1
|
Baabdulla AA, Hillen T. Oscillations in a Spatial Oncolytic Virus Model. Bull Math Biol 2024; 86:93. [PMID: 38896363 DOI: 10.1007/s11538-024-01322-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Virotherapy treatment is a new and promising target therapy that selectively attacks cancer cells without harming normal cells. Mathematical models of oncolytic viruses have shown predator-prey like oscillatory patterns as result of an underlying Hopf bifurcation. In a spatial context, these oscillations can lead to different spatio-temporal phenomena such as hollow-ring patterns, target patterns, and dispersed patterns. In this paper we continue the systematic analysis of these spatial oscillations and discuss their relevance in the clinical context. We consider a bifurcation analysis of a spatially explicit reaction-diffusion model to find the above mentioned spatio-temporal virus infection patterns. The desired pattern for tumor eradication is the hollow ring pattern and we find exact conditions for its occurrence. Moreover, we derive the minimal speed of travelling invasion waves for the cancer and for the oncolytic virus. Our numerical simulations in 2-D reveal complex spatial interactions of the virus infection and a new phenomenon of a periodic peak splitting. An effect that we cannot explain with our current methods.
Collapse
Affiliation(s)
- Arwa Abdulla Baabdulla
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Canada.
| | - Thomas Hillen
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
2
|
Deng D, Hao T, Lu L, Yang M, Zeng Z, Lovell JF, Liu Y, Jin H. Applications of Intravital Imaging in Cancer Immunotherapy. Bioengineering (Basel) 2024; 11:264. [PMID: 38534538 DOI: 10.3390/bioengineering11030264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Currently, immunotherapy is one of the most effective treatment strategies for cancer. However, the efficacy of any specific anti-tumor immunotherapy can vary based on the dynamic characteristics of immune cells, such as their rate of migration and cell-to-cell interactions. Therefore, understanding the dynamics among cells involved in the immune response can inform the optimization and improvement of existing immunotherapy strategies. In vivo imaging technologies use optical microscopy techniques to visualize the movement and behavior of cells in vivo, including cells involved in the immune response, thereby showing great potential for application in the field of cancer immunotherapy. In this review, we briefly introduce the technical aspects required for in vivo imaging, such as fluorescent protein labeling, the construction of transgenic mice, and various window chamber models. Then, we discuss the elucidation of new phenomena and mechanisms relating to tumor immunotherapy that has been made possible by the application of in vivo imaging technology. Specifically, in vivo imaging has supported the characterization of the movement of T cells during immune checkpoint inhibitor therapy and the kinetic analysis of dendritic cell migration in tumor vaccine therapy. Finally, we provide a perspective on the challenges and future research directions for the use of in vivo imaging technology in cancer immunotherapy.
Collapse
Affiliation(s)
- Deqiang Deng
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tianli Hao
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lisen Lu
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Muyang Yang
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen Zeng
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Yushuai Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Kemler I, Karamched B, Neuhauser C, Dingli D. Quantitative imaging and dynamics of tumor therapy with viruses. FEBS J 2021; 288:6273-6285. [PMID: 34213827 DOI: 10.1111/febs.16102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/07/2021] [Accepted: 07/01/2021] [Indexed: 12/27/2022]
Abstract
Cancer therapy remains challenging due to the myriad presentations of the disease and the vast genetic diversity of tumors that continuously evolve and often become resistant to therapy. Viruses can be engineered to specifically infect, replicate, and kill tumor cells (tumor virotherapy). Moreover, the viruses can be "armed" with therapeutic genes to enhance their oncolytic effect. Using viruses to treat cancer is exciting and novel and in principle can be used for a broad variety of tumors. However, the approach is distinctly different from other cancer therapies since success depends on establishment of an infection within the tumor and ongoing propagation of the oncolytic virus within the tumor itself. Therefore, the target itself amplifies the therapy. This introduces complex dynamics especially when the immune system is taken into consideration as well as the physical and other biological barriers to virus growth. Understanding these dynamics not only requires mathematical and computational models but also approaches for the noninvasive monitoring of the virus and tumor populations. In this perspective, we discuss strategies and current results to achieve this important goal of understanding these dynamics in pursuit of optimization of oncolytic virotherapy.
Collapse
Affiliation(s)
- Iris Kemler
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Bhargav Karamched
- Department of Mathematics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| | | | - David Dingli
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Hematology and Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
4
|
Senekal NS, Mahasa KJ, Eladdadi A, de Pillis L, Ouifki R. Natural Killer Cells Recruitment in Oncolytic Virotherapy: A Mathematical Model. Bull Math Biol 2021; 83:75. [PMID: 34008149 DOI: 10.1007/s11538-021-00903-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/20/2021] [Indexed: 01/17/2023]
Abstract
In this paper, we investigate how natural killer (NK) cell recruitment to the tumor microenvironment (TME) affects oncolytic virotherapy. NK cells play a major role against viral infections. They are, however, known to induce early viral clearance of oncolytic viruses, which hinders the overall efficacy of oncolytic virotherapy. Here, we formulate and analyze a simple mathematical model of the dynamics of the tumor, OV and NK cells using currently available preclinical information. The aim of this study is to characterize conditions under which the synergistic balance between OV-induced NK responses and required viral cytopathicity may or may not result in a successful treatment. In this study, we found that NK cell recruitment to the TME must take place neither too early nor too late in the course of OV infection so that treatment will be successful. NK cell responses are most influential at either early (partly because of rapid response of NK cells to viral infections or antigens) or later (partly because of antitumoral ability of NK cells) stages of oncolytic virotherapy. The model also predicts that: (a) an NK cell response augments oncolytic virotherapy only if viral cytopathicity is weak; (b) the recruitment of NK cells modulates tumor growth; and (c) the depletion of activated NK cells within the TME enhances the probability of tumor escape in oncolytic virotherapy. Taken together, our model results demonstrate that OV infection is crucial, not just to cytoreduce tumor burden, but also to induce the stronger NK cell response necessary to achieve complete or at least partial tumor remission. Furthermore, our modeling framework supports combination therapies involving NK cells and OV which are currently used in oncolytic immunovirotherapy to treat several cancer types.
Collapse
Affiliation(s)
- Noma Susan Senekal
- Department of Mathematics and Computer Science, National University of Lesotho, Roma, Maseru, Lesotho.
| | - Khaphetsi Joseph Mahasa
- Department of Mathematics and Computer Science, National University of Lesotho, Roma, Maseru, Lesotho
| | | | | | - Rachid Ouifki
- Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Singh HM, Leber MF, Bossow S, Engeland CE, Dessila J, Grossardt C, Zaoui K, Bell JC, Jäger D, von Kalle C, Ungerechts G. MicroRNA-sensitive oncolytic measles virus for chemovirotherapy of pancreatic cancer. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:340-355. [PMID: 34141871 PMCID: PMC8182383 DOI: 10.1016/j.omto.2021.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/28/2021] [Indexed: 02/07/2023]
Abstract
Advanced pancreatic cancer is characterized by few treatment options and poor outcomes. Oncolytic virotherapy and chemotherapy involve complementary pharmacodynamics and could synergize to improve therapeutic efficacy. Likewise, multimodality treatment may cause additional toxicity, and new agents have to be safe. Balancing both aims, we generated an oncolytic measles virus for 5-fluorouracil-based chemovirotherapy of pancreatic cancer with enhanced tumor specificity through microRNA-regulated vector tropism. The resulting vector encodes a bacterial prodrug convertase, cytosine deaminase-uracil phosphoribosyl transferase, and carries synthetic miR-148a target sites in the viral F gene. Combination of the armed and targeted virus with 5-fluorocytosine, a prodrug of 5-fluorouracil, resulted in cytotoxicity toward both infected and bystander pancreatic cancer cells. In pancreatic cancer xenografts, a single intratumoral injection of the virus induced robust in vivo expression of prodrug convertase. Based on intratumoral transgene expression kinetics, we devised a chemovirotherapy regimen to assess treatment efficacy. Concerted multimodality treatment with intratumoral virus and systemic prodrug administration delayed tumor growth and prolonged survival of xenograft-bearing mice. Our results demonstrate that 5-fluorouracil-based chemovirotherapy with microRNA-sensitive measles virus is an effective strategy against pancreatic cancer at a favorable therapeutic index that warrants future clinical translation.
Collapse
Affiliation(s)
- Hans Martin Singh
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Mathias Felix Leber
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ONT, Canada
| | - Sascha Bossow
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Christine E Engeland
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.,Clinical Cooperation Unit Virotherapy, Research Group Mechanisms of Oncolytic Immunotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Faculty of Health/School of Medicine, Institute of Virology and Microbiology, Witten/Herdecke University, Stockumer Straße 10, 58453 Witten, Germany
| | - Jan Dessila
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Christian Grossardt
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Karim Zaoui
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Department of Otorhinolaryngology and Head and Neck Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - John C Bell
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ONT, Canada
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Christof von Kalle
- Berlin Institute of Health and Charité Universitätsmedizin, Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany.,Sidra Medical and Research Center, Al Luqta Street, Education City, North Campus, P.O. Box 26999, Doha, Qatar
| | - Guy Ungerechts
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ONT, Canada
| |
Collapse
|
6
|
Wu TM, Liu JB, Liu Y, Shi Y, Li W, Wang GR, Ma YS, Fu D. Power and Promise of Next-Generation Sequencing in Liquid Biopsies and Cancer Control. Cancer Control 2021; 27:1073274820934805. [PMID: 32806937 PMCID: PMC7791471 DOI: 10.1177/1073274820934805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traditional methods of cancer treatment are usually based on the morphological
and histological diagnosis of tumors, and they are not optimized according to
the specific situation. Precision medicine adjusts the existing treatment
regimen based on the patient’s genomic information to make it most suitable for
patients. Detection of genetic mutations in tumors is the basis of precise
cancer medicine. Through the analysis of genetic mutations in patients with
cancer, we can tailor the treatment plan for each patient with cancer to
maximize the curative effect, minimize damage to healthy tissues, and optimize
resources. In recent years, next-generation sequencing technology has developed
rapidly and has become the core technology of precise targeted therapy and
immunotherapy for cancer. From early cancer screening to treatment guidance for
patients with advanced cancer, liquid biopsy is increasingly used in cancer
management. This is as a result of the development of better noninvasive,
repeatable, sensitive, and accurate tools used in early screening, diagnosis,
evaluation, and monitoring of patients. Cell-free DNA, which is a new
noninvasive molecular pathological detection method, often carries
tumor-specific gene changes. It plays an important role in optimizing treatment
and evaluating the efficacy of different treatment options in clinical trials,
and it has broad clinical applications.
Collapse
Affiliation(s)
- Ting-Miao Wu
- Department of Radiology, 12485The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ji-Bin Liu
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China
| | - Yu Liu
- National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, 12571Central South University of Forestry and Technology, Chaha, China
| | - Yi Shi
- National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, 12571Central South University of Forestry and Technology, Chaha, China
| | - Wen Li
- National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, 12571Central South University of Forestry and Technology, Chaha, China
| | - Gao-Ren Wang
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China
| | - Yu-Shui Ma
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, 12476Tongji University School of Medicine, Shanghai, China
| | - Da Fu
- Department of Radiology, 12485The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, 12476Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Measles Virus as an Oncolytic Immunotherapy. Cancers (Basel) 2021; 13:cancers13030544. [PMID: 33535479 PMCID: PMC7867054 DOI: 10.3390/cancers13030544] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Measles virus (MeV) preferentially replicates in malignant cells, leading to tumor lysis and priming of antitumor immunity. Live attenuated MeV vaccine strains are therefore under investigation as cancer therapeutics. The versatile MeV reverse genetics systems allows for engineering of advanced targeted, armed, and shielded oncolytic viral vectors. Therapeutic efficacy can further be enhanced by combination treatments. An emerging focus in this regard is combination immunotherapy, especially with immune checkpoint blockade. Despite challenges arising from antiviral immunity, availability of preclinical models, and GMP production, early clinical trials have demonstrated safety of oncolytic MeV and yielded promising efficacy data. Future clinical trials with engineered viruses, rational combination regimens, and comprehensive translational research programs will realize the potential of oncolytic immunotherapy.
Collapse
|
8
|
Chai X, Han HH, Sedgwick AC, Li N, Zang Y, James TD, Zhang J, Hu XL, Yu Y, Li Y, Wang Y, Li J, He XP, Tian H. Photochromic Fluorescent Probe Strategy for the Super-resolution Imaging of Biologically Important Biomarkers. J Am Chem Soc 2020; 142:18005-18013. [DOI: 10.1021/jacs.0c05379] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xianzhi Chai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, P. R. China
| | - Adam C. Sedgwick
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street A5300, Austin, Texas 78712-1224, United States
| | - Na Li
- National Center for Protein Science Shanghai, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, P. R. China
| | - Tony D. James
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Yang Yu
- National Center for Protein Science Shanghai, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Yao Li
- National Center for Protein Science Shanghai, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Yan Wang
- National Center for Protein Science Shanghai, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, P. R. China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
9
|
Liu JB, Chu KJ, Ling CC, Wu TM, Wang HM, Shi Y, Li ZZ, Wang JH, Wu ZJ, Jiang XQ, Wang GR, Ma YS, Fu D. Prognosis for intrahepatic cholangiocarcinoma patients treated with postoperative adjuvant transcatheter hepatic artery chemoembolization. Curr Probl Cancer 2020; 44:100612. [PMID: 32517878 DOI: 10.1016/j.currproblcancer.2020.100612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/20/2020] [Accepted: 05/07/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE We used meta-analysis to evaluate the efficacy of transcatheter hepatic arterial chemoembolization (TACE) for the treatment of intrahepatic cholangiocarcinoma (ICC). METHODS We performed the meta-analysis using the R 3.12 software and the quality evaluation of data using the Newcastle-Ottawa Scale. The main outcomes were recorded as 1-year overall survival (OS), 3-year OS, 5-year OS, and hazard ratio (HR) of TACE treatment or non-TACE treatment. The heterogeneity test was performed using the Q-test based on chi-square and I2 statistics. Egger's test was used to test the publication bias. The odds ratio or HR and 95% confidence interval (CI) were used to represent the effect index. RESULTS Nine controlled clinical trials involving 1724 participants were included in this study; patients came mainly from China, Italy, South Korea, and Germany. In the OS meta-analysis, the 1-year and 3-year OS showed significant heterogeneity, but not the 5-year OS. TACE increased the 1-year OS (odds ratio = 2.66, 95% CI: 1.10-6.46) of the patients with ICC, but the 3- and 5-year OS rates were not significantly increased. The results had no publication bias, but the stability was weak. The HR had significant heterogeneity (I2 = 0%, P= 0.54). TACE significantly decreased the HR of ICC patients (HR = 0.59, 95% CI: 0.48-0.73). The results had no publication bias, and the stability was good. CONCLUSIONS Treatment with TACE is effective for patients with ICC. Regular updating and further research and analysis still need to be carried out.
Collapse
Affiliation(s)
- Ji-Bin Liu
- Cancer Institute, Nantong Tumor Hospital, Nantong, China
| | - Kai-Jian Chu
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Chang-Chun Ling
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ting-Miao Wu
- Department of Radiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui-Min Wang
- Cancer Institute, Nantong Tumor Hospital, Nantong, China; Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Shi
- Cancer Institute, Nantong Tumor Hospital, Nantong, China; Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhi-Zhen Li
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jing-Han Wang
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Zhi-Jun Wu
- Department of Radiotherapy, Nantong Tumor Hospital, Nantong, China
| | - Xiao-Qing Jiang
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Gao-Ren Wang
- Department of Radiotherapy, Nantong Tumor Hospital, Nantong, China.
| | - Yu-Shui Ma
- Cancer Institute, Nantong Tumor Hospital, Nantong, China; Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Da Fu
- Department of Radiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China; Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Keshavarz M, Sabbaghi A, Miri SM, Rezaeyan A, Arjeini Y, Ghaemi A. Virotheranostics, a double-barreled viral gun pointed toward cancer; ready to shoot? Cancer Cell Int 2020; 20:131. [PMID: 32336951 PMCID: PMC7178751 DOI: 10.1186/s12935-020-01219-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/17/2020] [Indexed: 12/23/2022] Open
Abstract
Compared with conventional cancer treatments, the main advantage of oncolytic virotherapy is its tumor-selective replication followed by the destruction of malignant cells without damaging healthy cells. Accordingly, this kind of biological therapy can potentially be used as a promising approach in the field of cancer management. Given the failure of traditional monitoring strategies (such as immunohistochemical analysis (in providing sufficient safety and efficacy necessary for virotherapy and continual pharmacologic monitoring to track pharmacokinetics in real-time, the development of alternative strategies for ongoing monitoring of oncolytic treatment in a live animal model seems inevitable. Three-dimensional molecular imaging methods have recently been considered as an attractive approach to overcome the limitations of oncolytic therapy. These noninvasive visualization systems provide real-time follow-up of viral progression within the cancer tissue by the ability of engineered oncolytic viruses (OVs) to encode reporter transgenes based on recombinant technology. Human sodium/iodide symporter (hNIS) is considered as one of the most prevalent nuclear imaging reporter transgenes that provides precise information regarding the kinetics of gene expression, viral biodistribution, toxicity, and therapeutic outcomes using the accumulation of radiotracers at the site of transgene expression. Here, we provide an overview of pre-clinical and clinical applications of hNIS-based molecular imaging to evaluate virotherapy efficacy. Moreover, we describe different types of reporter genes and their potency in the clinical trials.
Collapse
Affiliation(s)
- Mohsen Keshavarz
- 1The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ailar Sabbaghi
- 2Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | | | - Abolhasan Rezaeyan
- 4Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yaser Arjeini
- 5Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ghaemi
- 6Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
WITHDRAWN: Evolutionary Game Dynamics and Cancer. Trends Cancer 2019. [DOI: 10.1016/j.trecan.2019.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|