1
|
Zhao L, Yang H, Wang Y, Yang S, Jiang Q, Tan J, Zhao X, Zi D. STUB1 suppresses paclitaxel resistance in ovarian cancer through mediating HOXB3 ubiquitination to inhibit PARK7 expression. Commun Biol 2024; 7:1439. [PMID: 39501077 PMCID: PMC11538469 DOI: 10.1038/s42003-024-07127-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
Paclitaxel (PTX) is a first-line drug for ovarian cancer (OC) treatment. However, the regulatory mechanism of STUB1 on ferroptosis and PTX resistance in OC remains unclear. Genes and proteins levels were evaluated by RT-qPCR, western blot and IHC. Cell viability and proliferation were measured by CCK-8 and clone formation. The changes of mitochondrial morphology were observed under a transmission electron microscope (TEM). Reactive oxygen species (ROS), iron, malondialdehyde (MDA) and glutathione (GSH) were measured using suitable kits. The interactions among STUB1, HOXB3 and PARK7 were validated using Co-IP, and dual luciferase reporter assay. Our study found that STUB1 was decreased and PARK7 was increased in tumor tissue, especially from chemotherapy resistant ovarian cancer tissue and resistant OC cells. STUB1 overexpression or PARK7 silencing suppressed cell growth and promoted ferroptosis in PTX-resistant OC cells, which was reversed by HOXB3 overexpression. Mechanistically, STUB1 mediated ubiquitination of HOXB3 to inhibit HOXB3 expression, and HOXB3 promoted the transcription of PARK7 by binding to the promoter region of PARK7. Furthermore, STUB1 overexpression or PARK7 silencing suppressed tumor formation in nude mice. In short, STUB1 promoted ferroptosis through regulating HOXB3/PARK7 axis, thereby suppressing chemotherapy resistance in OC.
Collapse
Affiliation(s)
- Laigang Zhao
- Department of gynecology and obstetrics, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550004, Guizhou Province, P.R. China
- Department of Gynecology and Obstetrics, School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - HanLin Yang
- Department of Gynecology and Obstetrics, School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
- Department of Gynecology and obstetrics, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Yuanmei Wang
- Department of Gynecology and Obstetrics, School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
- Department of Gynecology and obstetrics, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Shuang Yang
- Department of oncology, Cangxi People's Hospital, Sichuan, 628400, China
| | - Qisi Jiang
- School Hospital of Yangtze Normal University, Chongqing, 408100, China
| | - Jun Tan
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, China
| | - Xing Zhao
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences/Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, Guiyang, 550004, China
| | - Dan Zi
- Department of Gynecology and Obstetrics, School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China.
- Department of Gynecology and obstetrics, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| |
Collapse
|
2
|
Golivi Y, Kumari S, Farran B, Alam A, Peela S, Nagaraju GP. Small molecular inhibitors: Therapeutic strategies for pancreatic cancer. Drug Discov Today 2024; 29:104053. [PMID: 38849028 DOI: 10.1016/j.drudis.2024.104053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Pancreatic cancer (PC), a disease with high heterogeneity and a dense stromal microenvironment, presents significant challenges and a bleak prognosis. Recent breakthroughs have illuminated the crucial interplay among RAS, epidermal growth factor receptor (EGFR), and hedgehog pathways in PC progression. Small molecular inhibitors have emerged as a potential solution with their advantages of oral administration and the ability to target intracellular and extracellular sites effectively. However, despite the US FDA approving over 100 small-molecule targeted antitumor drugs, challenges such as low response rates and drug resistance persist. This review delves into the possibility of using small molecules to treat persistent or spreading PC, highlighting the challenges and the urgent need for a diverse selection of inhibitors to develop more effective treatment strategies.
Collapse
Affiliation(s)
- Yuvasri Golivi
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali, RJ 304 022, India
| | - Seema Kumari
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GIS, GITAM, Visakhapatnam, Andhra Pradesh 530045, India
| | - Batoul Farran
- Department of Hematology and Oncology, Henry Ford Health, Detroit, MI 48202, USA
| | - Afroz Alam
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali, RJ 304 022, India
| | - Sujatha Peela
- Department of Biotechnology, Dr. B. R. Ambedkar University, Srikakulam, Andhra Pradesh, 532001, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
3
|
Ma Y, Song Y, Wang J, Shi X, Yuan Z, Li S, Li H, Chen Z, Li S. Discovery of novel covalent inhibitors of DJ-1 through hybrid virtual screening. Future Med Chem 2024; 16:665-677. [PMID: 38390730 DOI: 10.4155/fmc-2023-0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Background: DJ-1 is a ubiquitously expressed protein with multiple functions. Its overexpression has been associated with the occurrence of several cancers, positioning DJ-1 as a promising therapeutic target for cancer treatment. Methods: To find novel inhibitors of DJ-1, we employed a hybrid virtual screening strategy that combines structure-based and ligand-based virtual screening on a comprehensive compound library. Results: In silico study identified six hit compounds as potential DJ-1 inhibitors that were assessed in vitro at the cellular level. Compound 797780-71-3 exhibited antiproliferation activity in ACHN cells with an IC50 value of 12.18 μM and was able to inhibit the Wnt signaling pathway. This study discovers a novel covalent inhibitor for DJ-1 and paves the way for further optimization.
Collapse
Affiliation(s)
- Yanyu Ma
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Yidan Song
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Junyi Wang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Xiayu Shi
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Zhen Yuan
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Shuang Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
- Innovation Center for AI & Drug Discovery, East China Normal University, Shanghai, 200062, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Zhuo Chen
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
- Innovation Center for AI & Drug Discovery, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
4
|
de Almeida GRL, Szczepanik JC, Selhorst I, Cunha MP, Dafre AL. The expanding impact of methylglyoxal on behavior-related disorders. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110635. [PMID: 36103947 DOI: 10.1016/j.pnpbp.2022.110635] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 01/17/2023]
Abstract
Methylglyoxal (MGO) is a reactive dicarbonyl compound formed as a byproduct of glycolysis. MGO is a major cell-permeant precursor of advanced glycation end products (AGEs), since it readily reacts with basic phospholipids and nucleotides, as well as amino acid residues of proteins, such as arginine, cysteine, and lysine. The AGEs production induced by MGO are widely associated with several pathologies, including neurodegenerative diseases. However, the impact of MGO metabolism and AGEs formation in the central nervous system (particularly in neurons, astrocytes and oligodendrocytes) on behavior and psychiatric diseases is not fully understood. Here, we briefly present background information on the biological activity of MGO in the central nervous system. It was gathered the available information on the role of MGO metabolism at the physiological processes, as well as at the neurobiology of psychiatry diseases, especially pain-related experiences, anxiety, depression, and cognition impairment-associated diseases. To clarify the role of MGO on behavior and associated diseases, we reviewed primarily the main findings at preclinical studies focusing on genetic and pharmacological approaches. Since monoamine neurotransmitter systems are implicated as pivotal targets on the pathophysiology and treatment of psychiatry and cognitive-related diseases, we also reviewed how MGO affects these neurotransmission systems and the implications of this phenomenon for nociception and pain; learning and cognition; and mood. In summary, this review highlights the pivotal role of glyoxalase 1 (Glo1) and MGO levels in modulating behavioral phenotypes, as well as related cellular and molecular signaling. Conclusively, this review signals dopamine as a new neurochemical MGO target, as well as highlights how MGO metabolism can modulate the pathophysiology and treatment of pain, psychiatric and cognitive-related diseases.
Collapse
Affiliation(s)
- Gudrian R L de Almeida
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Jozimar C Szczepanik
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Ingrid Selhorst
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Mauricio P Cunha
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil; Department of Basic Sciences of Life, Federal University of Juiz de Fora, 35010-177 Governador Valadares, MG, Brazil.
| | - Alcir L Dafre
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
5
|
Gu J, Sun Y, Song J, Zhao R, Di X, Zhang Y, Ge X, Zhang S, Gu Y, Sun X. Irradiation induces DJ-1 secretion from esophageal squamous cell carcinoma cells to accelerate metastasis of bystander cells via a TGF-β1 positive feedback loop. J Exp Clin Cancer Res 2022; 41:259. [PMID: 36008860 PMCID: PMC9413943 DOI: 10.1186/s13046-022-02471-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/20/2022] [Indexed: 12/24/2022] Open
Abstract
Background Radiation-induced bystander effect (RIBE) can promote tumor metastasis contributing to the failure of radiotherapy for esophageal squamous cell carcinoma (ESCC). Aberrant expression of DJ-1 has been identified in ESCC; however, the relationship between DJ-1 and RIBE in ESCC remains unknown. Methods We detected DJ-1 in the serum and cell supernatants by enzyme-linked immunosorbent assay (ELISA) and evaluated tumor metastasis by phenotypic experiments in vivo and in vitro. RNA-seq, mass spectrometry, western blot (WB), immunoprecipitation (IP), and dual-luciferase reporter assays were performed to explore the underlying mechanisms. Results DJ-1 was highly expressed in the serum of patients with ESCC receiving radiotherapy and was significantly overexpressed in the medium of ESCC cells receiving irradiation. DJ-1 promoted tumor metastasis via the TGF-β1 pathway. Mechanistic studies revealed that DJ-1 bound to HSC70 to promote Smad3 phosphorylation and nuclear aggregation in a protein-interaction manner, which activated the transcription of Thrombospondin-1 (TSP1). Subsequently, the activation of TGF-β1 by TSP1 re-promoted Smad3 phosphorylation and nuclear aggregation, constituting a positive feedback loop to strengthen the metastasis of ESCC cells, which was effectively blocked by LY2109761 and LSKL. Moreover, higher levels of serum DJ-1 in patients with ESCC were related to a poorer prognosis of radiotherapy. Conclusions Irradiation can induce ESCC cells secreting DJ-1. Secreted DJ-1 enters bystander cells to initiate activation of the TGF-β1 pathway via the DJ-1/HSC70/Smad3 signaling axis. The TSP1/TGF-β1/Smad3 positive feedback pathway constitutes the core pathway that promotes ESCC metastasis. DJ-1 is a useful biomarker for predicting the efficacy of radiotherapy and a potential therapeutic target for reversing RIBE in ESCC. Graphical Abstract Schematic diagram showing the underlying mechanism
that irradiation-induced secretion of DJ-1 accelerates the metastasis of
bystander ESCC cells. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02471-6.
Collapse
|
6
|
Moving beyond the Tip of the Iceberg: DJ-1 Implications in Cancer Metabolism. Cells 2022; 11:cells11091432. [PMID: 35563738 PMCID: PMC9103122 DOI: 10.3390/cells11091432] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/10/2022] [Accepted: 04/20/2022] [Indexed: 12/13/2022] Open
Abstract
DJ-1, also called Parkinson’s protein 7 (PARK7), is ubiquitously expressed and plays multiple actions in different physiological and, especially, pathophysiological processes, as evidenced by its identification in neurodegenerative diseases and its high expression in different types of cancer. To date, the exact activity of DJ-1 in carcinogenesis has not been fully elucidated, however several recent studies disclosed its involvement in regulating fundamental pathways involved in cancer onset, development, and metastatization. At this purpose, we have dissected the role of DJ-1 in maintaining the transformed phenotype, survival, drug resistance, metastasis formation, and differentiation in cancer cells. Moreover, we have discussed the role of DJ-1 in controlling the redox status in cancer cells, along with the ability to attenuate reactive oxygen species (ROS)-dependent cell death, as well as to mediate ferropotosis. Finally, a mention to the development of therapeutic strategies targeting DJ-1 has been done. We have reported the most recent studies, aiming to shed light on the role played by DJ-1 in different cancer aspects and create the foundation for moving beyond the tip of the iceberg.
Collapse
|
7
|
Yuan H, Huang X, Li Q, Luo C, Lin C, Zhang S, Zhang Y, Yan Z, Du N, Liu Z, Jiang H, Chen B. SiRNA-circFARSA-loaded porous silicon nanomaterials for pancreatic cancer treatment via inhibition of CircFARSA expression. Pharmacotherapy 2022; 147:112672. [DOI: 10.1016/j.biopha.2022.112672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/02/2022]
|
8
|
Cytoprotective Mechanisms of DJ-1: Implications in Cardiac Pathophysiology. Molecules 2021; 26:molecules26133795. [PMID: 34206441 PMCID: PMC8270312 DOI: 10.3390/molecules26133795] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022] Open
Abstract
DJ-1 was originally identified as an oncogene product while mutations of the gene encoding DJ-1/PARK7 were later associated with a recessive form of Parkinson's disease. Its ubiquitous expression and diversity of function suggest that DJ-1 is also involved in mechanisms outside the central nervous system. In the last decade, the contribution of DJ-1 to the protection from ischemia-reperfusion injury has been recognized and its involvement in the pathophysiology of cardiovascular disease is attracting increasing attention. This review describes the current and gaps in our knowledge of DJ-1, focusing on its role in regulating cardiovascular function. In parallel, we present original data showing an association between increased DJ-1 expression and antiapoptotic and anti-inflammatory markers following cardiac and vascular surgical procedures. Future studies should address DJ-1's role as a plausible novel therapeutic target for cardiovascular disease.
Collapse
|