
Collapse
|
3
|
Yang T, Qi F, Guo F, Shao M, Song Y, Ren G, Linlin Z, Qin G, Zhao Y. An update on chronic complications of diabetes mellitus: from molecular mechanisms to therapeutic strategies with a focus on metabolic memory. Mol Med 2024; 30:71. [PMID: 38797859 PMCID: PMC11128119 DOI: 10.1186/s10020-024-00824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Diabetes mellitus, a chronic metabolic disease, often leads to numerous chronic complications, significantly contributing to global morbidity and mortality rates. High glucose levels trigger epigenetic modifications linked to pathophysiological processes like inflammation, immunity, oxidative stress, mitochondrial dysfunction, senescence and various kinds of cell death. Despite glycemic control, transient hyperglycemia can persistently harm organs, tissues, and cells, a latent effect termed "metabolic memory" that contributes to chronic diabetic complications. Understanding metabolic memory's mechanisms could offer a new approach to mitigating these complications. However, key molecules and networks underlying metabolic memory remain incompletely understood. This review traces the history of metabolic memory research, highlights its key features, discusses recent molecules involved in its mechanisms, and summarizes confirmed and potential therapeutic compounds. Additionally, we outline in vitro and in vivo models of metabolic memory. We hope this work will inform future research on metabolic memory's regulatory mechanisms and facilitate the development of effective therapeutic compounds to prevent diabetic complications.
Collapse
Affiliation(s)
- Tongyue Yang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Feng Qi
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Feng Guo
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mingwei Shao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yi Song
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Gaofei Ren
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhao Linlin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Guijun Qin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yanyan Zhao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
4
|
Xie R, Yuan S, Hu G, Zhan J, Jin K, Tang Y, Fan J, Zhao Y, Wang F, Chen C, Wang DW, Li H. Nuclear AGO2 promotes myocardial remodeling by activating ANKRD1 transcription in failing hearts. Mol Ther 2024; 32:1578-1594. [PMID: 38475992 PMCID: PMC11081878 DOI: 10.1016/j.ymthe.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/01/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024] Open
Abstract
Heart failure (HF) is manifested by transcriptional and posttranscriptional reprogramming of critical genes. Multiple studies have revealed that microRNAs could translocate into subcellular organelles such as the nucleus to modify gene expression. However, the functional property of subcellular Argonaute2 (AGO2), the core member of the microRNA machinery, has remained elusive in HF. AGO2 was found to be localized in both the cytoplasm and nucleus of cardiomyocytes, and robustly increased in the failing hearts of patients and animal models. We demonstrated that nuclear AGO2 rather than cytosolic AGO2 overexpression by recombinant adeno-associated virus (serotype 9) with cardiomyocyte-specific troponin T promoter exacerbated the cardiac dysfunction in transverse aortic constriction (TAC)-operated mice. Mechanistically, nuclear AGO2 activates the transcription of ANKRD1, encoding ankyrin repeat domain-containing protein 1 (ANKRD1), which also has a dual function in the cytoplasm as part of the I-band of the sarcomere and in the nucleus as a transcriptional cofactor. Overexpression of nuclear ANKRD1 recaptured some key features of cardiac remodeling by inducing pathological MYH7 activation, whereas cytosolic ANKRD1 seemed cardioprotective. For clinical practice, we found ivermectin, an antiparasite drug, and ANPep, an ANKRD1 nuclear location signal mimetic peptide, were able to prevent ANKRD1 nuclear import, resulting in the improvement of cardiac performance in TAC-induced HF.
Collapse
Affiliation(s)
- Rong Xie
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Shuai Yuan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Guo Hu
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiabing Zhan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Kunying Jin
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yuyan Tang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiahui Fan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yanru Zhao
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Feng Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
5
|
Zhan J, Jin K, Xie R, Fan J, Tang Y, Chen C, Li H, Wang DW. AGO2 Protects Against Diabetic Cardiomyopathy by Activating Mitochondrial Gene Translation. Circulation 2024; 149:1102-1120. [PMID: 38126189 DOI: 10.1161/circulationaha.123.065546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Diabetes is associated with cardiovascular complications. microRNAs translocate into subcellular organelles to modify genes involved in diabetic cardiomyopathy. However, functional properties of subcellular AGO2 (Argonaute2), a core member of miRNA machinery, remain elusive. METHODS We elucidated the function and mechanism of subcellular localized AGO2 on mouse models for diabetes and diabetic cardiomyopathy. Recombinant adeno-associated virus type 9 was used to deliver AGO2 to mice through the tail vein. Cardiac structure and functions were assessed by echocardiography and catheter manometer system. RESULTS AGO2 was decreased in mitochondria of diabetic cardiomyocytes. Overexpression of mitochondrial AGO2 attenuated diabetes-induced cardiac dysfunction. AGO2 recruited TUFM, a mitochondria translation elongation factor, to activate translation of electron transport chain subunits and decrease reactive oxygen species. Malonylation, a posttranslational modification of AGO2, reduced the importing of AGO2 into mitochondria in diabetic cardiomyopathy. AGO2 malonylation was regulated by a cytoplasmic-localized short isoform of SIRT3 through a previously unknown demalonylase function. CONCLUSIONS Our findings reveal that the SIRT3-AGO2-CYTB axis links glucotoxicity to cardiac electron transport chain imbalance, providing new mechanistic insights and the basis to develop mitochondria targeting therapies for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Jiabing Zhan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.Z.)
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University, China (J.Z.)
| | - Kunying Jin
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
| | - Rong Xie
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
| | - Jiahui Fan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
| | - Yuyan Tang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
| |
Collapse
|
6
|
Wang K, Hou M, Qiao C, Duan Y, Tao R, Wang X, Xiao K, Liu S, Zhao H, Wang J, Jia Z, Ding X. Icariin alleviates diabetic renal interstitial fibrosis aggravation by inhibiting miR-320a-3p targeting BMP6. J Pharmacol Sci 2024; 154:316-325. [PMID: 38485350 DOI: 10.1016/j.jphs.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
Diabetic nephropathy is a common complication of diabetes, accumulating evidence underscores the pivotal role of tubulointerstitial fibrosis in the progression of diabetic nephropathy. However, the underlying mechanisms remain incompletely understood. Although the mechanisms in diabetic nephropathy fibrosis have been the focus of many studies, only limited information is currently available concerning microRNA regulation in tubulointerstitial fibrosis. In this study, we aimed to investigate the roles of miR-320a-3p and bone morphogenetic protein-6 (BMP6) in tubulointerstitial fibrosis. After inducing fibrosis with high glucose in HK-2 cells, we found that miR-320a-3p is significantly up-regulated, whereas BMP6 is markedly down-regulated. These changes suggest close link between miR-320a-3p and BMP6 in tubulointerstitial fibrosis. To elucidate this phenomenon, miR-320a-3p mimic, inhibitor and siBMP6 were employed. We observed in miR-320a-3p mimic group the fibrosis marker include alpha smooth muscle actin and type I collagen was significantly up-regulated, whereas BMP6 exhibited the opposite trend. Additionally, we found icariin could alleviate tubulointerstitial fibrosis by downregulation the miR-320a-3p expression. In conclusion, miR-320a-3p promotes tubulointerstitial fibrosis during the development of DN by suppressing BMP signal pathway activity via inhibiting BMP6 expression. Suggesting that miR-320a-3p represents a potential therapeutic target for tubulointerstitial fibrosis induced by diabetic nephropathy.
Collapse
Affiliation(s)
- Kaiwei Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Mengjun Hou
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chen Qiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yalei Duan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Rongpin Tao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiniao Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Kang Xiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shuo Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hanzhen Zhao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiali Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhirong Jia
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Precision Medicine Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
7
|
Li B, Zhang Y, Zheng Y, Cai H. The mechanisms and therapeutic potential of clopidogrel in mitigating diabetic cardiomyopathy in db/db mice. iScience 2024; 27:109134. [PMID: 38375215 PMCID: PMC10875154 DOI: 10.1016/j.isci.2024.109134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
Clopidogrel has been shown to play a protective role against diabetic nephropathy. However, whether clopidogrel exerts a protective effect against diabetic cardiomyopathy (DCM) is unknown. Three-month-old male db/db mice were administered clopidogrel daily at doses of 5, 10, and 20 mg/kg by gavage for 5 months. Here, we showed that clopidogrel effectively attenuated diabetes-induced cardiac hypertrophy and cardiac dysfunction by inhibiting cardiac fibrosis, inflammatory responses, and oxidative stress damage in db/db mice. Diabetes-induced cardiac fibrosis was inhibited by clopidogrel treatment via blockade of the TGF-β1/Smad3/P2RY12 pathway and inhibition of macrophage infiltration in db/db mice. The protective effects of clopidogrel against oxidative damage were mediated by the induction of the Nrf2 signaling pathway. Taken together, our findings provide strong evidence that clopidogrel is a promising effective agent for the treatment of DCM by alleviating diabetes-induced cardiac hypertrophy and dysfunction. P2RY12 might be an effective target for the treatment of DCM.
Collapse
Affiliation(s)
- Bing Li
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China
| | - Yaoting Zhang
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China
| | - Yang Zheng
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China
| | - He Cai
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
8
|
Song C, Zhang Y, Huang H, Wang Y, Zhao X, Zhang G, Yin M, Feng C, Wang Q, Qian F, Shang D, Zhang J, Liu J, Li C, Tang H. Cis-Cardio: A comprehensive analysis platform for cardiovascular-relavant cis-regulation in human and mouse. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:655-667. [PMID: 37637211 PMCID: PMC10458290 DOI: 10.1016/j.omtn.2023.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
Cis-regulatory elements are important molecular switches in controlling gene expression and are regarded as determinant hubs in the transcriptional regulatory network. Collection and processing of large-scale cis-regulatory data are urgent to decipher the potential mechanisms of cardiovascular diseases from a cis-regulatory element aspect. Here, we developed a novel web server, Cis-Cardio, which aims to document a large number of available cardiovascular-related cis-regulatory data and to provide analysis for unveiling the comprehensive mechanisms at a cis-regulation level. The current version of Cis-Cardio catalogs a total of 45,382,361 genomic regions from 1,013 human and mouse epigenetic datasets, including ATAC-seq, DNase-seq, Histone ChIP-seq, TF/TcoF ChIP-seq, RNA polymerase ChIP-seq, and Cohesin ChIP-seq. Importantly, Cis-Cardio provides six analysis tools, including region overlap analysis, element upstream/downstream analysis, transcription regulator enrichment analysis, variant interpretation, and protein-protein interaction-based co-regulatory analysis. Additionally, Cis-Cardio provides detailed and abundant (epi-) genetic annotations in cis-regulatory regions, such as super-enhancers, enhancers, transcription factor binding sites (TFBSs), methylation sites, common SNPs, risk SNPs, expression quantitative trait loci (eQTLs), motifs, DNase I hypersensitive sites (DHSs), and 3D chromatin interactions. In summary, Cis-Cardio is a valuable resource for elucidating and analyzing regulatory cues of cardiovascular-specific cis-regulatory elements. The platform is freely available at http://www.licpathway.net/Cis-Cardio/index.html.
Collapse
Affiliation(s)
- Chao Song
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuexin Zhang
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China
| | - Hong Huang
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan 421001, China
| | - Yuezhu Wang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Xilong Zhao
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Guorui Zhang
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
| | - Mingxue Yin
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
| | - Chenchen Feng
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Qiuyu Wang
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Fengcui Qian
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China
| | - Desi Shang
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jian Zhang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Jiaqi Liu
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China
| | - Chunquan Li
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, University of South China, Hengyang, Hunan 421001, China
| | - Huifang Tang
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan 421001, China
| |
Collapse
|
9
|
Kankuri E. Positive feedback loop of miR-320 and CD36 regulates the hyperglycemic memory-induced diabetic diastolic cardiac dysfunction. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:318-321. [PMID: 37113707 PMCID: PMC10126843 DOI: 10.1016/j.omtn.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Corresponding author: Esko Kankuri, MD, PhD, Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|