1
|
Sasaki Y, Maeda T, Hojo M, Miura T, Ishikawa K, Funayama E, Okada K, Yamamoto Y. Synergistic anti-tumor effects of oncolytic virus and anti-programmed cell death protein 1 antibody combination therapy: For suppression of lymph node and distant metastasis in a murine melanoma model. Biochem Biophys Res Commun 2024; 740:151011. [PMID: 39571230 DOI: 10.1016/j.bbrc.2024.151011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024]
Abstract
It is believed that oncolytic viruses (OVs) exert both direct anti-tumor effects by intratumoral injection as well as indirect anti-tumor effects by activating systemic immunity. In phase III clinical trials, OV and anti-programmed cell death-1 (aPD-1) antibody combination therapy showed no significant differences in overall survival and progression-free survival in patients with unresectable advanced melanoma. In the study, OVs can exert only indirect anti-tumor effects in non-injected, systemic lesions. If the tumor is at a stage where both direct and indirect anti-tumor effects of OVs can be expected, OVs may further enhance the therapeutic effect, in addition to the clinically expected therapeutic effect. Therefore, we investigated whether canerpaturev (C-REV) and aPD-1 antibody combination therapy suppresses tumor progression in a murine melanoma model. Our findings showed that the C-REV and aPD-1 antibody combination therapy suppressed tumor progression in a murine melanoma model. The combination therapy stimulated systemic immunity in lymphoid tissues by activating helper T cells and B cells to enhance adaptive and humoral immunity, as well as by increasing effector/memory T cell fractions. Synergistically enhanced systemic anti-tumor effects suppressed lymph node and lung metastases. These findings suggest that direct anti-tumor effects by infecting and destroying cancer cells from within and indirect anti-tumor effects enhanced by the combination therapy worked simultaneously to suppress tumor progression. Our results may provide evidence to support the usefulness of OV and aPD-1 antibody combination therapy as a neoadjuvant therapy in the surgical treatment of melanoma.
Collapse
Affiliation(s)
- Yuki Sasaki
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Taku Maeda
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Masahiro Hojo
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Takahiro Miura
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Kosuke Ishikawa
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Emi Funayama
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Kazufumi Okada
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Japan.
| | - Yuhei Yamamoto
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| |
Collapse
|
2
|
Fu C, Wang J, Ma T, Yin C, Zhou L, Clausen BE, Mi QS, Jiang A. β-Catenin in Dendritic Cells Negatively Regulates CD8 T Cell Immune Responses through the Immune Checkpoint Molecule Tim-3. Vaccines (Basel) 2024; 12:460. [PMID: 38793711 PMCID: PMC11125945 DOI: 10.3390/vaccines12050460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Recent studies have demonstrated that β-catenin in dendritic cells (DCs) serves as a key mediator in promoting both CD4 and CD8 T cell tolerance, although the mechanisms underlying how β-catenin exerts its functions remain incompletely understood. Here, we report that activation of β-catenin leads to the up-regulation of inhibitory molecule T-cell immunoglobulin and mucin domain 3 (Tim-3) in type 1 conventional DCs (cDC1s). Using a cDC1-targeted vaccine model with anti-DEC-205 engineered to express the melanoma antigen human gp100 (anti-DEC-205-hgp100), we demonstrated that CD11c-β-cateninactive mice exhibited impaired cross-priming and memory responses of gp100-specific CD8 T (Pmel-1) cells upon immunization with anti-DEC-205-hgp100. Single-cell RNA sequencing (scRNA-seq) analysis revealed that β-catenin in DCs negatively regulated transcription programs for effector function and proliferation of primed Pmel-1 cells, correlating with suppressed CD8 T cell immunity in CD11c-β-cateninactive mice. Further experiments showed that treating CD11c-β-cateninactive mice with an anti-Tim-3 antibody upon anti-DEC-205-hgp100 vaccination led to restored cross-priming and memory responses of gp100-specific CD8 T cells, suggesting that anti-Tim-3 treatment likely synergizes with DC vaccines to improve their efficacy. Indeed, treating B16F10-bearing mice with DC vaccines using anti-DEC-205-hgp100 in combination with anti-Tim-3 treatment resulted in significantly reduced tumor growth compared with treatment with the DC vaccine alone. Taken together, we identified the β-catenin/Tim-3 axis as a potentially novel mechanism to inhibit anti-tumor CD8 T cell immunity and that combination immunotherapy of a DC-targeted vaccine with anti-Tim-3 treatment leads to improved anti-tumor efficacy.
Collapse
Affiliation(s)
- Chunmei Fu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (C.F.); (J.W.); (C.Y.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Jie Wang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (C.F.); (J.W.); (C.Y.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Tianle Ma
- Department of Computer Science and Engineering, School of Engineering and Computer Science, Oakland University, Rochester, MI 48309, USA;
| | - Congcong Yin
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (C.F.); (J.W.); (C.Y.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (C.F.); (J.W.); (C.Y.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Björn E. Clausen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (C.F.); (J.W.); (C.Y.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Aimin Jiang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (C.F.); (J.W.); (C.Y.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Naseri S, Cordova MM, Wenthe J, Lövgren T, Eriksson E, Loskog A, Ullenhag GJ. CD40 stimulation via CD40 ligand enhances adenovirus-mediated tumour immunogenicity including 'find-me', 'eat-me', and 'kill-me' signalling. J Cell Mol Med 2024; 28:e18162. [PMID: 38494863 PMCID: PMC10945091 DOI: 10.1111/jcmm.18162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/06/2023] [Accepted: 01/12/2024] [Indexed: 03/19/2024] Open
Abstract
Immunostimulatory gene therapy using oncolytic viruses is currently evaluated as a promising therapy for cancer aiming to induce anti-tumour immunity. Here, we investigate the capacity of oncolytic adenoviruses (LOAd) and their transgenes to induce immunogenicity in the infected tumour cells. Oncolysis and death-related markers were assessed after infection of eight human solid cancer cell lines with different LOAd viruses expressing a trimerized, membrane-bound (TMZ)-CD40L, TMZ-CD40L and 41BBL, or no transgenes. The viruses induced transgene expression post infection before they were killed by oncolysis. Death receptors TRAIL-R1, TRAIL-R2 and Fas as well as immunogenic cell death marker calreticulin were upregulated in cell lines post infection. Similarly, caspase 3/7 activity was increased in most cell lines. Interestingly, in CD40+ cell lines there was a significant effect of the TMZ-CD40L-encoding viruses indicating activation of the CD40-mediated apoptosis pathway. Further, these cell lines showed a significant increase of calreticulin, and TRAIL receptor 1 and 2 post infection. However, LOAd viruses induced PD-L1 upregulation which may hamper anti-tumour immune responses. In conclusion, LOAd infection increased the immunogenicity of infected tumour cells and this was potentiated by CD40 stimulation. Due to the simultaneous PD-L1 increase, LOAd viruses may benefit from combination with antibodies blocking PD1/PD-L1.
Collapse
Affiliation(s)
- Sedigheh Naseri
- Department of Immunology, Genetics and Pathology (IGP), Science for Life LaboratoriesUppsala UniversityUppsalaSweden
| | - Mariela Mejia Cordova
- Department of Immunology, Genetics and Pathology (IGP), Science for Life LaboratoriesUppsala UniversityUppsalaSweden
| | - Jessica Wenthe
- Department of Immunology, Genetics and Pathology (IGP), Science for Life LaboratoriesUppsala UniversityUppsalaSweden
| | - Tanja Lövgren
- Department of Immunology, Genetics and Pathology (IGP), Science for Life LaboratoriesUppsala UniversityUppsalaSweden
| | - Emma Eriksson
- Department of Immunology, Genetics and Pathology (IGP), Science for Life LaboratoriesUppsala UniversityUppsalaSweden
- Lokon Pharma ABUppsalaSweden
| | - Angelica Loskog
- Department of Immunology, Genetics and Pathology (IGP), Science for Life LaboratoriesUppsala UniversityUppsalaSweden
- Lokon Pharma ABUppsalaSweden
| | - Gustav J. Ullenhag
- Department of Immunology, Genetics and Pathology (IGP), Science for Life LaboratoriesUppsala UniversityUppsalaSweden
- Department of OncologyUppsala University HospitalUppsalaSweden
| |
Collapse
|
4
|
Shibata Y, Kishida T, Kouro T, Wei F, Igarashi Y, Himuro H, Noguchi T, Koizumi M, Suzuki T, Osaka K, Saigusa Y, Sasada T. Immune mediators as predictive biomarkers for anti-PD-1 antibody therapy in urothelial carcinoma. Front Pharmacol 2023; 14:1269935. [PMID: 38026978 PMCID: PMC10679331 DOI: 10.3389/fphar.2023.1269935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: This study aimed to identify immune mediators, including cytokines, chemokines, and growth factors, in the plasma for predicting treatment efficacy and immune-related adverse events (irAEs) in advanced urothelial carcinoma (aUC) treated with immune checkpoint inhibitors (ICIs). Methods: We enrolled 57 patients with aUC who were treated with the anti-programmed cell death protein 1 (PD-1) antibody pembrolizumab after the failure of platinum-based chemotherapy between February 2018 and December 2020. Plasma levels of 73 soluble immune mediators were measured before and 6 weeks after initiating pembrolizumab therapy. The association of estimated soluble immune mediators with clinical outcomes, including overall survival (OS), progression-free survival (PFS), anti-tumor responses, and irAEs, were statistically evaluated. Results: In the multivariate analysis, levels of 18 factors at baseline and 12 factors during treatment were significantly associated with OS. Regarding PFS, baseline levels of 17 factors were significantly associated with PFS. Higher levels of interleukin (IL)-6, IL-8, soluble tumor necrosis factor receptor 1 (sTNF-R1), and IL-12 (p40), both at baseline and post-treatment, were significantly associated with worse OS. Conversely, low IL-6 and high TWEAK levels at baseline were associated with irAEs. Among identified factors, interferon (IFN) γ and IL-12 (p40) were repeatedly identified; high baseline levels of these factors were risk factors for worse OS and PFS, as well as progressive disease. Notably, using correlation and principal component analysis, factors significantly associated with clinical outcomes were broadly classified into three groups exhibiting similar expression patterns. Discussion: Measuring plasma levels of soluble immune mediators, such as IL-6, IL-8, sTNF-R1, IFNγ, and IL-12 (p40), could be recommended for predicting prognosis and irAEs in ICI-treated patients with aUC.
Collapse
Affiliation(s)
- Yosuke Shibata
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Takeshi Kishida
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Taku Kouro
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Feifei Wei
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yuka Igarashi
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Hidetomo Himuro
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Takeaki Noguchi
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Mitsuyuki Koizumi
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Takahisa Suzuki
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Kimito Osaka
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yusuke Saigusa
- Department of Biostatistics, School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Tetsuro Sasada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| |
Collapse
|
5
|
Fink C, Gevaert JJ, Barrett JW, Dikeakos JD, Foster PJ, Dekaban GA. In vivo tracking of adenoviral-transduced iron oxide-labeled bone marrow-derived dendritic cells using magnetic particle imaging. Eur Radiol Exp 2023; 7:42. [PMID: 37580614 PMCID: PMC10425309 DOI: 10.1186/s41747-023-00359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/30/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Despite widespread study of dendritic cell (DC)-based cancer immunotherapies, the in vivo postinjection fate of DC remains largely unknown. Due in part to a lack of quantifiable imaging modalities, this is troubling as the amount of DC migration to secondary lymphoid organs correlates with therapeutic efficacy. Magnetic particle imaging (MPI) has emerged as a suitable modality to quantify in vivo migration of superparamagnetic iron oxide (SPIO)-labeled DC. Herein, we describe a popliteal lymph node (pLN)-focused MPI scan to quantify DC in vivo migration accurately and consistently. METHODS Adenovirus (Ad)-transduced SPIO+ (Ad SPIO+) and SPIO+ C57BL/6 bone marrow-derived DC were generated and assessed for viability and phenotype, then fluorescently labeled and injected into mouse hind footpads (n = 6). Two days later, in vivo DC migration was quantified using whole animal, pLN-focused, and ex vivo pLN MPI scans. RESULTS No significant differences in viability, phenotype and in vivo pLN migration were noted for Ad SPIO+ and SPIO+ DC. Day 2 pLN-focused MPI quantified DC migration in all instances while whole animal MPI only quantified pLN migration in 75% of cases. Ex vivo MPI and fluorescence microscopy confirmed that pLN MPI signal was due to originally injected Ad SPIO+ and SPIO+ DC. CONCLUSION We overcame a reported limitation of MPI by using a pLN-focused MPI scan to quantify pLN-migrated Ad SPIO+ and SPIO+ DC in 100% of cases and detected as few as 1000 DC (4.4 ng Fe) in vivo. MPI is a suitable preclinical imaging modality to assess DC-based cancer immunotherapeutic efficacy. RELEVANCE STATEMENT Tracking the in vivo fate of DC using noninvasive quantifiable magnetic particle imaging can potentially serve as a surrogate marker of therapeutic effectiveness. KEY POINTS • Adenoviral-transduced and iron oxide-labeled dendritic cells are in vivo migration competent. • Magnetic particle imaging is a suitable modality to quantify in vivo dendritic cell migration. • Magnetic particle imaging focused field of view overcomes dynamic range limitation.
Collapse
Affiliation(s)
- Corby Fink
- Biotherapeutics Research Laboratory, Robarts Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Julia J Gevaert
- Cellular and Molecular Imaging Group, Robarts Research Institute, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - John W Barrett
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, ON, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Paula J Foster
- Cellular and Molecular Imaging Group, Robarts Research Institute, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Gregory A Dekaban
- Biotherapeutics Research Laboratory, Robarts Research Institute, London, ON, Canada.
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
6
|
Wenthe J, Eriksson E, Hellström AC, Moreno R, Ullenhag G, Alemany R, Lövgren T, Loskog A. Immunostimulatory gene therapy targeting CD40, 4-1BB and IL-2R activates DCs and stimulates antigen-specific T-cell and NK-cell responses in melanoma models. J Transl Med 2023; 21:506. [PMID: 37501121 PMCID: PMC10373363 DOI: 10.1186/s12967-023-04374-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND The activation of dendritic cells (DCs) is pivotal for generating antigen-specific T-cell responses to eradicate tumor cells. Hence, immunotherapies targeting this interplay are especially intriguing. Moreover, it is of interest to modulate the tumor microenvironment (TME), as this harsh milieu often impairs adaptive immune responses. Oncolytic viral therapy presents an opportunity to overcome the immunosuppression in tumors by destroying tumor cells and thereby releasing antigens and immunostimulatory factors. These effects can be further amplified by the introduction of transgenes expressed by the virus. METHODS Lokon oncolytic adenoviruses (LOAd) belong to a platform of chimeric serotype Ad5/35 viruses that have their replication restricted to tumor cells, but the expression of transgenes is permitted in all infected cells. LOAd732 is a novel oncolytic adenovirus that expresses three essential immunostimulatory transgenes: trimerized membrane-bound CD40L, 4-1BBL and IL-2. Transgene expression was determined with flow cytometry and ELISA and the oncolytic function was evaluated with viability assays and xenograft models. The activation profiles of DCs were investigated in co-cultures with tumor cells or in an autologous antigen-specific T cell model by flow cytometry and multiplex proteomic analysis. Statistical differences were analyzed with Kruskal-Wallis test followed by Dunn's multiple comparison test. RESULTS All three transgenes were expressed in infected melanoma cells and DCs and transgene expression did not impair the oncolytic activity in tumor cells. DCs were matured post LOAd732 infection and expressed a multitude of co-stimulatory molecules and pro-inflammatory cytokines crucial for T-cell responses. Furthermore, these DCs were capable of expanding and stimulating antigen-specific T cells in addition to natural killer (NK) cells. Strikingly, the addition of immunosuppressive cytokines TGF-β1 and IL-10 did not affect the ability of LOAd732-matured DCs to expand antigen-specific T cells and these cells retained an enhanced activation profile. CONCLUSIONS LOAd732 is a novel immunostimulatory gene therapy based on an oncolytic adenovirus that expresses three transgenes, which are essential for mediating an anti-tumor immune response by activating DCs and stimulating T and NK cells even under imunosuppressive conditions commonly present in the TME. These qualities make LOAd732 an appealing new immunotherapy approach.
Collapse
Affiliation(s)
- Jessica Wenthe
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 751 85, Uppsala, Sweden.
- Lokon Pharma AB, Uppsala, Sweden.
| | - Emma Eriksson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 751 85, Uppsala, Sweden
- Lokon Pharma AB, Uppsala, Sweden
| | - Ann-Charlotte Hellström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 751 85, Uppsala, Sweden
| | - Rafael Moreno
- IDIBELL-Institute Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Gustav Ullenhag
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 751 85, Uppsala, Sweden
- Department of Oncology, Uppsala University Hospital, Uppsala, Sweden
| | - Ramon Alemany
- IDIBELL-Institute Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Tanja Lövgren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 751 85, Uppsala, Sweden
| | - Angelica Loskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 751 85, Uppsala, Sweden
- Lokon Pharma AB, Uppsala, Sweden
| |
Collapse
|
7
|
Huo J, Zhang A, Wang S, Cheng H, Fan D, Huang R, Wang Y, Wan B, Zhang G, He H. Splenic-targeting biomimetic nanovaccine for elevating protective immunity against virus infection. J Nanobiotechnology 2022; 20:514. [PMID: 36463277 PMCID: PMC9719655 DOI: 10.1186/s12951-022-01730-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The prevalence of viral infectious diseases has become a serious threat to public safety, economic and social development. Vaccines have been served as the most effective platform to prevent virus transmission via the activation of host immune responses, while the low immunogenicity or safety, the high cost of production, storage, transport limit their effective clinical application. Therefore, there is a need to develop a promising strategy to improve the immunogenicity and safety of vaccines. METHODS We developed a splenic-targeting biomimetic nanovaccine (NV) that can boost protective humoral and cellular immunity against african swine fever virus (ASFV) infection. The universal PLGA nanoparticles (CMR-PLGA/p54 NPs) coated with mannose and CpG (TLR9 agonist) co-modified red blood cell (RBC) membrane were prepared, which comprised a viral antigen (p54) and can be served as a versatile nanovaccine for elevating protective immunity. RESULTS CMR-PLGA/p54 NVs could be effectively uptaken by BMDC and promoted BMDC maturation in vitro. After subcutaneous immunization, antigen could be effectively delivered to the splenic dendritic cells (DCs) due to the splenic homing ability of RBC and DC targeting capacity of mannose, which promoted antigen presentation and DCs maturation, and further elicited higher levels of cytokines secretion and specific IgG titers, CD4+ and CD8+ T cells activation and B maturation. Moreover, NVs demonstrated notable safety during the immunization period. CONCLUSIONS This study demonstrates the high potential of CMR-PLGA NPs as vaccine delivery carriers to promote humoral and cellular immune responses, and it provides a promising strategy to develop safe and effective vaccines against viral infectious diseases.
Collapse
Affiliation(s)
- Jian Huo
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| | - Angke Zhang
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| | - Shuqi Wang
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| | - Hanghang Cheng
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| | - Daopeng Fan
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| | - Ran Huang
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| | - Yanan Wang
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| | - Bo Wan
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| | - Gaiping Zhang
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| | - Hua He
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| |
Collapse
|
8
|
Lu SC, Barry MA. Locked and loaded: engineering and arming oncolytic adenoviruses to enhance anti-tumor immune responses. Expert Opin Biol Ther 2022; 22:1359-1378. [DOI: 10.1080/14712598.2022.2139601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | - Michael A Barry
- Division of Infectious Diseases, Department of Medicine
- Department of Immunology
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Priceman SJ, Cheema W, Adusumilli PS. Advancing together and moving forward: Combination gene and cellular immunotherapies. Mol Ther Oncolytics 2022; 25:330-334. [PMID: 35694448 PMCID: PMC9160651 DOI: 10.1016/j.omto.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|