1
|
Trun W, Fernández-Montalván A, Cao YJ, Haendler B, Zopf D. Inhibition of EphB4 Receptor Signaling by Ephrin-B2-Competitive and Non-Competitive DARPins Prevents Angiogenesis. Biochemistry 2025; 64:620-633. [PMID: 39818753 DOI: 10.1021/acs.biochem.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The receptor tyrosine kinase EphB4 is involved in tumor angiogenesis, proliferation, and metastasis. Designed ankyrin repeat proteins (DARPins) binding to the EphB4 extracellular domain were identified from a combinatorial library using phage display. Surface plasmon resonance (SPR) allowed us to distinguish between DARPins that either compete with the EphB4 ligand ephrin-B2 for binding to a common site or target a different epitope. The identified DARPins all prevent ligand-induced EphB4 phosphorylation and impair tube formation by endothelial cells in vitro. The competitive DARPin AB1 was additionally shown to inhibit vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF)-induced angiogenesis in vivo. In summary, we have isolated DARPins that exert antiangiogenic effects by specifically binding to EphB4 and may potentially lead to new cancer therapeutics.
Collapse
Affiliation(s)
- Weronika Trun
- Research and Early Development Oncology, Bayer AG, Müllerstr. 178, Berlin 13342, Germany
- Department of Biology, Chemistry and Pharmacy, Free University, Berlin 14195, Germany
| | | | - Yong-Jiang Cao
- Research and Early Development Oncology, Bayer AG, Müllerstr. 178, Berlin 13342, Germany
| | - Bernard Haendler
- Research and Early Development Oncology, Bayer AG, Müllerstr. 178, Berlin 13342, Germany
| | - Dieter Zopf
- Research and Early Development Oncology, Bayer AG, Müllerstr. 178, Berlin 13342, Germany
| |
Collapse
|
2
|
Mitsuno K, Suematsu M, Naito Y, Mayumi A, Yoshida H, Osone S, Imamura T, Nakazawa Y, Yagyu S, Iehara T. Selective JAK2 pathway inhibition enhances anti-leukemic functionality in CD19 CAR-T cells. Cancer Immunol Immunother 2025; 74:79. [PMID: 39891728 PMCID: PMC11787079 DOI: 10.1007/s00262-024-03927-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/18/2024] [Indexed: 02/03/2025]
Abstract
The integration of molecular targeted therapeutics with chimeric antigen receptor T (CAR-T) cell therapy represents a novel strategy to amplify the anti-tumor efficacy of immunotherapy. While CD19-targeted CAR-T cells and Janus kinase (JAK) inhibitors have independently shown efficacy against certain B-cell leukemias, such as Philadelphia chromosome-like acute lymphoblastic leukemia, the concurrent use of JAK1/2 inhibitors, such as ruxolitinib, has been implicated in reducing CAR-T cell potency by inhibiting the JAK1-dependent T cell activation pathway. This study explores the combinatorial use of a selective type II JAK2 inhibitor, CHZ868, with CD19 CAR-T cells, revealing a synergistic enhancement of anti-leukemic activity across B-cell tumor models irrespective of JAK2 mutational status. CHZ868-mediated JAK2 inhibition did not induce the exhaustion of CAR-T cells, maintaining efficacy over repeated tumor challenges and significantly extending survival in mouse models engrafted with JAK2 inhibitor-resistant leukemia cells (median survival, CD19 CAR-T + CHZ868 vs. CD19 CAR-T + DMSO: 32 days vs. 26 days, p = 0.0303). Transcriptomic analyses suggest that CHZ868 impedes CAR-T cell differentiation while preserving their proliferative capacity, a crucial factor in maintaining CAR-T cell functionality. Therefore, the selective inhibition of the JAK2 pathway may potentiate CAR-T cell therapy and offer a viable treatment strategy for patients with resistant B-cell leukemias.
Collapse
Affiliation(s)
- Kohei Mitsuno
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaya Suematsu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Yuki Naito
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Azusa Mayumi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideki Yoshida
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinya Osone
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshihiko Imamura
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Shigeki Yagyu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
- Innovative Research and Liaison Organization, Shinshu University, Matsumoto, Japan.
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
3
|
Morel VJ, Rössler J, Bernasconi M. Targeted immunotherapy and nanomedicine for rhabdomyosarcoma: The way of the future. Med Res Rev 2024; 44:2730-2773. [PMID: 38885148 DOI: 10.1002/med.22059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024]
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. Histology separates two main subtypes: embryonal RMS (eRMS; 60%-70%) and alveolar RMS (aRMS; 20%-30%). The aggressive aRMS carry one of two characteristic chromosomal translocations that result in the expression of a PAX3::FOXO1 or PAX7::FOXO1 fusion transcription factor; therefore, aRMS are now classified as fusion-positive (FP) RMS. Embryonal RMS have a better prognosis and are clinically indistinguishable from fusion-negative (FN) RMS. Next to histology and molecular characteristics, RMS risk groupings are now available defining low risk tumors with excellent outcomes and advanced stage disease with poor prognosis, with an overall survival of about only 20% despite intensified multimodal treatment. Therefore, development of novel effective targeted strategies to increase survival and to decrease long-term side effects is urgently needed. Recently, immunotherapies and nanomedicine have been emerging for potent and effective tumor treatments with minimal side effects, raising hopes for effective and safe cures for RMS patients. This review aims to describe the most relevant preclinical and clinical studies in immunotherapy and targeted nanomedicine performed so far in RMS and to provide an insight in future developments.
Collapse
Affiliation(s)
- Victoria Judith Morel
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Jochen Rössler
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Michele Bernasconi
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Hu J, Liu X. Generation of CAR-T SCM: CAR-T with super clutch. Int Immunopharmacol 2024; 136:112379. [PMID: 38833844 DOI: 10.1016/j.intimp.2024.112379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
CAR-T therapy has demonstrated effectiveness in hematological malignancies and is now striding into solid tumor areas. One of the main roadblocks of CAR-T therapy is T cell exhaustion normally aroused by T cell terminal differentiation due to persistent contact with antigen in vivo or in vitro manufacturing process. TSCM positions as the first, and pivotal step of naïve T cell differentiation to downstream memory and effector stages. Researchers highly seek to restrain CAR-T cells at the TSCM stage during manufacture as TSCM percentage in CAR-T products is strongly associated with better treatment response. We reviewed the recent strategies regarding CAR-TSCM generation from aspects of starting source, manufacturing process, CAR assembly, transcription factor and metabolism regulation, etc.
Collapse
Affiliation(s)
- Jinhui Hu
- Department of Laboratory Medicine, Gongli Hospital, No. 219, Miaopu Road, Pudong, Shanghai, 200135, China.
| | - Xiang Liu
- TriArm Therapeutics Inc, Building 5, Niudun Road, Pudong New District, Shanghai, 201203, China.
| |
Collapse
|
5
|
Thanaskody K, Natashah FN, Nordin F, Kamarul Zaman WSW, Tye GJ. Designing molecules: directing stem cell differentiation. Front Bioeng Biotechnol 2024; 12:1396405. [PMID: 38803845 PMCID: PMC11129639 DOI: 10.3389/fbioe.2024.1396405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Stem cells have been widely applied in regenerative and therapeutic medicine for their unique regenerative properties. Although much research has shown their potential, it remains tricky in directing stem cell differentiation. The advancement of genetic and therapeutic technologies, however, has facilitated this issue through development of design molecules. These molecules are designed to overcome the drawbacks previously faced, such as unexpected differentiation outcomes and insufficient migration of endogenous or exogenous MSCs. Here, we introduced aptamer, bacteriophage, and biological vectors as design molecules and described their characteristics. The methods of designing/developing discussed include various Systematic Evolution of Ligands by Exponential Enrichment (SELEX) procedures, in silico approaches, and non-SELEX methods for aptamers, and genetic engineering methods such as homologous recombination, Bacteriophage Recombineering of Electroporated DNA (BRED), Bacteriophage Recombineering with Infectious Particles (BRIP), and genome rebooting for bacteriophage. For biological vectors, methods such as alternate splicing, multiple promoters, internal ribosomal entry site, CRISPR-Cas9 system and Cre recombinase mediated recombination were used to design viral vectors, while non-viral vectors like exosomes are generated through parental cell-based direct engineering. Besides that, we also discussed the pros and cons, and applications of each design molecule in directing stem cell differentiation to illustrate their great potential in stem cells research. Finally, we highlighted some safety and efficacy concerns to be considered for future studies.
Collapse
Affiliation(s)
- Kalaiselvaan Thanaskody
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Fajriyah Nur Natashah
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
6
|
Abstract
Evidence implicating Eph receptor tyrosine kinases and their ephrin ligands (that together make up the 'Eph system') in cancer development and progression has been accumulating since the discovery of the first Eph receptor approximately 35 years ago. Advances in the past decade and a half have considerably increased the understanding of Eph receptor-ephrin signalling mechanisms in cancer and have uncovered intriguing new roles in cancer progression and drug resistance. This Review focuses mainly on these more recent developments. I provide an update on the different mechanisms of Eph receptor-ephrin-mediated cell-cell communication and cell autonomous signalling, as well as on the interplay of the Eph system with other signalling systems. I further discuss recent advances in elucidating how the Eph system controls tumour expansion, invasiveness and metastasis, supports cancer stem cells, and drives therapy resistance. In addition to functioning within cancer cells, the Eph system also mediates the reciprocal communication between cancer cells and cells of the tumour microenvironment. The involvement of the Eph system in tumour angiogenesis is well established, but recent findings also demonstrate roles in immune cells, cancer-associated fibroblasts and the extracellular matrix. Lastly, I discuss strategies under evaluation for therapeutic targeting of Eph receptors-ephrins in cancer and conclude with an outlook on promising future research directions.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
7
|
Mashima R, Takada S, Miyamoto Y. RNA-Based Therapeutic Technology. Int J Mol Sci 2023; 24:15230. [PMID: 37894911 PMCID: PMC10607345 DOI: 10.3390/ijms242015230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
RNA-based therapy has been an expanding area of clinical research since the COVID-19 outbreak. Often, its comparison has been made to DNA-based gene therapy, such as adeno-associated virus- and lentivirus-mediated therapy. These DNA-based therapies show persistent expression, with maximized therapeutic efficacy. However, accumulating data indicate that proper control of gene expression is occasionally required. For example, in cancer immunotherapy, cytokine response syndrome is detrimental for host animals, while excess activation of the immune system induces supraphysiological cytokines. RNA-based therapy seems to be a rather mild therapy, and it has room to fit unmet medical needs, whereas current DNA-based therapy has unclear issues. This review focused on RNA-based therapy for cancer immunotherapy, hematopoietic disorders, and inherited disorders, which have received attention for possible clinical applications.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Yoshitaka Miyamoto
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
8
|
Zhang P, Zhang G, Wan X. Challenges and new technologies in adoptive cell therapy. J Hematol Oncol 2023; 16:97. [PMID: 37596653 PMCID: PMC10439661 DOI: 10.1186/s13045-023-01492-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023] Open
Abstract
Adoptive cell therapies (ACTs) have existed for decades. From the initial infusion of tumor-infiltrating lymphocytes to the subsequent specific enhanced T cell receptor (TCR)-T and chimeric antigen receptor (CAR)-T cell therapies, many novel strategies for cancer treatment have been developed. Owing to its promising outcomes, CAR-T cell therapy has revolutionized the field of ACTs, particularly for hematologic malignancies. Despite these advances, CAR-T cell therapy still has limitations in both autologous and allogeneic settings, including practicality and toxicity issues. To overcome these challenges, researchers have focused on the application of CAR engineering technology to other types of immune cell engineering. Consequently, several new cell therapies based on CAR technology have been developed, including CAR-NK, CAR-macrophage, CAR-γδT, and CAR-NKT. In this review, we describe the development, advantages, and possible challenges of the aforementioned ACTs and discuss current strategies aimed at maximizing the therapeutic potential of ACTs. We also provide an overview of the various gene transduction strategies employed in immunotherapy given their importance in immune cell engineering. Furthermore, we discuss the possibility that strategies capable of creating a positive feedback immune circuit, as healthy immune systems do, could address the flaw of a single type of ACT, and thus serve as key players in future cancer immunotherapy.
Collapse
Affiliation(s)
- Pengchao Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
9
|
Mayumi A, Imamura T, Yoshida H, Osone S, Yasuda T, Iehara T. Leukaemic cells expressing ETV6::FRK are sensitive to dasatinib in vivo. EJHAEM 2023; 4:751-755. [PMID: 37601849 PMCID: PMC10435712 DOI: 10.1002/jha2.701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 08/22/2023]
Abstract
ETV6::Fyn-related kinase (FRK), which is a Src family tyrosine-kinase-related fusion gene and firstly identified in our patient with paediatric high risk B cell precursor acute lymphoblastic leukaemia (B-ALL), has no evidence of efficacy of tyrosine kinase inhibitor in vivo. We performed functional analysis of ETV6::FRK to establish molecular targeting therapy and determined that dasatinib could abrogate proliferation activity of ETV6::FRK through the repression of FRK-STAT3/STAT5 pathway in vitro and significantly extended the survival time of the xenografted mice in vivo (p < 0.01). Our data support the potential of dasatinib as a therapeutic option for patients with B-ALL harboring FRK rearrangements.
Collapse
Affiliation(s)
- Azusa Mayumi
- Department of PaediatricsKyoto Prefectural University of MedicineKyotoJapan
| | - Toshihiko Imamura
- Department of PaediatricsKyoto Prefectural University of MedicineKyotoJapan
| | - Hideki Yoshida
- Department of PaediatricsKyoto Prefectural University of MedicineKyotoJapan
| | - Shinya Osone
- Department of PaediatricsKyoto Prefectural University of MedicineKyotoJapan
| | - Takahiko Yasuda
- Clinical Research CenterNagoya Medical CentreNational Hospital OrganizationNagoyaJapan
| | - Tomoko Iehara
- Department of PaediatricsKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
10
|
Suematsu M, Yagyu S, Yoshida H, Osone S, Nakazawa Y, Sugita K, Imamura T, Iehara T. Targeting FLT3-specific chimeric antigen receptor T cells for acute lymphoblastic leukemia with KMT2A rearrangement. Cancer Immunol Immunother 2023; 72:957-968. [PMID: 36214866 DOI: 10.1007/s00262-022-03303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
Abstract
CD19-specific chimeric antigen receptor T (CAR T) immunotherapy is used to treat B-cell malignancies. However, antigen-escape mediated relapse following CAR T therapy has emerged as a major concern. In some relapsed cases, especially KMT2A rearrangement-positive B-acute lymphoblastic leukemia (KMT2A-r B-ALL), most of the B-cell antigens are lost via lineage conversion to the myeloid phenotype, rendering multi-B-cell-antigen-targeted CAR T cell therapy ineffective. Fms-related tyrosine kinase-3 (FLT3) is highly expressed in KMT2A-r B-ALL; therefore, in this study, we aimed to evaluate the antitumor efficacy of CAR T cells targeting both CD19 and FLT3 in KMT2A-r B-ALL cells. We developed piggyBac transposon-mediated CAR T cells targeting CD19, FLT3, or both (dual) and generated CD19-negative KMT2A-r B-ALL models through CRISPR-induced CD19 gene-knockout (KO). FLT3 CAR T cells showed antitumor efficacy against CD19-KO KMT2A-r B-ALL cells both in vitro and in vivo; dual-targeted CAR T cells showed cytotoxicity against wild-type (WT) and CD19-KO KMT2A-r B-ALL cells, whereas CD19 CAR T cells demonstrated cytotoxicity only against WT KMT2A-r B-ALL cells in vitro. Therefore, targeting FLT3-specific CAR T cells would be a promising strategy for KMT2A-r B-ALL cells even with CD19-negative relapsed cases.
Collapse
Affiliation(s)
- Masaya Suematsu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shigeki Yagyu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Hideki Yoshida
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shinya Osone
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| | - Kanji Sugita
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Toshihiko Imamura
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
11
|
Yagyu S, Nakazawa Y. piggyBac-transposon-mediated CAR-T cells for the treatment of hematological and solid malignancies. Int J Clin Oncol 2023; 28:736-747. [PMID: 36859566 DOI: 10.1007/s10147-023-02319-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
Since the introduction of the use of chimeric antigen receptor T-cell therapy (CAR-T therapy) dramatically changed the therapeutic strategy for B cell tumors, various CAR-T cell products have been developed and applied to myeloid and solid tumors. Although viral vectors have been widely used to produce genetically engineered T cells, advances in genetic engineering have led to the development of methods for producing non-viral, gene-modified CAR-T cells. Recent progress has revealed that non-viral CAR-T cells have a significant impact not only on the simplicity of the production process and the accessibility of non-viral vectors but also on the function of the cells themselves. In this review, we focus on piggyBac-transposon-based CAR-T cells among non-viral, gene-modified CAR-T cells and discuss their characteristics, preclinical development, and recent clinical applications.
Collapse
Affiliation(s)
- Shigeki Yagyu
- Innovative Research and Liaison Organization, Shinshu University, 3-1-1, Asahi, Matsumoto, Nagano, Japan. .,Center for Advanced Research of Gene and Cell Therapy, Shinshu University, 3-1-1, Asahi, Matsumoto, Nagano, Japan. .,Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto, Japan.
| | - Yozo Nakazawa
- Center for Advanced Research of Gene and Cell Therapy, Shinshu University, 3-1-1, Asahi, Matsumoto, Nagano, Japan.,Department of Pediatrics, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, Nagano, Japan.,Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1, Asahi, Matsumoto, Nagano, Japan
| |
Collapse
|
12
|
Maher J, Davies DM. CAR-Based Immunotherapy of Solid Tumours-A Survey of the Emerging Targets. Cancers (Basel) 2023; 15:1171. [PMID: 36831514 PMCID: PMC9953954 DOI: 10.3390/cancers15041171] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Immunotherapy with CAR T-cells has revolutionised the treatment of B-cell and plasma cell-derived cancers. However, solid tumours present a much greater challenge for treatment using CAR-engineered immune cells. In a partner review, we have surveyed data generated in clinical trials in which patients with solid tumours that expressed any of 30 discrete targets were treated with CAR-based immunotherapy. That exercise confirms that efficacy of this approach falls well behind that seen in haematological malignancies, while significant toxic events have also been reported. Here, we consider approximately 60 additional candidates for which such clinical data are not available yet, but where pre-clinical data have provided support for their advancement to clinical evaluation as CAR target antigens.
Collapse
Affiliation(s)
- John Maher
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne BN21 2UD, UK
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| | - David M. Davies
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
13
|
Chen Z, Liu Y, Chen N, Xing H, Tian Z, Tang K, Rao Q, Xu Y, Wang Y, Wang M, Wang J. Loop CD20/CD19 CAR-T cells eradicate B-cell malignancies efficiently. SCIENCE CHINA LIFE SCIENCES 2022; 66:754-770. [PMID: 36251156 DOI: 10.1007/s11427-022-2173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022]
Abstract
CD19 chimeric antigen receptor (CAR) T cells have shown robust efficacy in relapsed and refractory acute lymphoblastic leukemia (R/R ALL), but compromising result in chronic lymphoblastic leukemia (CLL) and non-Hodgkin's lymphoma (NHL). CD19 relapse and the lack of CAR-T cell persistence which result in treatment failure are considerable obstacles to overcome. CAR-T targeting CD20 is an option for salvaging CD19 CAR-T failure. Previous studies have established variant structures of bispecific CAR-T which could avoid antigen-loss and immune escape. Here, we constructed tandem and loop CAR structures targeting both CD19 and CD20 antigen. Bispecific CAR-T cells could eliminate either CD19 or CD20 negative lymphoma cells, suggesting they exhibited dual antigen targeting of CD19 and CD20. By comparing the efficiency of four bispecific CAR modified T cells, it was found that loop2019 CAR was the best structure among them to eradicate lymphoma cell lines and patients' primary lymphoma or CLL cells in a very low dose in vitro and prolong the survival time dramatically in lymphoma xenograft mice model. These data highlighted the potential of loop2019 CAR-T in clinical treatment.
Collapse
|
14
|
Ramírez-Chacón A, Betriu-Méndez S, Bartoló-Ibars A, González A, Martí M, Juan M. Ligand-based CAR-T cell: Different strategies to drive T cells in future new treatments. Front Immunol 2022; 13:932559. [PMID: 36172370 PMCID: PMC9511026 DOI: 10.3389/fimmu.2022.932559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Chimeric antigen receptor (CAR)-based therapies are presented as innovative treatments for multiple malignancies. Despite their clinical success, there is scientific evidence of the limitations of these therapies mainly due to immunogenicity issues, toxicities associated with the infusion of the product, and relapses of the tumor. As a result, novel approaches are appearing aiming to solve and/or mitigate the harmful effects of CAR-T therapies. These include strategies based on the use of ligands as binding moieties or ligand-based CAR-T cells. Several proposals are currently under development, with some undergoing clinical trials to assess their potential benefits. In addition to these, therapies such as chimeric autoantibody receptor (CAAR), B-cell receptor antigen for reverse targeting (BAR), and even chimeric human leukocyte antigen (HLA) antibody receptor (CHAR) have emerged, benefiting from the advantages of antigenic ligands as antibody-binding motifs. This review focuses on the potential role that ligands can play in current and future antitumor treatments and in other types of diseases, such as autoimmune diseases or problems associated with transplantation.
Collapse
Affiliation(s)
- Alejandro Ramírez-Chacón
- Immunology Unit, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Laboratory of Cellular Immunology, Institute of Biotechnology and Biomedicine (IBB), Cerdanyola del Vallès, Spain
| | - Sergi Betriu-Méndez
- Immunology Department, Hospital Clínic de Barcelona, Centre de Diagnòstic Biomèdic (CDB), Barcelona, Spain
- Immunology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) – Fundació Clínic per a la Recerca Biomèdica (FCRB) Universitat de Barcelona (UB), Barcelona, Spain
| | - Ariadna Bartoló-Ibars
- Immunology Department, Hospital Clínic de Barcelona, Centre de Diagnòstic Biomèdic (CDB), Barcelona, Spain
- Immunology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) – Fundació Clínic per a la Recerca Biomèdica (FCRB) Universitat de Barcelona (UB), Barcelona, Spain
| | - Azucena González
- Immunology Department, Hospital Clínic de Barcelona, Centre de Diagnòstic Biomèdic (CDB), Barcelona, Spain
- Immunology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) – Fundació Clínic per a la Recerca Biomèdica (FCRB) Universitat de Barcelona (UB), Barcelona, Spain
- Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Mercè Martí
- Immunology Unit, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Laboratory of Cellular Immunology, Institute of Biotechnology and Biomedicine (IBB), Cerdanyola del Vallès, Spain
| | - Manel Juan
- Immunology Department, Hospital Clínic de Barcelona, Centre de Diagnòstic Biomèdic (CDB), Barcelona, Spain
- Immunology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) – Fundació Clínic per a la Recerca Biomèdica (FCRB) Universitat de Barcelona (UB), Barcelona, Spain
- Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- *Correspondence: Manel Juan,
| |
Collapse
|
15
|
Stem cell like memory T cells: A new paradigm in cancer immunotherapy. Clin Immunol 2022; 241:109078. [PMID: 35840054 DOI: 10.1016/j.clim.2022.109078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 11/03/2022]
Abstract
Stem cell like memory T (TSCM) cells have emerged as the apex of memory T cell differentiation for their properties of self-renewal and replenishing progenies. With potent long-term persistence, proliferative capacity and antitumor activity, TSCM cells were thought to be the ideal candidate for cancer immunotherapies. Several strategies have been proposed, such as manipulations of cytokines, metabolic factors, signal pathways, and T cell receptor signal intensity, to induce more TSCM cells in vitro, in the hope that they could reach a clinical order of magnitude to provide more long-lasting and effective anti-tumor effects in vivo. In this review, we summarized the differentiation characteristics of TSCM cells and strategies to generate more TSCM cells. We focused on their roles and application in the cancer immunotherapy especially in adoptive cell transfer therapy and cancer therapeutic vaccines, and hopefully provided clues for future understanding and researches.
Collapse
|
16
|
Hadjimichael AC, Pergaris A, Kaspiris A, Foukas AF, Kokkali S, Tsourouflis G, Theocharis S. The EPH/Ephrin System in Bone and Soft Tissue Sarcomas' Pathogenesis and Therapy: New Advancements and a Literature Review. Int J Mol Sci 2022; 23:ijms23095171. [PMID: 35563562 PMCID: PMC9100911 DOI: 10.3390/ijms23095171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
Musculoskeletal sarcomas represent rare heterogenous malignancies of mesenchymal origin that can be divided in two distinct subtypes, bone and soft tissue sarcomas. Current treatment options combine the surgical excision of local tumors and multidrug chemotherapy to prevent metastatic widespread disease. Due to the grim prognosis that usually accompanies such tumors, researchers have attempted to shed light on the molecular pathways implicated in their pathogenesis in order to develop novel, innovative, personalized therapeutic strategies. Erythropoietin-producing human hepatocellular receptors (EPHs) are tyrosine-kinase transmembrane receptors that, along with their ligands, ephrins, participate in both tumor-suppressive or tumor-promoting signaling pathways in bone and soft tissue sarcomas. The EPH/ephrin axis orchestrates cancerous processes such as cell–cell and cell–substrate adhesion and enhances the remodeling of the intracellular cytoskeleton to stimulate the motility and invasiveness of sarcoma cells. The purpose of our study was to review published PubMed literature to extract results from in vitro, in vivo and clinical trials indicative of the role of EPH/ephrin signaling in bone and soft tissue sarcomas. Based on these reports, significant interactions between the EPH/ephrin signaling pathway and a plethora of normal and abnormal cascades contribute to molecular mechanisms enhancing malignancy during sarcoma progression. In addition, EPHs and ephrins are prospective candidates for diagnostic, monitoring and therapeutic purposes in the clinical setting against bone and soft tissue sarcomas.
Collapse
Affiliation(s)
- Argyris C. Hadjimichael
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (A.C.H.); (A.P.); (S.K.); (G.T.)
- Department of Orthopaedics, St Mary’s Hospital, Imperial College Healthcare NHS Trust, Praed Street, London W2 1NY, UK
| | - Alexandros Pergaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (A.C.H.); (A.P.); (S.K.); (G.T.)
| | - Angelos Kaspiris
- Laboratory of Molecular Pharmacology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Athanasios F. Foukas
- Third Department of Orthopaedic Surgery, “KAT” General Hospital of Athens, Nikis 2, 14561 Kifissia, Greece;
| | - Stefania Kokkali
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (A.C.H.); (A.P.); (S.K.); (G.T.)
| | - Gerasimos Tsourouflis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (A.C.H.); (A.P.); (S.K.); (G.T.)
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (A.C.H.); (A.P.); (S.K.); (G.T.)
- Correspondence:
| |
Collapse
|
17
|
Suematsu M, Yagyu S, Nagao N, Kubota S, Shimizu Y, Tanaka M, Nakazawa Y, Imamura T. PiggyBac Transposon-Mediated CD19 Chimeric Antigen Receptor-T Cells Derived From CD45RA-Positive Peripheral Blood Mononuclear Cells Possess Potent and Sustained Antileukemic Function. Front Immunol 2022; 13:770132. [PMID: 35154098 PMCID: PMC8829551 DOI: 10.3389/fimmu.2022.770132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
The quality of chimeric antigen receptor (CAR)-T cell products, namely, memory and exhaustion markers, affects the long-term functionality of CAR-T cells. We previously reported that piggyBac (PB) transposon-mediated CD19 CAR-T cells exhibit a memory-rich phenotype that is characterized by the high proportion of CD45RA+/C-C chemokine receptor type 7 (CCR7)+ T-cell fraction. To further investigate the favorable phenotype of PB-CD19 CAR-T cells, we generated PB-CD19 CAR-T cells from CD45RA+ and CD45RA− peripheral blood mononuclear cells (PBMCs) (RA+ CAR and RA− CAR, respectively), and compared their phenotypes and antitumor activity. RA+ CAR-T cells showed better transient gene transfer efficiency 24 h after transduction and superior expansion capacity after 14 days of culture than those shown by RA− CAR-T cells. RA+ CAR-T cells exhibited dominant CD8 expression, decreased expression of the exhaustion marker programmed cell death protein-1 (PD-1) and T-cell senescence marker CD57, and enriched naïve/stem cell memory fraction, which are associated with the longevity of CAR-T cells. Transcriptome analysis showed that canonical exhaustion markers were downregulated in RA+ CAR-T, even after antigen stimulation. Although antigen stimulation could increase CAR expression, leading to tonic CAR signaling and exhaustion, the expression of CAR molecules on cell surface after antigen stimulation in RA+ CAR-T cells was controlled at a relatively lower level than that in RA− CAR-T cells. In the in vivo stress test, RA+ CAR-T cells achieved prolonged tumor control with expansion of CAR-T cells compared with RA− CAR-T cells. CAR-T cells were not detected in the control or RA− CAR-T cells but RA+ CAR-T cells were expanded even after 50 days of treatment, as confirmed by sequential bone marrow aspiration. Our results suggest that PB-mediated RA+ CAR-T cells exhibit a memory-rich phenotype and superior antitumor function, thus CD45RA+ PBMCs might be considered an efficient starting material for PB-CAR-T cell manufacturing. This novel approach will be beneficial for effective treatment of B cell malignancies.
Collapse
Affiliation(s)
- Masaya Suematsu
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Shigeki Yagyu
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Nobuyoshi Nagao
- AGC Inc. Innovative Technology Laboratories, Yokohama, Japan
| | - Susumu Kubota
- AGC Inc. Materials Integration Laboratories, Yokohama, Japan
| | - Yuto Shimizu
- AGC Inc. Materials Integration Laboratories, Yokohama, Japan
| | - Miyuki Tanaka
- Department of Pediatrics, Shinshu University School of Medicine, Nagano, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Nagano, Japan
| | - Toshihiko Imamura
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
18
|
Natural Receptor- and Ligand-Based Chimeric Antigen Receptors: Strategies Using Natural Ligands and Receptors for Targeted Cell Killing. Cells 2021; 11:cells11010021. [PMID: 35011583 PMCID: PMC8750724 DOI: 10.3390/cells11010021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 12/29/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has been widely successful in the treatment of B-cell malignancies, including B-cell lymphoma, mantle cell lymphoma, and multiple myeloma; and three generations of CAR designs have led to effective FDA approved therapeutics. Traditionally, CAR antigen specificity is derived from a monoclonal antibody where the variable heavy (VH) and variable light (VL) chains are connected by a peptide linker to form a single-chain variable fragment (scFv). While this provides a level of antigen specificity parallel to that of an antibody and has shown great success in the clinic, this design is not universally successful. For instance, issues of stability, immunogenicity, and antigen escape hinder the translational application of some CARs. As an alternative, natural receptor- or ligand-based designs may prove advantageous in some circumstances compared to scFv-based designs. Herein, the advantages and disadvantages of scFv-based and natural receptor- or ligand-based CAR designs are discussed. In addition, several translational aspects of natural receptor- and ligand-based CAR approaches that are being investigated in preclinical and clinical studies will be examined.
Collapse
|
19
|
Unraveling the IGF System Interactome in Sarcomas Exploits Novel Therapeutic Options. Cells 2021; 10:cells10082075. [PMID: 34440844 PMCID: PMC8392407 DOI: 10.3390/cells10082075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Aberrant bioactivity of the insulin-like growth factor (IGF) system results in the development and progression of several pathologic conditions including cancer. Preclinical studies have shown promising anti-cancer therapeutic potentials for anti-IGF targeted therapies. However, a clear but limited clinical benefit was observed only in a minority of patients with sarcomas. The molecular complexity of the IGF system, which comprises multiple regulators and interactions with other cancer-related pathways, poses a major limitation in the use of anti-IGF agents and supports the need of combinatorial therapeutic strategies to better tackle this axis. In this review, we will initially highlight multiple mechanisms underlying IGF dysregulation in cancer and then focus on the impact of the IGF system and its complexity in sarcoma development and progression as well as response to anti-IGF therapies. We will also discuss the role of Ephrin receptors, Hippo pathway, BET proteins and CXCR4 signaling, as mediators of sarcoma malignancy and relevant interactors with the IGF system in tumor cells. A deeper understanding of these molecular interactions might provide the rationale for novel and more effective therapeutic combinations to treat sarcomas.
Collapse
|
20
|
Yagyu S, Mochizuki H, Yamashima K, Kubo H, Saito S, Tanaka M, Sakamoto K, Shimoi A, Nakazawa Y. A lymphodepleted non-human primate model for the assessment of acute on-target and off-tumor toxicity of human chimeric antigen receptor-T cells. Clin Transl Immunology 2021; 10:e1291. [PMID: 34123382 PMCID: PMC8175993 DOI: 10.1002/cti2.1291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/03/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives Chimeric antigen receptor (CAR)‐T cell therapy possesses the potential to cause unexpected on‐target toxicities that may be life‐threatening. Non‐human primates (NHPs) share considerable structural homology and expression profiles of most proteins with humans and are therefore utilised as an animal model for non‐clinical safety studies. We have developed a lymphodepleted NHP model by conditioning the animals with immunosuppressive chemotherapy designed to simulate clinical practice conditions, to induce transient mixed chimerism before the administration of human CAR‐T cells redirected to target Ephrin type‐B receptor 4 (EPHB4‐CAR‐T cells) to evaluate the toxicity of these cells. Methods We administered 60 mg m−2 day−1 of fludarabine for 4 days and 30 mg kg−1 day−1 of cyclophosphamide for 2 days intravenously to cynomolgus macaques for lymphodepletion; then, 3.3 × 106 kg−1 of non‐transduced or EPHB4‐CAR‐T cells was infused into the macaques, respectively. All macaques were closely monitored and evaluated for potential toxicity for 7 days. Results Lymphodepletion was successfully achieved on day −1 before T‐cell infusion and persisted over 7 days without severe organ toxicities. A single administration of human EPHB4‐CAR‐T cells did not induce overt organ toxicities, although EPHB4‐CAR‐T cells were activated in vivo as evidenced by the elevation in copy numbers of the CAR transgene 24 h after infusion. Conclusion Although this NHP model is limited for the full evaluation of toxicity of human CAR‐T cells and the conditioning protocol should be further optimised, this lymphodepleted NHP model could be used to assess acute on‐target/off‐tumor toxicities of CAR‐T cells.
Collapse
Affiliation(s)
- Shigeki Yagyu
- Department of Pediatrics Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto Japan.,Center for Advanced Research of Gene and Cell Therapy in Shinshu University (CARS) Shinshu University School of Medicine Matsumoto Japan
| | - Hidemi Mochizuki
- Center for Advanced Research of Gene and Cell Therapy in Shinshu University (CARS) Shinshu University School of Medicine Matsumoto Japan.,Ina Research Inc. Ina Japan
| | - Kumiko Yamashima
- Department of Pediatrics Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto Japan.,Division of Cancer Immunotherapy Exploratory Oncology Research and Clinical Trial Center National Cancer Center Kashiwa Japan
| | - Hiroshi Kubo
- Department of Pediatrics Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto Japan
| | - Shoji Saito
- Center for Advanced Research of Gene and Cell Therapy in Shinshu University (CARS) Shinshu University School of Medicine Matsumoto Japan.,Department of Pediatrics Shinshu University School of Medicine Matsumoto Japan
| | - Miyuki Tanaka
- Center for Advanced Research of Gene and Cell Therapy in Shinshu University (CARS) Shinshu University School of Medicine Matsumoto Japan.,Department of Pediatrics Shinshu University School of Medicine Matsumoto Japan
| | | | - Akihito Shimoi
- Center for Advanced Research of Gene and Cell Therapy in Shinshu University (CARS) Shinshu University School of Medicine Matsumoto Japan.,Ina Research Inc. Ina Japan
| | - Yozo Nakazawa
- Center for Advanced Research of Gene and Cell Therapy in Shinshu University (CARS) Shinshu University School of Medicine Matsumoto Japan.,Department of Pediatrics Shinshu University School of Medicine Matsumoto Japan.,Institute for Biomedical Sciences Interdisciplinary Cluster for Cutting Edge Research Shinshu University Matsumoto Japan
| |
Collapse
|