1
|
Zheng P, Tan Y, Liu Q, Wu C, Kang J, Liang S, Zhu L, Yan K, Zeng L, Chen B. Deciphering the molecular and clinical characteristics of TREM2, HCST, and TYROBP in cancer immunity: A comprehensive pan-cancer study. Heliyon 2024; 10:e26993. [PMID: 38468942 PMCID: PMC10926084 DOI: 10.1016/j.heliyon.2024.e26993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Background Hematopoietic cell signal transducer (HCST) and tyrosine kinase-binding protein (TYROBP) are triggering receptors expressed on myeloid cells 2 (TREM2), which are pivotal in the immune response to disease. Despite growing evidence underscoring the significance of TREM2, HCST, and TYROBP in certain forms of tumorigenesis, a comprehensive pan-cancer analysis of these proteins is lacking. Methods Multiple databases were synthesized to investigate the relationship between TREM2, HCST, TYROBP, and various cancer types. These include prognosis, methylation, regulation by long non-coding RNAs and transcription factors, immune signatures, pathway activity, microsatellite instability (MSI), tumor mutational burden (TMB), single-cell transcriptome profiling, and drug sensitivity. Results TREM2, HCST, and TYROBP displayed extensive somatic changes across numerous tumors, and their mRNA expression and methylation levels influenced patient outcomes across multiple cancer types. long non-coding RNA (lncRNA) -messenger RNA (mRNA) and TF-mRNA regulatory networks involving TREM2, HCST, and TYROBP were identified, with lncRNA MEG3 and the transcription factor SIP1 emerging as potential key regulators. Further immune analyses indicated that TREM2, HCST, and TYROBP play critical roles in immune-related pathways and macrophage differentiation, and may be significantly associated with TGF-β and SMAD9. Furthermore, the expression of TREM2, HCST, and TYROBP correlated with the immunotherapy markers TMB and MSI, and influenced sensitivity to immune-targeted drugs, thereby indicating their potential as predictors of immunotherapy outcomes. Conclusion This study offers valuable insights into the roles of TREM2, HCST, and TYROBP in tumor immunotherapy, suggesting their potential as prognostic markers and therapeutic targets for various cancers.
Collapse
Affiliation(s)
- Piao Zheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yejun Tan
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- School of Mathematics, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Qing Liu
- The department of neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Changwu Wu
- The department of neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Kang
- Department of rheumatology and immunology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shuzhi Liang
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lemei Zhu
- Academician Workstation, Changsha Medical University, Changsha, Hunan, China
| | - Kuipo Yan
- Department of cardiology, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| | - Lingfeng Zeng
- Academician Workstation, Changsha Medical University, Changsha, Hunan, China
| | - Bolin Chen
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Luo Y, Wang H, Wang L, Wu W, Zhao J, Li X, Xiong R, Ding X, Yuan D, Yuan C. LncRNA MEG3: Targeting the Molecular Mechanisms and Pathogenic causes of Metabolic Diseases. Curr Med Chem 2024; 31:6140-6153. [PMID: 37855346 DOI: 10.2174/0109298673268051231009075027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/27/2023] [Accepted: 09/08/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Non-coding RNA is a type of RNA that does not encode proteins, distributed among rRNA, tRNA, snRNA, snoRNA, microRNA and other RNAs with identified functions, where the Long non-coding RNA (lncRNA) displays a nucleotide length over 200. LncRNAs enable multiple biological processes in the human body, including cancer cell invasion and metastasis, apoptosis, cell autophagy, inflammation, etc. Recently, a growing body of studies has demonstrated the association of lncRNAs with obesity and obesity-induced insulin resistance and NAFLD, where MEG3 is related to glucose metabolism, such as insulin resistance. In addition, MEG3 has been demonstrated in the pathological processes of various cancers, such as mediating inflammation, cardiovascular disease, liver disease and other metabolic diseases. OBJECTIVE To explore the regulatory role of lncRNA MEG3 in metabolic diseases. It provides new ideas for clinical treatment or experimental research. METHODS In this paper, in order to obtain enough data, we integrate and analyze the data in the PubMed database. RESULTS LncRNA MEG3 can regulate many metabolic diseases, such as insulin resistance, NAFLD, inflammation and so on. CONCLUSION LncRNA MEG3 has a regulatory role in a variety of metabolic diseases, which are currently difficult to be completely cured, and MEG3 is a potential target for the treatment of these diseases. Here, we review the role of lncRNA MEG3 in mechanisms of action and biological functions in human metabolic diseases.
Collapse
Affiliation(s)
- Yiyang Luo
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Hailin Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Lijun Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Department of Biochemistry, College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Wei Wu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Jiale Zhao
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Xueqing Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Ruisi Xiong
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Department of Biochemistry, College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Xueliang Ding
- Department of Clinical Laboratory, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443002, China
| | - Ding Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Department of Biochemistry, College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
3
|
Peng W, Zeng C, Xu J, Zhao H, Zhu Q, Xu H, Chen H, Huang H, Zhou Y, Zhao C. Regulation of epithelial cell differentiation by the Ubiquitous expressed transcript isoform 1 in ulcerative colitis. J Gastroenterol Hepatol 2023; 38:2006-2017. [PMID: 37608570 DOI: 10.1111/jgh.16311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND AND AIM Mucosal healing has emerged as a desirable treatment goal for patients with ulcerative colitis (UC). Healing of mucosal wounds involves epithelial cell proliferation and differentiation, and Y-box transcription factor ZONAB has recently been identified as the key modulator of intestinal epithelial restitution. METHODS We studied the characteristics of UXT-V1 expression in UC patients using immunohistochemistry and qPCR. The functional role of UXT-V1 in the colonic epithelium was investigated using lentivirus-mediated shRNA in vitro and ex vivo. Through endogenous Co-immunoprecipitation and LC-MS/MS, we identified ZONAB as a UXT-V1-interactive protein. RESULTS Herein, we report that UXT-V1 promotes differentiation of intestinal epithelial cells by regulating the nuclear translocation of ZONAB. UXT-V1 was upregulated in the intestinal epithelia of UC patients compared with that of healthy controls. Knocking down UXT-V1 in NCM-460 cells led to the enrichment of pathways associated with proliferation and differentiation. Furthermore, the absence of UXT-V1 in cultured intestinal epithelial cells and colonic organoids inhibited differentiation to the goblet cell phenotype. Mechanistically, the loss of UXT-V1 in the intestinal epithelial cells allowed nuclear translocation of ZONAB, wherein it regulated the transcription of differentiation-related genes, including AML1 and KLF4. CONCLUSION Taken together, our study reveals a potential role of UXT-V1 in regulating epithelial cell differentiation, proving a molecular basis for mucosal healing in UC.
Collapse
Affiliation(s)
- Wu Peng
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Chengcheng Zeng
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Jing Xu
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Hailan Zhao
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Qingqing Zhu
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Haoming Xu
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Huiting Chen
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Hongli Huang
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Yongjian Zhou
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Chong Zhao
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| |
Collapse
|
4
|
Xie J, Gan L, Xue B, Wang X, Pei X. Emerging roles of interactions between ncRNAs and other epigenetic modifications in breast cancer. Front Oncol 2023; 13:1264090. [PMID: 37901333 PMCID: PMC10602744 DOI: 10.3389/fonc.2023.1264090] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Up till the present moment, breast cancer is still the leading cause of cancer-related death in women worldwide. Although the treatment methods and protocols for breast cancer are constantly improving, the long-term prognosis of patients is still not optimistic due to the complex heterogeneity of the disease, multi-organ metastasis, chemotherapy and radiotherapy resistance. As a newly discovered class of non-coding RNAs, ncRNAs play an important role in various cancers. Especially in breast cancer, lncRNAs have received extensive attention and have been confirmed to regulate cancer progression through a variety of pathways. Meanwhile, the study of epigenetic modification, including DNA methylation, RNA methylation and histone modification, has developed rapidly in recent years, which has greatly promoted the attention to the important role of non-coding RNAs in breast cancer. In this review, we carefully and comprehensively describe the interactions between several major classes of epigenetic modifications and ncRNAs, as well as their different subsequent biological effects, and discuss their potential for practical clinical applications.
Collapse
Affiliation(s)
| | | | | | | | - Xinhong Pei
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Pathania AS. Crosstalk between Noncoding RNAs and the Epigenetics Machinery in Pediatric Tumors and Their Microenvironment. Cancers (Basel) 2023; 15:2833. [PMID: 37345170 DOI: 10.3390/cancers15102833] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
According to the World Health Organization, every year, an estimated 400,000+ new cancer cases affect children under the age of 20 worldwide. Unlike adult cancers, pediatric cancers develop very early in life due to alterations in signaling pathways that regulate embryonic development, and environmental factors do not contribute much to cancer development. The highly organized complex microenvironment controlled by synchronized gene expression patterns plays an essential role in the embryonic stages of development. Dysregulated development can lead to tumor initiation and growth. The low mutational burden in pediatric tumors suggests the predominant role of epigenetic changes in driving the cancer phenotype. However, one more upstream layer of regulation driven by ncRNAs regulates gene expression and signaling pathways involved in the development. Deregulation of ncRNAs can alter the epigenetic machinery of a cell, affecting the transcription and translation profiles of gene regulatory networks required for cellular proliferation and differentiation during embryonic development. Therefore, it is essential to understand the role of ncRNAs in pediatric tumor development to accelerate translational research to discover new treatments for childhood cancers. This review focuses on the role of ncRNA in regulating the epigenetics of pediatric tumors and their tumor microenvironment, the impact of their deregulation on driving pediatric tumor progress, and their potential as effective therapeutic targets.
Collapse
Affiliation(s)
- Anup S Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
6
|
Zhang Z, Shi S, Li J, Costa M. Long Non-Coding RNA MEG3 in Metal Carcinogenesis. TOXICS 2023; 11:toxics11020157. [PMID: 36851033 PMCID: PMC9962265 DOI: 10.3390/toxics11020157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 06/06/2023]
Abstract
Most transcripts from human genomes are non-coding RNAs (ncRNAs) that are not translated into proteins. ncRNAs are divided into long (lncRNAs) and small non-coding RNAs (sncRNAs). LncRNAs regulate their target genes both transcriptionally and post-transcriptionally through interactions with proteins, RNAs, and DNAs. Maternally expressed gene 3 (MEG3), a lncRNA, functions as a tumor suppressor. MEG3 regulates cell proliferation, cell cycle, apoptosis, hypoxia, autophagy, and many other processes involved in tumor development. MEG3 is downregulated in various cancer cell lines and primary human cancers. Heavy metals, such as hexavalent chromium (Cr(VI)), arsenic, nickel, and cadmium, are confirmed human carcinogens. The exposure of cells to these metals causes a variety of cancers. Among them, lung cancer is the one that can be induced by exposure to all of these metals. In vitro studies have demonstrated that the chronic exposure of normal human bronchial epithelial cells (BEAS-2B) to these metals can cause malignant cell transformation. Metal-transformed cells have the capability to cause an increase in cell proliferation, resistance to apoptosis, elevated migration and invasion, and properties of cancer stem-like cells. Studies have revealed that MEG is downregulated in Cr(VI)-transformed cells, nickel-transformed cells, and cadmium (Cd)-transformed cells. The forced expression of MEG3 reduces the migration and invasion of Cr(VI)-transformed cells through the downregulation of the neuronal precursor of developmentally downregulated protein 9 (NEDD9). MEG3 suppresses the malignant cell transformation of nickel-transformed cells. The overexpression of MEG3 decreases Bcl-xL, causing reduced apoptosis resistance in Cd-transformed cells. This paper reviews the current knowledge of lncRNA MEG3 in metal carcinogenesis.
Collapse
|
7
|
Han P, Mo S, Wang Z, Xu J, Fu X, Tian Y. UXT at the crossroads of cell death, immunity and neurodegenerative diseases. Front Oncol 2023; 13:1179947. [PMID: 37152054 PMCID: PMC10154696 DOI: 10.3389/fonc.2023.1179947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
The ubiquitous expressed transcript (UXT), a member of the prefoldin-like protein family, modulates regulated cell death (RCD) such as apoptosis and autophagy-mediated cell death through nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), P53, P62, and methylation, and is involved in the regulation of cell metabolism, thereby affecting tumor progression. UXT also maintains immune homeostasis and reduces proteotoxicity in neuro-degenerative diseases through selective autophagy and molecular chaperones. Herein, we review and further elucidate the mechanisms by which UXT affects the regulation of cell death, maintenance of immune homeostasis, and neurodegenerative diseases and discuss the possible UXT involvement in the regulation of ferroptosis and immunogenic cell death, and targeting it to improve cancer treatment outcomes by regulating cell death and immune surveillance.
Collapse
Affiliation(s)
- Pengzhe Han
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Shaojian Mo
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Department of Biliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Zhengwang Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Jiale Xu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Xifeng Fu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Department of Biliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yanzhang Tian
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Department of Biliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- *Correspondence: Yanzhang Tian,
| |
Collapse
|
8
|
Su J, Deng L, Wang YD. Roles and Mechanisms of Long Non-Coding RNAs in Breast Cancer. Int J Mol Sci 2022; 24:89. [PMID: 36613528 PMCID: PMC9820050 DOI: 10.3390/ijms24010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is a major health threat and the second leading cause of cancer-related deaths in women worldwide. The detailed mechanisms involved in the initiation and progression of breast cancer remain unclear. In recent years, amounting evidence indicated that long non-coding RNAs (lncRNAs) played crucial roles in regulating various biological processes and malignancy tumors, including breast cancer. In this review, we briefly introduce the functions and underlying mechanisms by which lncRNAs are involved in breast cancer. We summarize the roles of the lncRNAs in regulating malignant behaviors of breast cancer, such as cell proliferation, migration and invasion, epithelial-mesenchymal transition (EMT), apoptosis, and drug resistance. Additionally, we also briefly summarize the roles of circular RNAs (circRNAs) in breast cancer carcinogenesis.
Collapse
Affiliation(s)
| | | | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
9
|
Hu Y, Lv F, Li N, Yuan X, Zhang L, Zhao S, Jin L, Qiu Y. Long noncoding RNA MEG3 inhibits oral squamous cell carcinoma progression via GATA3. FEBS Open Bio 2022; 13:195-208. [PMID: 36468944 PMCID: PMC9811608 DOI: 10.1002/2211-5463.13532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/08/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) accounts for about 90% of oral cancers. Expression of the long noncoding RNA (lncRNA) maternally expressed 3 (MEG3) has previously been reported to be downregulated in OSCC, and its overexpression can inhibit proliferation, migration, and invasion and promote apoptosis of OSCC cells. However, the mechanism underlying MEG3 downregulation in OSCC has not been well characterized. Here we report that low expression of MEG3 is caused by H3K27me3 modification of the MEG3 gene locus, and this is associated with the poor prognosis of OSCC. Overexpression of MEG3 inhibited the proliferation and invasion of OSCC cells. We observed that MEG3 was modified by m6A and bound to YTHDC1. Enhancer-controlled genes positively regulated by MEG3 were functionally enriched for the 'negative regulation of Wnt signaling pathway' term, as determined using metascape. GATA3 was predicted to be a transcription factor for these genes, and was demonstrated to bind to MEG3. Knockdown of GATA3 countered the effects on proliferation, invasion, and increased transcription of HIC1 and PRICKLE1 induced by MEG3 overexpression. In conclusion, our data suggest that MEG3 is downregulated in OSCC due to trimethylation of H3K27 at the MEG3 gene locus. The inhibitory effect of MEG3 on proliferation and invasion of OSCC cells was dependent on the binding of GATA3.
Collapse
Affiliation(s)
- Yan Hu
- Department of StomatologyAffiliated Hospital of Hebei UniversityBaodingChina
| | - Feifei Lv
- Department of StomatologyAffiliated Hospital of Hebei UniversityBaodingChina
| | - Na Li
- Department of StomatologySecond Hospital of ShijiazhuangChina
| | - Xuewei Yuan
- Department of StomatologySecond Hospital of ShijiazhuangChina
| | - Liru Zhang
- Department of StomatologySecond Hospital of ShijiazhuangChina
| | - Shuangling Zhao
- Department of StomatologyFirst Outpatient Department of Hebei ProvinceShijiazhuangChina
| | - Linyu Jin
- Department of Stomatology, Fourth Affiliated HospitalHebei Medical UniversityShijiazhuangChina
| | - Yongle Qiu
- Department of Stomatology, Fourth Affiliated HospitalHebei Medical UniversityShijiazhuangChina
| |
Collapse
|
10
|
Zhang L, Zhao F, Li W, Song G, Kasim V, Wu S. The Biological Roles and Molecular Mechanisms of Long Non-Coding RNA MEG3 in the Hallmarks of Cancer. Cancers (Basel) 2022; 14:cancers14246032. [PMID: 36551518 PMCID: PMC9775699 DOI: 10.3390/cancers14246032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are critical regulators in various biological processes involved in the hallmarks of cancer. Maternally expressed gene 3 (MEG3) is lncRNA that regulates target genes through transcription, translation, post-translational modification, and epigenetic regulation. MEG3 has been known as a tumor suppressor, and its downregulation could be found in various cancers. Furthermore, clinical studies revealed that impaired MEG3 expression is associated with poor prognosis and drug resistance. MEG3 exerts its tumor suppressive effect by suppressing various cancer hallmarks and preventing cells from acquiring cancer-specific characteristics; as it could suppress tumor cells proliferation, invasion, metastasis, and angiogenesis; it also could promote tumor cell death and regulate tumor cell metabolic reprogramming. Hence, MEG3 is a potential prognostic marker, and overexpressing MEG3 might become a potential antitumor therapeutic strategy. Herein, we summarize recent knowledge regarding the role of MEG3 in regulating tumor hallmarks as well as the underlying molecular mechanisms. Furthermore, we also discuss the clinical importance of MEG3, as well as their potential in tumor prognosis and antitumor therapeutic strategies.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Fuqiang Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Wenfang Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
- Correspondence: (V.K.); (S.W.); Tel.: +86-23-65112672 (V.K.); +86-23-65111632 (S.W.); Fax: +86-23-65111802 (V.K. & S.W.)
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
- Correspondence: (V.K.); (S.W.); Tel.: +86-23-65112672 (V.K.); +86-23-65111632 (S.W.); Fax: +86-23-65111802 (V.K. & S.W.)
| |
Collapse
|
11
|
DNMT3B and TET1 mediated DNA methylation of LATS1 regulates BC progression via hippo signaling pathway. Pathol Res Pract 2022; 240:154231. [DOI: 10.1016/j.prp.2022.154231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
|
12
|
Li Z, Gao J, Sun D, Jiao Q, Ma J, Cui W, Lou Y, Xu F, Li S, Li H. LncRNA MEG3: Potential stock for precision treatment of cardiovascular diseases. Front Pharmacol 2022; 13:1045501. [PMID: 36523500 PMCID: PMC9744949 DOI: 10.3389/fphar.2022.1045501] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/11/2022] [Indexed: 10/13/2023] Open
Abstract
The prevalence and mortality rates of cardiovascular diseases are increasing, and new treatment strategies are urgently needed. From the perspective of basic pathogenesis, the occurrence and development of cardiovascular diseases are related to inflammation, apoptosis, fibrosis and autophagy of cardiomyocytes, endothelial cells and other related cells. The involvement of maternally expressed gene 3 (MEG3) in human disease processes has been increasingly reported. P53 and PI3K/Akt are important pathways by which MEG3 participates in regulating cell apoptosis. MEG3 directly or competitively binds with miRNA to participate in apoptosis, inflammation, oxidative stress, endoplasmic reticulum stress, EMT and other processes. LncRNA MEG3 is mainly involved in malignant tumors, metabolic diseases, immune system diseases, cardiovascular and cerebrovascular diseases, etc., LncRNA MEG3 has a variety of pathological effects in cardiomyocytes, fibroblasts and endothelial cells and has great clinical application potential in the prevention and treatment of AS, MIRI, hypertension and HF. This paper will review the research progress of MEG3 in the aspects of mechanism of action, other systemic diseases and cardiovascular diseases, and point out its great potential in the prevention and treatment of cardiovascular diseases. lncRNAs also play a role in endothelial cells. In addition, lncRNA MEG3 has shown biomarker value, prognostic value and therapeutic response measurement in tumor diseases. We boldly speculate that MEG3 will play a role in the emerging discipline of tumor heart disease.
Collapse
Affiliation(s)
- Zining Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Jialiang Gao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Division, Beijing, China
- Deputy Chief Physician, Beijing, China
| | - Di Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Qian Jiao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Jing Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Weilu Cui
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Yuqing Lou
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Fan Xu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Shanshan Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Haixia Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Division, Beijing, China
- Chief Physician, Beijing, China
| |
Collapse
|
13
|
Zhao K, Li W, Yang Y, Hu X, Dai Y, Huang M, Luo J, Zhang K, Zhao N. Comprehensive analysis of m6A/m5C/m1A-related gene expression, immune infiltration, and sensitivity of antineoplastic drugs in glioma. Front Immunol 2022; 13:955848. [PMID: 36203569 PMCID: PMC9530704 DOI: 10.3389/fimmu.2022.955848] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022] Open
Abstract
This research aims to develop a prognostic glioma marker based on m6A/m5C/m1A genes and investigate the potential role in the tumor immune microenvironment. Data for patients with glioma were downloaded from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA). The expression of genes related to m6A/m5C/m1A was compared for normal and glioma groups. Gene Ontology and Kyoto Encyclopedia of Genes and Gene enrichment analysis of differentially expressed genes were conducted. Consistent clustering analysis was performed to obtain glioma subtypes and complete the survival analysis and immune analysis. Based on TCGA, Lasso regression analysis was used to obtain a prognostic model, and the CGGA database was used to validate the model. The model-based risk scores and the hub genes with the immune microenvironment, clinical features, and antitumor drug susceptibility were investigated. The clinical glioma tissues were collected to verify the expression of hub genes via immunohistochemistry. Twenty genes were differentially expressed, Consensus cluster analysis identified two molecular clusters. Overall survival was significantly higher in cluster 2 than in cluster 1. Immunological analysis revealed statistically significant differences in 26 immune cells and 17 immune functions between the two clusters. Enrichment analysis detected multiple meaningful pathways. We constructed a prognostic model that consists of WTAP, TRMT6, DNMT1, and DNMT3B. The high-risk and low-risk groups affected the survival prognosis and immune infiltration, which were related to grade, gender, age, and survival status. The prognostic value of the model was validated using another independent cohort CGGA. Clinical correlation and immune analysis revealed that four hub genes were associated with tumor grade, immune cells, and antitumor drug sensitivity, and WTAP was significantly associated with microsatellite instability(MSI). Immunohistochemistry confirmed the high expression of WTAP, DNMT1, and DNMT3B in tumor tissue, but the low expression of TRMT6. This study established a strong prognostic marker based on m6A/m5C/m1A methylation regulators, which can accurately predict the prognosis of patients with gliomas. m6A/m5C/m1A modification mode plays an important role in the tumor microenvironment, can provide valuable information for anti-tumor immunotherapy, and have a profound impact on the clinical characteristics.
Collapse
Affiliation(s)
- Kai Zhao
- Neurosurgery Department, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenhu Li
- Neurosurgery Department, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yongtao Yang
- Cerebrovascular Disease Department, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xinyue Hu
- Department of Clinical Laboratory, Kunming First People’s Hospital, Kunming Medical University, Kunming, China
| | - Ying Dai
- Neurosurgery Department, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Minhao Huang
- Neurosurgery Department, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ji Luo
- Neurosurgery Department, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kui Zhang
- Neurosurgery Department, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ninghui Zhao
- Neurosurgery Department, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Ninghui Zhao,
| |
Collapse
|
14
|
Wang Z, Mo S, Han P, Liu L, Liu Z, Fu X, Tian Y. The role of UXT in tumors and prospects for its application in hepatocellular carcinoma. Future Oncol 2022; 18:3335-3348. [PMID: 36000398 DOI: 10.2217/fon-2022-0582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UXT is widely expressed in human and mouse tissues and aberrantly expressed in various tumor tissues. UXT may play a pro-cancer or tumor suppressor role in different tumor types and microenvironments with different mechanisms of action. Studies have shown that UXT can interact with related receptors to exert its functions and affect tumor proliferation and metastasis, leading to a poor prognosis when the biological functions of these tumors are changed. Interestingly, the signaling pathways and mechanism-related molecules that interact with UXT are closely related to the occurrence of hepatocellular carcinoma (HCC) during disease progression. This article reviews the research progress of UXT and prospects for its application in HCC, with the aim of providing possible scientific suggestions for the basic research, diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Zhengwang Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Shaojian Mo
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Pengzhe Han
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Lu Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ziang Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xifeng Fu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yanzhang Tian
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| |
Collapse
|