1
|
Gawi Ermi A, Sarkar D. Resistance to Tyrosine Kinase Inhibitors in Hepatocellular Carcinoma (HCC): Clinical Implications and Potential Strategies to Overcome the Resistance. Cancers (Basel) 2024; 16:3944. [PMID: 39682130 DOI: 10.3390/cancers16233944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, and the development of effective treatment strategies remains a significant challenge in the management of advanced HCC patients. The emergence of tyrosine kinase inhibitors (TKIs) has been a significant advancement in the treatment of HCC, as these targeted therapies have shown promise in prolonging the survival of patients with advanced disease. Although immunotherapy is currently considered as the first line of treatment for advanced HCC patients, many such patients do not meet the clinical criteria to be eligible for immunotherapy, and in many parts of the world there is still lack of accessibility to immunotherapy. As such, TKIs still serve as the first line of treatment and play a major role in the treatment repertoire for advanced HCC patients. However, the development of resistance to these agents is a major obstacle that must be overcome. In this review, we explore the underlying mechanisms of resistance to TKIs in HCC, the clinical implications of this resistance, and the potential strategies to overcome or prevent the emergence of resistance.
Collapse
Affiliation(s)
- Ali Gawi Ermi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
2
|
Ebrahimnezhad M, Asl SH, Rezaie M, Molavand M, Yousefi B, Majidinia M. lncRNAs: New players of cancer drug resistance via targeting ABC transporters. IUBMB Life 2024; 76:883-921. [PMID: 39091106 DOI: 10.1002/iub.2888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/30/2024] [Indexed: 08/04/2024]
Abstract
Cancer drug resistance poses a significant obstacle to successful chemotherapy, primarily driven by the activity of ATP-binding cassette (ABC) transporters, which actively efflux chemotherapeutic agents from cancer cells, reducing their intracellular concentrations and therapeutic efficacy. Recent studies have highlighted the pivotal role of long noncoding RNAs (lncRNAs) in regulating this resistance, positioning them as crucial modulators of ABC transporter function. lncRNAs, once considered transcriptional noise, are now recognized for their complex regulatory capabilities at various cellular levels, including chromatin modification, transcription, and post-transcriptional processing. This review synthesizes current research demonstrating how lncRNAs influence cancer drug resistance by modulating the expression and activity of ABC transporters. lncRNAs can act as molecular sponges, sequestering microRNAs that would otherwise downregulate ABC transporter genes. Additionally, they can alter the epigenetic landscape of these genes, affecting their transcriptional activity. Mechanistic insights reveal that lncRNAs contribute to the activity of ABC transporters, thereby altering the efflux of chemotherapeutic drugs and promoting drug resistance. Understanding these interactions provides a new perspective on the molecular basis of chemoresistance, emphasizing the regulatory network of lncRNAs and ABC transporters. This knowledge not only deepens our understanding of the biological mechanisms underlying drug resistance but also suggests novel therapeutic strategies. In conclusion, the intricate interplay between lncRNAs and ABC transporters is crucial for developing innovative solutions to combat cancer drug resistance, underscoring the importance of continued research in this field.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Hassanzadeh Asl
- Student Research Committee, Faculty of Medicine, Tabriz Azad University of Medical Sciences, Tabriz, Iran
| | - Maede Rezaie
- Immunology research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Molavand
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
3
|
Goyal H, Parwani S, Kaur J. Deciphering the nexus between long non-coding RNAs and endoplasmic reticulum stress in hepatocellular carcinoma: biomarker discovery and therapeutic horizons. Cell Death Discov 2024; 10:451. [PMID: 39448589 PMCID: PMC11502918 DOI: 10.1038/s41420-024-02200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) remains a significant global health challenge with few effective treatment options. The dysregulation of endoplasmic reticulum (ER) stress responses has emerged as a pivotal factor in HCC progression and therapy resistance. Long non-coding RNAs (lncRNAs) play a crucial role as key epigenetic modifiers in this process. Recent research has explored how lncRNAs influence ER stress which in turn affects lncRNAs activity in HCC. We systematically analyze the current literature to highlight the regulatory roles of lncRNAs in modulating ER stress and vice versa in HCC. Our scrutinization highlights how dysregulated lncRNAs contribute to various facets of HCC, including apoptosis resistance, enhanced proliferation, invasion, and metastasis, all driven by ER stress. Moreover, we delve into the emerging paradigm of the lncRNA-miRNA-mRNA axis, elucidating it as the promising avenue for developing novel biomarkers and paving the way for more personalized treatment options in HCC. Nevertheless, we acknowledge the challenges and future directions in translating these insights into clinical practice. In conclusion, our review provides insights into the complex regulatory mechanisms governing ER stress modulation by lncRNAs in HCC.
Collapse
Affiliation(s)
- Himanshi Goyal
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sachin Parwani
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
4
|
Liang Y. Mechanisms of sorafenib resistance in hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2024; 48:102434. [PMID: 39084553 DOI: 10.1016/j.clinre.2024.102434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/21/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Liver cancer is one of the most common and devastating causes of cancer-related deaths worldwide. Hepatocellular carcinoma (HCC) accounts for approximately 90% of primary liver cancers and represents a significant global health issue. There is currently no effective systemic treatment for patients with advanced liver cancer. One study suggests that sorafenib may be effective against hepatocellular carcinoma. Sorafenib can significantly extend the median survival time of patients, but only by 3-5 months. Furthermore, it is linked to severe adverse side effects and frequently leads to drug resistance. In this review, we offer a critical analysis of the factors contributing to sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Yuanjing Liang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, PR China.
| |
Collapse
|
5
|
Fan T, Xie J, Huang G, Li L, Zeng X, Tao Q. PHF8/KDM7B: A Versatile Histone Demethylase and Epigenetic Modifier in Nervous System Disease and Cancers. EPIGENOMES 2024; 8:36. [PMID: 39311138 PMCID: PMC11417953 DOI: 10.3390/epigenomes8030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/23/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
Many human diseases, such as malignant tumors and neurological diseases, have a complex pathophysiological etiology, often accompanied by aberrant epigenetic changes including various histone modifications. Plant homologous domain finger protein 8 (PHF8), also known as lysine-specific demethylase 7B (KDM7B), is a critical histone lysine demethylase (KDM) playing an important role in epigenetic modification. Characterized by the zinc finger plant homology domain (PHD) and the Jumonji C (JmjC) domain, PHF8 preferentially binds to H3K4me3 and erases repressive methyl marks, including H3K9me1/2, H3K27me1, and H4K20me1. PHF8 is indispensable for developmental processes and the loss of PHF8 enzyme activity is linked to neurodevelopmental disorders. Moreover, increasing evidence shows that PHF8 is highly expressed in multiple tumors as an oncogenic factor. These findings indicate that studying the role of PHF8 will facilitate the development of novel therapeutic agents by the manipulation of PHF8 demethylation activity. Herein, we summarize the current knowledge of PHF8 about its structure and demethylation activity and its involvement in development and human diseases, with an emphasis on nervous system disorders and cancer. This review will update our understanding of PHF8 and promote the clinical transformation of its predictive and therapeutic value.
Collapse
Affiliation(s)
- Tingyu Fan
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China; (T.F.); (G.H.)
| | - Jianlian Xie
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong; (J.X.); (L.L.)
| | - Guo Huang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China; (T.F.); (G.H.)
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong; (J.X.); (L.L.)
| | - Xi Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China; (T.F.); (G.H.)
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong; (J.X.); (L.L.)
| |
Collapse
|
6
|
Xiang Y, Wu J, Qin H. Advances in hepatocellular carcinoma drug resistance models. Front Med (Lausanne) 2024; 11:1437226. [PMID: 39144662 PMCID: PMC11322137 DOI: 10.3389/fmed.2024.1437226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Surgery has been the major treatment method for HCC owing to HCC's poor sensitivity to radiotherapy and chemotherapy. However, its effectiveness is limited by postoperative tumour recurrence and metastasis. Systemic therapy is applied to eliminate postoperative residual tumour cells and improve the survival of patients with advanced HCC. Recently, the emergence of various novel targeted and immunotherapeutic drugs has significantly improved the prognosis of advanced HCC. However, targeted and immunological therapies may not always produce complete and long-lasting anti-tumour responses because of tumour heterogeneity and drug resistance. Traditional and patient-derived cell lines or animal models are used to investigate the drug resistance mechanisms of HCC and identify drugs that could reverse the resistance. This study comprehensively reviewed the established methods and applications of in-vivo and in-vitro HCC drug resistance models to further understand the resistance mechanisms in HCC treatment and provide a model basis for possible individualised therapy.
Collapse
Affiliation(s)
- Yien Xiang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun, China
| | - Jun Wu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun, China
| | - Hanjiao Qin
- Department of Radiotherapy, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Jin X, Huang CX, Tian Y. The multifaceted perspectives on the regulation of lncRNAs in hepatocellular carcinoma ferroptosis: from bench-to-bedside. Clin Exp Med 2024; 24:146. [PMID: 38960924 PMCID: PMC11222271 DOI: 10.1007/s10238-024-01418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Despite being characterized by high malignancy, high morbidity, and low survival rates, the underlying mechanism of hepatocellular carcinoma (HCC) has not been fully elucidated. Ferroptosis, a non-apoptotic form of regulated cell death, possesses distinct morphological, biochemical, and genetic characteristics compared to other types of cell death. Dysregulated actions within the molecular network that regulates ferroptosis have been identified as significant contributors to the progression of HCC. Long non-coding RNAs (lncRNAs) have emerged as influential contributors to diverse cellular processes, regulating gene function and expression through multiple mechanistic pathways. An increasing body of evidence indicates that deregulated lncRNAs are implicated in regulating malignant events such as cell proliferation, growth, invasion, and metabolism by influencing ferroptosis in HCC. Therefore, elucidating the inherent role of ferroptosis and the modulatory functions of lncRNAs on ferroptosis in HCC might promote the development of novel therapeutic interventions for this disease. This review provides a succinct overview of the roles of ferroptosis and ferroptosis-related lncRNAs in HCC progression and treatment, aiming to drive the development of promising therapeutic targets and biomarkers for HCC patients.
Collapse
Affiliation(s)
- Xin Jin
- Department of Gastroenterology and Hepatology, Fengdu People's Hospital, Fengdu County, Chongqing, 408200, China
| | - Chun Xia Huang
- Department of Gastroenterology and Hepatology, Fengdu People's Hospital, Fengdu County, Chongqing, 408200, China
| | - Yue Tian
- Department of Gastroenterology and Hepatology, Fengdu People's Hospital, Fengdu County, Chongqing, 408200, China.
| |
Collapse
|
8
|
Liu ZY, Tang JM, Yang MQ, Yang ZH, Xia JZ. The role of LncRNA-mediated autophagy in cancer progression. Front Cell Dev Biol 2024; 12:1348894. [PMID: 38933333 PMCID: PMC11199412 DOI: 10.3389/fcell.2024.1348894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are a sort of transcripts that are more than 200 nucleotides in length. In recent years, many studies have revealed the modulatory role of lncRNAs in cancer. Typically, lncRNAs are linked to a variety of essential events, such as apoptosis, cellular proliferation, and the invasion of malignant cells. Simultaneously, autophagy, an essential intracellular degradation mechanism in eukaryotic cells, is activated to respond to multiple stressful circumstances, for example, nutrient scarcity, accumulation of abnormal proteins, and organelle damage. Autophagy plays both suppressive and promoting roles in cancer. Increasingly, studies have unveiled how dysregulated lncRNAs expression can disrupt autophagic balance, thereby contributing to cancer progression. Consequently, exploring the interplay between lncRNAs and autophagy holds promising implications for clinical research. In this manuscript, we methodically compiled the advances in the molecular mechanisms of lncRNAs and autophagy and briefly summarized the implications of the lncRNA-mediated autophagy axis.
Collapse
Affiliation(s)
- Zi-yuan Liu
- Gastroenterological Surgery, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| | - Jia-ming Tang
- Department of Neurology, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Meng-qi Yang
- Gastroenterological Surgery, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| | - Zhi-hui Yang
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| | - Jia-zeng Xia
- Gastroenterological Surgery, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| |
Collapse
|
9
|
Zhang W, Du D, Lu H, Zhang D, Liu L, Li J, Chen Z, Yu X, Ye M, Wang W, Chen L, Shao J. FAT10 mediates the sorafenib-resistance of hepatocellular carcinoma cells by stabilizing E3 ligase NEDD4 to enhance PTEN/AKT pathway-induced autophagy. Am J Cancer Res 2024; 14:1523-1544. [PMID: 38726263 PMCID: PMC11076247 DOI: 10.62347/epit4481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/31/2024] [Indexed: 05/12/2024] Open
Abstract
Although sorafenib is the first-line therapeutic agent for advanced hepatocellular carcinoma (HCC), the development of drug resistance in HCC cells limits its clinical efficacy. However, the key factors involved in mediating the sorafenib resistance of HCC cells and the underlying mechanisms have not been elucidated. In this study, we generated sorafenib-resistant HCC cell lines, and our data demonstrate that HLA-F locus-adjacent transcript 10 (FAT10), a ubiquitin-like protein, is markedly upregulated in sorafenib-resistant HCC cells and that reducing the expression of FAT10 in sorafenib-resistant HCC cells increases sensitivity to sorafenib. Mechanistically, FAT10 stabilizes the expression of the PTEN-specific E3 ubiquitin ligase NEDD4 that causes downregulation of PTEN, thereby inducing AKT-mediated autophagy and promoting the resistance of HCC cells to sorafenib. Moreover, we screened the small molecule Compound 7695-0983, which increases the sensitivity of sorafenib-resistant HCC cells to sorafenib by inhibiting the expression of FAT10 to inhibit NEDD4-PTEN/AKT axis-mediated autophagy. Collectively, our preclinical findings identify FAT10 as a key factor in the sorafenib resistance of HCC cells and elucidate its underlying mechanism. This study provides new mechanistic insight for the exploitation of novel sorafenib-based tyrosine kinase inhibitor (TKI)-targeted drugs for treating advanced HCC.
Collapse
Affiliation(s)
- Wenming Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Dongnian Du
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Hongcheng Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Dandan Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Lingpeng Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Jiajuan Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Zehao Chen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Xuzhe Yu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Miao Ye
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Wei Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Leifeng Chen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Jianghua Shao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| |
Collapse
|
10
|
Yang Y, Liu L, Tian Y, Gu M, Wang Y, Ashrafizadeh M, Reza Aref A, Cañadas I, Klionsky DJ, Goel A, Reiter RJ, Wang Y, Tambuwala M, Zou J. Autophagy-driven regulation of cisplatin response in human cancers: Exploring molecular and cell death dynamics. Cancer Lett 2024; 587:216659. [PMID: 38367897 DOI: 10.1016/j.canlet.2024.216659] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 02/19/2024]
Abstract
Despite the challenges posed by drug resistance and side effects, chemotherapy remains a pivotal strategy in cancer treatment. A key issue in this context is macroautophagy (commonly known as autophagy), a dysregulated cell death mechanism often observed during chemotherapy. Autophagy plays a cytoprotective role by maintaining cellular homeostasis and recycling organelles, and emerging evidence points to its significant role in promoting cancer progression. Cisplatin, a DNA-intercalating agent known for inducing cell death and cell cycle arrest, often encounters resistance in chemotherapy treatments. Recent studies have shown that autophagy can contribute to cisplatin resistance or insensitivity in tumor cells through various mechanisms. This resistance can be mediated by protective autophagy, which suppresses apoptosis. Additionally, autophagy-related changes in tumor cell metastasis, particularly the induction of Epithelial-Mesenchymal Transition (EMT), can also lead to cisplatin resistance. Nevertheless, pharmacological strategies targeting the regulation of autophagy and apoptosis offer promising avenues to enhance cisplatin sensitivity in cancer therapy. Notably, numerous non-coding RNAs have been identified as regulators of autophagy in the context of cisplatin chemotherapy. Thus, therapeutic targeting of autophagy or its associated pathways holds potential for restoring cisplatin sensitivity, highlighting an important direction for future clinical research.
Collapse
Affiliation(s)
- Yang Yang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Lixia Liu
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, IL, USA
| | - Miaomiao Gu
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yanan Wang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440 Ji Yan Road, Jinan, Shandong, China
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc, 6, Tide Street, Boston, MA, 02210, USA
| | - Israel Cañadas
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA, USA; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Arul Goel
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, 78229, USA
| | - Yuzhuo Wang
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| | - Jianyong Zou
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, China.
| |
Collapse
|
11
|
Shah M, Sarkar D. HCC-Related lncRNAs: Roles and Mechanisms. Int J Mol Sci 2024; 25:597. [PMID: 38203767 PMCID: PMC10779127 DOI: 10.3390/ijms25010597] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health threat, particularly in regions endemic to hepatitis B and C viruses, and because of the ongoing pandemic of obesity causing metabolic-dysfunction-related fatty liver disease (MAFLD), a precursor to HCC. The molecular intricacies of HCC, genetic and epigenetic alterations, and dysregulated signaling pathways facilitate personalized treatment strategies based on molecular profiling. Epigenetic regulation, encompassing DNA methyltion, histone modifications, and noncoding RNAs, functions as a critical layer influencing HCC development. Long noncoding RNAs (lncRNAs) are spotlighted for their diverse roles in gene regulation and their potential as diagnostic and therapeutic tools in cancer. In this review, we explore the pivotal role of lncRNAs in HCC, including MAFLD and viral hepatitis, the most prevalent risk factors for hepatocarcinogenesis. The dysregulation of lncRNAs is implicated in HCC progression by modulating chromatin regulation and transcription, sponging miRNAs, and influencing structural functions. The ongoing studies on lncRNAs contribute to a deeper comprehension of HCC pathogenesis and offer promising routes for precision medicine, highlighting the utility of lncRNAs as early biomarkers, prognostic indicators, and therapeutic targets.
Collapse
Affiliation(s)
- Mimansha Shah
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Comprehensive Cancer Center, and VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
12
|
Ying Z, Wenjing S, Jing B, Songbin F, Kexian D. Advances in long non-coding RNA regulating drug resistance of cancer. Gene 2023; 887:147726. [PMID: 37625566 DOI: 10.1016/j.gene.2023.147726] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/19/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Drug resistance is one of the main challenges in cancer treatment. Long non coding RNAs (lncRNAs) play a complex and precise regulatory role in regulating drug resistance of cancer. The common ways of lncRNA regulating drug resistance of cancer involve ATP binding transporter overexpression, abnormal DNA damage response, tumor cell apoptosis, accumulation of epithelial mesenchymal transformation and cancer stem cell formation. Moreover, studies on exosomal lncRNAs regulating cancer drug resistance are developed in recent years. Further study on the role and mechanism of lncRNAs drug resistance in cancer will help clinical cancer treatment program and explore new treatment methods. This paper reviews recent advances in lncRNAs regulating drug resistance of cancer, especially the role of exosomal lncRNAs.
Collapse
Affiliation(s)
- Zhang Ying
- Key laboratory of preservation of human genetic resources and disease control in China, Harbin Medical University, Ministry of Education, Harbin 150081, China; Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Sun Wenjing
- Key laboratory of preservation of human genetic resources and disease control in China, Harbin Medical University, Ministry of Education, Harbin 150081, China; Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Bai Jing
- Key laboratory of preservation of human genetic resources and disease control in China, Harbin Medical University, Ministry of Education, Harbin 150081, China; Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Fu Songbin
- Key laboratory of preservation of human genetic resources and disease control in China, Harbin Medical University, Ministry of Education, Harbin 150081, China; Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Dong Kexian
- Key laboratory of preservation of human genetic resources and disease control in China, Harbin Medical University, Ministry of Education, Harbin 150081, China; Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
13
|
Hu J, Liu J, Zhou S, Luo H. A review on the role of gamma-butyrobetaine hydroxylase 1 antisense RNA 1 in the carcinogenesis and tumor progression. Cancer Cell Int 2023; 23:263. [PMID: 37925403 PMCID: PMC10625699 DOI: 10.1186/s12935-023-03113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023] Open
Abstract
Gamma-butyrobetaine hydroxylase 1 antisense RNA 1 (BBOX1-AS1), located on human chromosome 11 p14, emerges as a critical player in tumorigenesis with diverse oncogenic effects. Aberrant expression of BBOX1-AS1 intricately regulates various cellular processes, including cell growth, epithelial-mesenchymal transition, migration, invasion, metastasis, cell death, and stemness. Notably, the expression of BBOX1-AS1 was significantly correlated with clinical-pathological characteristics and tumor prognoses, and it could also be used for the diagnosis of lung and esophageal cancers. Through its involvement in the ceRNA network, BBOX1-AS1 competitively binds to eight miRNAs in ten different cancer types. Additionally, BBOX1-AS1 can directly modulate downstream protein-coding genes or act as an mRNA stabilizer. The implications of BBOX1-AS1 extend to critical signaling pathways, including Hedgehog, Wnt/β-catenin, and MELK/FAK pathways. Moreover, it influences drug resistance in hepatocellular carcinoma. The present study provides a systematic review of the clinical significance of BBOX1-AS1's aberrant expression in diverse tumor types. It sheds light on the intricate molecular mechanisms through which BBOX1-AS1 influences cancer initiation and progression and outlines potential avenues for future research in this field.
Collapse
Affiliation(s)
- Juan Hu
- Medical Service Division, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Jipeng Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330000, Jiangxi, People's Republic of China
| | - Siwei Zhou
- Second School of Clinical Medicine, Nanchang University, Nanchang, 330038, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330000, Jiangxi, People's Republic of China.
| |
Collapse
|
14
|
Lin G, Wang Y, Deng L, Ye T. Prognostic effect of lncRNA BBOX1-AS1 in malignancies: a meta-analysis. Front Genet 2023; 14:1234040. [PMID: 37636267 PMCID: PMC10453800 DOI: 10.3389/fgene.2023.1234040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Background: With the increasing number of new cancer cases and mortality rates, cancer has become a serious global health problem, but there are no ideal cancer biomarkers for effective diagnosis. Currently, mounting evidence demonstrates that lncRNAs play a fundamental role in cancer progression. BBOX1 anti-sense RNA 1 (BBOX1-AS1) is a recently clarified lncRNA and has been identified as dysregulated in various carcinomas, and it contributes to poor survival in cancer patients. Methods: We thoroughly searched six databases for eligible articles published as of 27, April 2023. The association of BBOX1-AS1 expression levels with prognostic and clinicopathological parameters was assessed by odds ratios (OR) and hazard ratios with 95% CIs. Additionally, we further validated our results utilizing the GEPIA online database. Results: Eight studies comprising 602 patients were included in this analysis. High BBOX1-AS1 expression indicated poor overall survival (OS) (hazard ratios = 2.30, 95% Cl [1.99, 2.67], p < 0.00001) when compared with low BBOX1-AS1 expression. Furthermore, BBOX1-AS1 expression was positively correlated with lymph node metastasis (OR = 3.00, 95% CI [1.71-5.28], p = 0.0001) and advanced tumor stage (OR = 3.74, 95% CI [2.63-5.32], p < 0.00001) for cancer patients. Moreover, BBOX1-AS1 was remarkably upregulated in 12 malignancies, and the elevated BBOX1-AS1 expression predicted poorer OS and worse disease-free survival (DFS) confirmed through the GEPIA online gene analysis tool. Conclusion: The findings highlight that BBOX1-AS1 was significantly associated with detrimental overall survival, disease-free survival, lymph node metastasis and tumor stage; thus, it could act as a novel promising biomarker to predict the clinicopathological characteristics and prognosis for various cancers.
Collapse
Affiliation(s)
- Guangyao Lin
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongzhou Wang
- Department of Gynecology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Li Deng
- Department of Gynecology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Tao Ye
- Department of Gynecology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
15
|
Tang P, Sun D, Xu W, Li H, Chen L. Long non‑coding RNAs as potential therapeutic targets in non‑small cell lung cancer (Review). Int J Mol Med 2023; 52:68. [PMID: 37350412 PMCID: PMC10413047 DOI: 10.3892/ijmm.2023.5271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/02/2023] [Indexed: 06/24/2023] Open
Abstract
Non‑small cell lung cancer (NSCLC) is one of the most common malignancies with a high morbidity and mortality rate. Long non‑coding RNAs (lncRNAs) have been reported to be closely associated with the occurrence and progression of NSCLC. In addition, lncRNAs have been documented to participate in the development of drug resistance and radiation sensitivity in patients with NSCLC. Due to their extensive functional characterization, high tissue specificity and sex specificity, lncRNAs have been proposed to be novel biomarkers and therapeutic targets for NSCLC. Therefore, in the current review, the functional classification of lncRNAs were presented, whilst the potential roles of lncRNAs in NSCLC were also summarized. Various physiological aspects, including proliferation, invasion and drug resistance, were all discussed. It is anticipated that the present review will provide a perspective on lncRNAs as potential diagnostic molecular biomarkers and therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Peiyu Tang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016
| | - Wei Xu
- Institute of Structural Pharmacology and TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016
- Institute of Structural Pharmacology and TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016
| |
Collapse
|
16
|
Cao M, Ren Y, Li Y, Deng J, Su X, Tang Y, Yuan F, Deng H, Yang G, He Z, Liu B, Yao Z, Deng M. Lnc-ZEB2-19 Inhibits the Progression and Lenvatinib Resistance of Hepatocellular Carcinoma by Attenuating the NF-κB Signaling Pathway through the TRA2A/RSPH14 Axis. Int J Biol Sci 2023; 19:3678-3693. [PMID: 37564197 PMCID: PMC10411463 DOI: 10.7150/ijbs.85270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Long non-coding RNAs have been reported to play a crucial role in tumor progression in hepatocellular carcinoma (HCC). Lnc-ZEB2-19 has been validated to be deficiently expressed in HCC. However, the capabilities and underlying mechanisms of lnc-ZEB2-19 remain uncertain. In this study, we verified that the downregulation of lnc-ZEB2-19 was prevalent in HCC and significantly correlated with the unfavorable prognosis. Further in vitro and in vivo verified that lnc-ZEB2-19 notably inhibited the proliferation, metastasis, stemness, and lenvatinib resistance (LR) of HCC cells. Mechanistically, lnc-ZEB2-19 inhibited HCC progression and LR by specifically binding to transformer 2α (TRA2A) and promoting its degradation, which resulted in the instability of RSPH14 mRNA, leading to the downregulation of Rela(p65) and p-Rela(p-p65). Furthermore, rescue assays showed that silencing RSPH14 partially restrained the effect of knockdown expression of lnc-ZEB2-19 on HCC cell metastatic ability and stemness. The findings describe a novel regulatory axis, lnc-ZEB2-19/TRA2A/RSPH14, downregulating the nuclear factor kappa B to inhibit HCC progression and LR.
Collapse
Affiliation(s)
- Mingbo Cao
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yupeng Ren
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuxuan Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Junfeng Deng
- Department of Hepatobiliary & Pancreatic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaorui Su
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yongchang Tang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Feng Yuan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Haixia Deng
- Department of Hepatobiliary & Pancreatic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Gaoyuan Yang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhiwei He
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Bo Liu
- Department of Hepatobiliary & Pancreatic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhicheng Yao
- Department of Hepatobiliary & Pancreatic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Meihai Deng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| |
Collapse
|