1
|
Lee JH, Yang SB, Park SJ, Kweon S, Ma G, Seo M, Kim HR, Kang TB, Lim JH, Park J. Cell-Penetrating Peptide Like Anti-Programmed Cell Death-Ligand 1 Peptide Conjugate-Based Self-Assembled Nanoparticles for Immunogenic Photodynamic Therapy. ACS NANO 2025; 19:2870-2889. [PMID: 39761412 DOI: 10.1021/acsnano.4c16128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The tumor-specific efficacy of the most current anticancer therapeutic agents, including antibody-drug conjugates (ADCs), oligonucleotides, and photosensitizers, is constrained by limitations such as poor cell penetration and low drug delivery. In this study, we addressed these challenges by developing, a positively charged, amphiphilic Chlorin e6 (Ce6)-conjugated, cell-penetrating anti-PD-L1 peptide nanomedicine (CPPD1) with enhanced cell and tissue permeability. The CPPD1 molecule, a bioconjugate of a hydrophobic photosensitizer and strongly positively charged programmed cell death-ligand 1 (PD-L1) binding cell-penetrating peptide (CPP), is capable of self-assembling into nanoparticles with an average size of 199 nm in aqueous solution without the need for any carriers. These carrier-free nanoparticles possess the ability to penetrate the cell membrane of cancer cells and target tumors expressing PD-L1 on their surface. Notably, CPPD1 nanoparticles effectively blocked programmed cell death-1 (PD-1)/PD-L1 interactions and reduced PD-L1 expression via lysosomal degradation. They also demonstrated the responsiveness of CPPD1 nanoparticles in photodynamic therapy (PDT) to a 635 nm laser, leading to the generation of ROS, and induction of various immunogenic cell deaths (ICD). Highly penetrating CPPD1 nanoparticles could immunogenically modulate the microenvironment of CT26 cancer and were also effective in treating abscopal metastatic tumors, addressing major limitations of traditional PDT.
Collapse
Affiliation(s)
- Jun-Hyuck Lee
- BK21 Program, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Seong-Bin Yang
- BK21 Program, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Seong Jin Park
- Department of Research, Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seho Kweon
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Gaeun Ma
- BK21 Program, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Minho Seo
- BK21 Program, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Ha Rin Kim
- School of Medicine, Stanford University, Stanford, California 94305, United States
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Tae-Bong Kang
- BK21 Program, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Ji-Hong Lim
- BK21 Program, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Jooho Park
- BK21 Program, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
2
|
Saito Y, Fukami S, Nagai K, Ogawa E, Kuroda M, Kohno M, Akimoto J. Cytocidal Effects of Interstitial Photodynamic Therapy Using Talaporfin Sodium and a Semiconductor Laser in a Rat Intracerebral Glioma Model. Biomedicines 2024; 12:2141. [PMID: 39335654 PMCID: PMC11430772 DOI: 10.3390/biomedicines12092141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
This preclinical study was conducted to investigate the efficacy of interstitial PDT (i-PDT) for malignant gliomas arising deep within the brain, which are difficult to remove. C6 glioma cells were implanted into the basal ganglia of rats, and 3 weeks later, the second-generation photosensitizer talaporfin sodium (TPS) was administered intraperitoneally. Ninety minutes after administration, a prototype fine plastic optical fiber was punctured into the tumor tissue, and semiconductor laser light was irradiated into the tumor from a 2-mm cylindrical light-emitting source under various conditions. The brain was removed 24 h after the i-PDT and analyzed pathologically. The optical fiber was able to puncture the tumor center in all cases, enabling i-PDT to be performed. Histological analysis showed that tumor necrosis was induced in areas close to the light source, correlating with the irradiation energy dose, whereas apoptosis was induced at some distance from the light source. Irradiation using high energy levels resulted in tissue swelling from strong tumor necrosis, and irradiation at 75 J/cm2 was most suitable for inducing apoptosis. An experimental system of i-PDT using TPS was established using malignant glioma cells transplanted into the rat brain. Tumor cell death, which correlated with the light propagation, was induced in tumor tissue.
Collapse
Affiliation(s)
- Yuki Saito
- Department of Neurosurgery, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Shinjiro Fukami
- Department of Neurosurgery, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Kenta Nagai
- Department of Neurosurgery, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Emiyu Ogawa
- Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Michihiro Kohno
- Department of Neurosurgery, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Jiro Akimoto
- Department of Neurosurgery, Tokyo Medical University, Tokyo 160-0023, Japan
- Department of Neurosurgery, Kohsei Chuo General Hospital, Tokyo 153-8581, Japan
| |
Collapse
|
3
|
An X, Yu W, Liu J, Tang D, Yang L, Chen X. Oxidative cell death in cancer: mechanisms and therapeutic opportunities. Cell Death Dis 2024; 15:556. [PMID: 39090114 PMCID: PMC11294602 DOI: 10.1038/s41419-024-06939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Reactive oxygen species (ROS) are highly reactive oxygen-containing molecules generated as natural byproducts during cellular processes, including metabolism. Under normal conditions, ROS play crucial roles in diverse cellular functions, including cell signaling and immune responses. However, a disturbance in the balance between ROS production and cellular antioxidant defenses can lead to an excessive ROS buildup, causing oxidative stress. This stress damages essential cellular components, including lipids, proteins, and DNA, potentially culminating in oxidative cell death. This form of cell death can take various forms, such as ferroptosis, apoptosis, necroptosis, pyroptosis, paraptosis, parthanatos, and oxeiptosis, each displaying distinct genetic, biochemical, and signaling characteristics. The investigation of oxidative cell death holds promise for the development of pharmacological agents that are used to prevent tumorigenesis or treat established cancer. Specifically, targeting key antioxidant proteins, such as SLC7A11, GCLC, GPX4, TXN, and TXNRD, represents an emerging approach for inducing oxidative cell death in cancer cells. This review provides a comprehensive summary of recent progress, opportunities, and challenges in targeting oxidative cell death for cancer therapy.
Collapse
Affiliation(s)
- Xiaoqin An
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, PR China
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, PR China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Wenfeng Yu
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Li Yang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, PR China.
| | - Xin Chen
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
4
|
Aebisher D, Rogóż K, Myśliwiec A, Dynarowicz K, Wiench R, Cieślar G, Kawczyk-Krupka A, Bartusik-Aebisher D. The use of photodynamic therapy in medical practice. Front Oncol 2024; 14:1373263. [PMID: 38803535 PMCID: PMC11129581 DOI: 10.3389/fonc.2024.1373263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Cancer therapy, especially for tumors near sensitive areas, demands precise treatment. This review explores photodynamic therapy (PDT), a method leveraging photosensitizers (PS), specific wavelength light, and oxygen to target cancer effectively. Recent advancements affirm PDT's efficacy, utilizing ROS generation to induce cancer cell death. With a history spanning over decades, PDT's dynamic evolution has expanded its application across dermatology, oncology, and dentistry. This review aims to dissect PDT's principles, from its inception to contemporary medical applications, highlighting its role in modern cancer treatment strategies.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, Rzeszów, Poland
| | - Kacper Rogóż
- English Division Science Club, Medical College of The Rzeszów University, Rzeszów, Poland
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, Rzeszów, Poland
| | - Rafał Wiench
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Zabrze, Poland
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Bytom, Poland
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Bytom, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, Rzeszów, Poland
| |
Collapse
|
5
|
Dudzik T, Domański I, Makuch S. The impact of photodynamic therapy on immune system in cancer - an update. Front Immunol 2024; 15:1335920. [PMID: 38481994 PMCID: PMC10933008 DOI: 10.3389/fimmu.2024.1335920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/12/2024] [Indexed: 04/10/2024] Open
Abstract
Photodynamic therapy (PDT) is a therapeutic approach that has gained significant attention in recent years with its promising impact on the immune system. Recent studies have shown that PDT can modulate both the innate and adaptive arms of the immune system. Currently, numerous clinical trials are underway to investigate the effectiveness of this method in treating various types of cancer, as well as to evaluate the impact of PDT on immune system in cancer treatment. Notably, clinical studies have demonstrated the recruitment and activation of immune cells, including neutrophils, macrophages, and dendritic cells, at the treatment site following PDT. Moreover, combination approaches involving PDT and immunotherapy have also been explored in clinical trials. Despite significant advancements in its technological and clinical development, further studies are needed to fully uncover the mechanisms underlying immune activation by PDT. The main objective of this review is to comprehensively summarize and discuss both ongoing and completed studies that evaluate the impact of PDT of cancer on immune response.
Collapse
Affiliation(s)
- Tomasz Dudzik
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Igor Domański
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Sebastian Makuch
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
6
|
Taninaka A, Kurokawa H, Kamiyanagi M, Ochiai T, Arashida Y, Takeuchi O, Matsui H, Shigekawa H. Polphylipoprotein-induced autophagy mechanism with high performance in photodynamic therapy. Commun Biol 2023; 6:1212. [PMID: 38017279 PMCID: PMC10684771 DOI: 10.1038/s42003-023-05598-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023] Open
Abstract
Polphylipoprotein (PLP) is a recently developed nanoparticle with high biocompatibility and tumor selectivity, and which has demonstrated unprecedentedly high performance photosensitizer in photodynamic therapy (PDT) and photodynamic diagnosis. On the basis of these discoveries, PLP is anticipated to have a very high potential for PDT. However, the mechanism by which PLP kills cancer cells effectively has not been sufficiently clarified. To comprehensively understand the PLP-induced PDT processes, we conduct multifaceted experiments using both normal cells and cancer cells originating from the same sources, namely, RGM1, a rat gastric epithelial cell line, and RGK1, a rat gastric mucosa-derived cancer-like mutant. We reveal that PLP enables highly effective cancer treatment through PDT by employing a unique mechanism that utilizes the process of autophagy. The dynamics of PLP-accumulated phagosomes immediately after light irradiation are found to be completely different between normal cells and cancer cells, and it becomes clear that this difference results in the manifestation of the characteristic effect of PDT when using PLP. Since PLP is originally developed as a drug delivery agent, this study also suggests the potential for intracellular drug delivery processes through PLP-induced autophagy.
Collapse
Affiliation(s)
- Atsushi Taninaka
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
- TAKANO Co. LTD. Miyada-mura, Kamiina-gun, Nagano, 399-4301, Japan
| | - Hiromi Kurokawa
- Fuculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Mayuka Kamiyanagi
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Takahiro Ochiai
- TAKANO Co. LTD. Miyada-mura, Kamiina-gun, Nagano, 399-4301, Japan
| | - Yusuke Arashida
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Osamu Takeuchi
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Hirofumi Matsui
- Fuculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hidemi Shigekawa
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
7
|
Chou W, Sun T, Peng N, Wang Z, Chen D, Qiu H, Zhao H. Photodynamic Therapy-Induced Anti-Tumor Immunity: Influence Factors and Synergistic Enhancement Strategies. Pharmaceutics 2023; 15:2617. [PMID: 38004595 PMCID: PMC10675361 DOI: 10.3390/pharmaceutics15112617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Photodynamic therapy (PDT) is an approved therapeutic procedure that exerts cytotoxic activity towards tumor cells by activating photosensitizers (PSs) with light exposure to produce reactive oxygen species (ROS). Compared to traditional treatment strategies such as surgery, chemotherapy, and radiation therapy, PDT not only kills the primary tumors, but also effectively suppresses metastatic tumors by activating the immune response. However, the anti-tumor immune effects induced by PDT are influenced by several factors, including the localization of PSs in cells, PSs concentration, fluence rate of light, oxygen concentration, and the integrity of immune function. In this review, we systematically summarize the influence factors of anti-tumor immune effects mediated by PDT. Furthermore, an update on the combination of PDT and other immunotherapy strategies are provided. Finally, the future directions and challenges of anti-tumor immunity induced by PDT are discussed.
Collapse
Affiliation(s)
- Wenxin Chou
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (W.C.); (T.S.); (N.P.); (D.C.)
| | - Tianzhen Sun
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (W.C.); (T.S.); (N.P.); (D.C.)
| | - Nian Peng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (W.C.); (T.S.); (N.P.); (D.C.)
| | - Zixuan Wang
- Department of Laser Medicine, the First Medical Center, PLA General Hospital, Beijing 100853, China;
| | - Defu Chen
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (W.C.); (T.S.); (N.P.); (D.C.)
| | - Haixia Qiu
- Department of Laser Medicine, the First Medical Center, PLA General Hospital, Beijing 100853, China;
| | - Hongyou Zhao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (W.C.); (T.S.); (N.P.); (D.C.)
| |
Collapse
|
8
|
Sharma S, Chepurna O, Sun T. Drug resistance in glioblastoma: from chemo- to immunotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:688-708. [PMID: 38239396 PMCID: PMC10792484 DOI: 10.20517/cdr.2023.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 01/22/2024]
Abstract
As the most common and aggressive type of primary brain tumor in adults, glioblastoma is estimated to end over 10,000 lives each year in the United States alone. Stand treatment for glioblastoma, including surgery followed by radiotherapy and chemotherapy (i.e., Temozolomide), has been largely unchanged since early 2000. Cancer immunotherapy has significantly shifted the paradigm of cancer management in the past decade with various degrees of success in treating many hematopoietic cancers and some solid tumors, such as melanoma and non-small cell lung cancer (NSCLC). However, little progress has been made in the field of neuro-oncology, especially in the application of immunotherapy to glioblastoma treatment. In this review, we attempted to summarize the common drug resistance mechanisms in glioblastoma from Temozolomide to immunotherapy. Our intent is not to repeat the well-known difficulty in the area of neuro-oncology, such as the blood-brain barrier, but to provide some fresh insights into the molecular mechanisms responsible for resistance by summarizing some of the most recent literature. Through this review, we also hope to share some new ideas for improving the immunotherapy outcome of glioblastoma treatment.
Collapse
Affiliation(s)
| | | | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
9
|
Moloudi K, Sarbadhikary P, Abrahamse H, George BP. Understanding the Photodynamic Therapy Induced Bystander and Abscopal Effects: A Review. Antioxidants (Basel) 2023; 12:1434. [PMID: 37507972 PMCID: PMC10376621 DOI: 10.3390/antiox12071434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved minimally/non-invasive treatment modality that has been used to treat various conditions, including cancer. The bystander and abscopal effects are two well-documented significant reactions involved in imparting long-term systemic effects in the field of radiobiology. The PDT-induced generation of reactive oxygen and nitrogen species and immune responses is majorly involved in eliciting the bystander and abscopal effects. However, the results in this regard are unsatisfactory and unpredictable due to several poorly elucidated underlying mechanisms and other factors such as the type of cancer being treated, the irradiation dose applied, the treatment regimen employed, and many others. Therefore, in this review, we attempted to summarize the current knowledge regarding the non-targeted effects of PDT. The review is based on research published in the Web of Science, PubMed, Wiley Online Library, and Google Scholar databases up to June 2023. We have highlighted the current challenges and prospects in relation to obtaining clinically relevant robust, reproducible, and long-lasting antitumor effects, which may offer a clinically viable treatment against tumor recurrence and metastasis. The effectiveness of both targeted and untargeted PDT responses and their outcomes in clinics could be improved with more research in this area.
Collapse
Affiliation(s)
- Kave Moloudi
- Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Paromita Sarbadhikary
- Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| |
Collapse
|
10
|
Vicente MDGH, Smith KM. Amino Acid Derivatives of Chlorin-e 6-A Review. Molecules 2023; 28:molecules28083479. [PMID: 37110713 PMCID: PMC10146174 DOI: 10.3390/molecules28083479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Details of the structural elucidation of the clinically useful photodynamic therapy sensitizer NPe6 (15) are presented. NPe6, also designated as Laserphyrin, Talaporfin, and LS-11, is a second-generation photosensitizer derived from chlorophyll-a, currently used in Japan for the treatment of human lung, esophageal, and brain cancers. After the initial misidentification of the structure of this chlorin-e6 aspartic acid conjugate as (13), NMR and other synthetic procedures described herein arrived at the correct structure (15), confirmed using single crystal X-ray crystallography. Interesting new features of chlorin-e6 chemistry (including the intramolecular formation of an anhydride (24)) are reported, allowing chemists to regioselectively conjugate amino acids to each available carboxylic acid on positions 131 (formic), 152 (acetic), and 173 (propionic) of chlorin e6 (14). Cellular investigations of several amino acid conjugates of chlorin-e6 revealed that the 131-aspartylchlorin-e6 derivative is more phototoxic than its 152- and 173-regioisomers, in part due to its nearly linear molecular conformation.
Collapse
Affiliation(s)
| | - Kevin M Smith
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|