1
|
Letafati A, Ardekani OS, Naderisemiromi M, Fazeli MM, Jemezghani NA, Yavarian J. Oncolytic viruses against cancer, promising or delusion? Med Oncol 2023; 40:246. [PMID: 37458862 DOI: 10.1007/s12032-023-02106-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023]
Abstract
Cancer treatment is one of the most challenging topics in medical sciences. Different methods such as chemotherapy, tumor surgery, and immune checkpoint inhibitors therapy (ICIs) are potential approaches to treating cancer and killing tumor cells, but clinical studies have shown that they have been successful for a limited group of patients. Using viruses as a treatment can be considered as an effective treatment in the field of medicine. This is considered as a potential treatment, especially in comparison to chemotherapy, which has severe side effects related to the immune system. Most oncolytic viruses (OVs) have the potential to multiply in cancer cells, which are more than normal cells in malignant tissue and can induce immune responses. Therefore, tons of efforts and research have been started on the utilization of OVs as a treatment for cancer and have shown promising in treating cancers with less side effects. In this article, we have gathered studies about oncolytic viruses and their effectiveness in cancer treatment.Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 1 Given name: [Omid Salahi] Last name [Ardekani], Author 2 Given name: [Mohammad Mehdi] Last name [Fazeli], Author 3 Given name: [Nillofar Asadi] Last name [Jemezghani]. Also, kindly confirm the details in the metadata are correct.Confirmed.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mina Naderisemiromi
- Department of Immunology, Faculty of Medicine and Health, The University of Manchester, Manchester, UK
| | - Mohammad Mehdi Fazeli
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | | | - Jila Yavarian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Zhang Q, Song X, Ma P, Lv L, Zhang Y, Deng J, Zhang Y. Human Cytomegalovirus miR-US33as-5p Targets IFNAR1 to Achieve Immune Evasion During Both Lytic and Latent Infection. Front Immunol 2021; 12:628364. [PMID: 33746965 PMCID: PMC7973039 DOI: 10.3389/fimmu.2021.628364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/04/2021] [Indexed: 11/21/2022] Open
Abstract
As the first line of antiviral defense, type I interferon (IFN) binds IFN receptor 1 (IFNAR1) and IFNAR2 to activate the Jak-STAT signal transduction pathway, producing IFN-stimulated genes (ISGs) to control viral infection. The mechanisms by which human cytomegalovirus (HCMV) counteracts the IFN pathway are only partially defined. We show that miR-US33as-5p encoded by HCMV is expressed in both lytic and latent infection. By analysis with RNA hybrid and screening with luciferase reporter assays, we identified IFNAR1 as a target of hcmv-miR-US33as-5p, which was further verified by examining the expression of two IFNAR1 mutants and the binding of IFNAR1 to miR-US33as-5p/miR-US33as-5p-M1/miR-US33as-5p-M2. We found that after the transfection of miR-US33as-5p mimics into different cell lines, the phosphorylation of downstream proteins and ISG expression were downregulated. Immunofluorescence showed that the miR-US33as-5p mimics also inhibited STAT1 translocation into the nucleus. Furthermore, we constructed HCMV with mutant miR-US33as-5p and determined that the mutation did not affect HCMV replication. We found that MRC-5/human foreskin fibroblast (HFF) cells infected with ΔmiRNA HCMV exhibited higher IFNAR1 and ISG expression and a reduced viral load in the presence of exogenous IFN than cells infected with WT HCMV did, confirming that the knockout of miR-US33as-5p impaired viral resistance to IFN. Finally, we tested the effect of ΔmiRNA HCMV on THP-1 and d-THP-1 cells, common in vitro models of latent infection and reactivation, respectively. Again, we found that cells infected with ΔmiRNA HCMV showed a reduced viral load in the presence of IFN than the control cells did, confirming that miR-US33as-5p also affects IFN resistance during both latency and reactivation. These results indicate a new microRNA (miRNA)-based immune evasion mechanism employed by HCMV to achieve lifelong infection.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China.,Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, China
| | - Xin Song
- Department of Otolaryngology Head and Neck Surgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Ping Ma
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China.,Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, China
| | - Liping Lv
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China.,Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, China
| | - Yangyang Zhang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China.,Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, China
| | - Jiang Deng
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China.,Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, China
| | - Yanyu Zhang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China.,Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, China
| |
Collapse
|
3
|
Herbein G, Nehme Z. Tumor Control by Cytomegalovirus: A Door Open for Oncolytic Virotherapy? MOLECULAR THERAPY-ONCOLYTICS 2020; 17:1-8. [PMID: 32300639 PMCID: PMC7150429 DOI: 10.1016/j.omto.2020.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Belonging to the herpesviridae family, human cytomegalovirus (HCMV) is a well-known ubiquitous pathogen that establishes a lifelong infection in humans. Recently, a beneficial tumor-cytoreductive role of CMV infection has been defined in human and animal models. Described as a potential anti-tumoral activity, HCMV modulates the tumor microenvironment mainly by inducing cell death through apoptosis and prompting a robust stimulatory effect on the immune cells infiltrating the tumor tissue. However, major current limitations embrace transient protective effect and a viral dissemination potential in immunosuppressed hosts. The latter could be counteracted through direct viral intratumoral delivery, use of non-human strains, or even defective CMV vectors to ascertain transformed cells-selective tropism. This potential oncolytic activity could be complemented by tackling further platforms, namely combination with immune checkpoint inhibitors or epigenetic therapy, as well as the use of second-generation chimeric oncovirus, for instance HCMV/HSV-1 oncolytic virus. Overall, preliminary data support the use of CMV in viral oncolytic therapy as a viable option, establishing thus a potential new modality, where further assessment through extensive basic research armed by molecular biotechnology is compulsory.
Collapse
Affiliation(s)
- Georges Herbein
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté, University of Bourgogne Franche-Comté, 25030 Besançon, France.,Department of Virology, CHRU Besancon, 25030 Besançon, France
| | - Zeina Nehme
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté, University of Bourgogne Franche-Comté, 25030 Besançon, France.,Université Libanaise 1003, Beirut, Lebanon
| |
Collapse
|