1
|
Haque MA, Shrestha A, Mikelis CM, Mattheolabakis G. Comprehensive analysis of lipid nanoparticle formulation and preparation for RNA delivery. Int J Pharm X 2024; 8:100283. [PMID: 39309631 PMCID: PMC11415597 DOI: 10.1016/j.ijpx.2024.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/21/2024] [Accepted: 09/07/2024] [Indexed: 09/25/2024] Open
Abstract
Nucleic acid-based therapeutics are a common approach that is increasingly popular for a wide spectrum of diseases. Lipid nanoparticles (LNPs) are promising delivery carriers that provide RNA stability, with strong transfection efficiency, favorable and tailorable pharmacokinetics, limited toxicity, and established translatability. In this review article, we describe the lipid-based delivery systems, focusing on lipid nanoparticles, the need of their use, provide a comprehensive analysis of each component, and highlight the advantages and disadvantages of the existing manufacturing processes. We further summarize the ongoing and completed clinical trials utilizing LNPs, indicating important aspects/questions worth of investigation, and analyze the future perspectives of this significant and promising therapeutic approach.
Collapse
Affiliation(s)
- Md. Anamul Haque
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Archana Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Constantinos M. Mikelis
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| |
Collapse
|
2
|
Pande S. Factors affecting response variables with emphasis on drug release and loading for optimization of liposomes. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:334-344. [PMID: 38833335 DOI: 10.1080/21691401.2024.2360634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Drug delivery through Liposomes has shown tremendous potential in terms of the therapeutic application of nanoparticles. There are several drug-loaded liposomal formulations approved for clinical use that help mitigate harmful effects of life-threatening diseases. Developments in the field of liposomal formulations and drug delivery have made it possible for clinicians and researchers to find therapeutic solutions for complicated medical conditions. A key aspect in the development of drug-loaded liposomes is a careful review of optimization techniques to improve the overall formulation stability and efficacy. Optimization studies help in improving/modulating the various properties of drug-loaded liposomes and are vital for the development of this class of delivery systems. A comprehensive overview of the various process variables and factors involved in the optimization of drug-loaded liposomes is presented in this review. The influence of different independent variables on drug release and loading properties with the application of a statistical experimental design is also explained in this article.
Collapse
Affiliation(s)
- Shantanu Pande
- Drug Product Technical Services, Wave Life Sciences, MA, USA
| |
Collapse
|
3
|
Bhirud D, Bhattacharya S, Prajapati BG. Bioengineered carbohydrate polymers for colon-specific drug release: Current trends and future prospects. J Biomed Mater Res A 2024; 112:1860-1872. [PMID: 38721841 DOI: 10.1002/jbm.a.37732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 09/03/2024]
Abstract
The worldwide health burden of colorectal cancer is still substantial, and traditional chemotherapeutic drugs sometimes have poor selectivity, which can result in systemic toxicity and unfavorable side effects. For colon-specific medication delivery, bioengineered carbohydrate polymers have shown promise as carriers. They may enhance treatment effectiveness while minimizing systemic exposure and associated side effects. The unique properties of these manufactured or naturally occurring biopolymers, such as hyaluronic acid, chitosan, alginate, and pectin, enable targeted medicine release. These qualities can be changed to meet the physiological needs of the colon. In the context of colorectal cancer therapy, this article provides a comprehensive overview of current developments and prospective future directions in the field of bioengineered carbohydrate polymer synthesis for colon-specific drug delivery. We discuss numerous techniques for achieving colon-targeted drug release, including enzyme-sensitive polymers, pH-responsive devices, and microbiota-activated processes. To increase tumor selectivity and cellular uptake, we also examine the inclusion of active targeting approaches, such as conjugating specific ligands. Furthermore, we discuss the potential of combination treatment strategies, which use the coadministration of numerous therapeutic medications to target multiple pathways implicated in cancer growth and address drug resistance mechanisms. We address recent biomimetic advances that potentially improve the biocompatibility, cellular uptake, and tumor penetration of carbohydrate polymer-based nanocarriers. These methods involve protein corona engineering and cell membrane coating. Furthermore, we look at the possibility of intelligent and sensitive systems that may adjust their behaviors in response to certain inputs or feedback loops, allowing for precise and regulated drug distribution.
Collapse
Affiliation(s)
- Darshan Bhirud
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM's NMIMS Deemed-to-be University, Shirpur, Maharashtra, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM's NMIMS Deemed-to-be University, Shirpur, Maharashtra, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S.K. Patel College of Pharmaceutical Education & Research, Mehsana, Gujarat, India
| |
Collapse
|
4
|
Haseeb M, Khan I, Kartal Z, Mahfooz S, Hatiboglu MA. Status Quo in the Liposome-Based Therapeutic Strategies Against Glioblastoma: "Targeting the Tumor and Tumor Microenvironment". Int J Mol Sci 2024; 25:11271. [PMID: 39457052 PMCID: PMC11509082 DOI: 10.3390/ijms252011271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Glioblastoma is the most aggressive and fatal brain cancer, characterized by a high growth rate, invasiveness, and treatment resistance. The presence of the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) poses a challenging task for chemotherapeutics, resulting in low efficacy, bioavailability, and increased dose-associated side effects. Despite the rigorous treatment strategies, including surgical resection, radiotherapy, and adjuvant chemotherapy with temozolomide, overall survival remains poor. The failure of current chemotherapeutics and other treatment regimens in glioblastoma necessitates the development of new drug delivery methodologies to precisely and efficiently target glioblastoma. Nanoparticle-based drug delivery systems offer a better therapeutic option in glioblastoma, considering their small size, ease of diffusion, and ability to cross the BBB. Liposomes are a specific category of nanoparticles made up of fatty acids. Furthermore, liposomes can be surface-modified to target a particular receptor and are nontoxic. This review discusses various methods of liposome modification for active/directed targeting and various liposome-based therapeutic approaches in the delivery of current chemotherapeutic drugs and nucleic acids in targeting the glioblastoma and tumor microenvironment.
Collapse
Affiliation(s)
- Mohd Haseeb
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
| | - Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zeynep Kartal
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
| | - Sadaf Mahfooz
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mustafa Aziz Hatiboglu
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, 34093 Istanbul, Turkey
| |
Collapse
|
5
|
Kalaimani K, Balachandran S, Boopathy LK, Roy A, Jayachandran B, Sankaranarayanan S, Arumugam MK. Recent advancements in small interfering RNA based therapeutic approach on breast cancer. Eur J Pharmacol 2024; 981:176877. [PMID: 39128807 DOI: 10.1016/j.ejphar.2024.176877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Breast cancer (BC) is the most common and malignant tumor diagnosed in women, with 2.9 million cases in 2023 and the fifth highest cancer-causing mortality worldwide. Recent developments in targeted therapy options for BC have demonstrated the promising potential of small interfering RNA (siRNA)-based cancer therapeutic approaches. As BC continues to be a global burden, siRNA therapy emerges as a potential treatment strategy to regulate disease-related genes in other types of cancers, including BC. siRNAs are tiny RNA molecules that, by preventing their expression, can specifically silence genes linked to the development of cancer. In order to increase the stability and effectiveness of siRNA delivery to BC cells, minimize off-target effects, and improve treatment efficacy, advanced delivery technologies such as lipid nanoparticles and nanocarriers have been created. Additionally, combination therapies, such as siRNAs that target multiple pathways are used in conjunction with conventional chemotherapy agents, have shown synergistic effects in various preclinical studies, opening up new treatment options for breast cancer that are personalized and precision medicine-oriented. Targeting important genes linked to BC growth, metastasis, and chemo-resistance has been reported in BC research using siRNA-based therapies. This study reviews recent reports on therapeutic approaches to siRNA for advanced treatment of BC. Furthermore, this review evaluates the role and mechanisms of siRNA in BC and demonstrates the potential of exploiting siRNA as a novel target for BC therapy.
Collapse
Affiliation(s)
- Kathirvel Kalaimani
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Shana Balachandran
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Lokesh Kumar Boopathy
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| | - Bhuvaneshwari Jayachandran
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Sangamithra Sankaranarayanan
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Madan Kumar Arumugam
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India.
| |
Collapse
|
6
|
Coronado S, Herrera J, Pino MG, Martín S, Ballesteros-Rueda L, Cea P. Advancements in Engineering Planar Model Cell Membranes: Current Techniques, Applications, and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1489. [PMID: 39330645 PMCID: PMC11434481 DOI: 10.3390/nano14181489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
Cell membranes are crucial elements in living organisms, serving as protective barriers and providing structural support for cells. They regulate numerous exchange and communication processes between cells and their environment, including interactions with other cells, tissues, ions, xenobiotics, and drugs. However, the complexity and heterogeneity of cell membranes-comprising two asymmetric layers with varying compositions across different cell types and states (e.g., healthy vs. diseased)-along with the challenges of manipulating real cell membranes represent significant obstacles for in vivo studies. To address these challenges, researchers have developed various methodologies to create model cell membranes or membrane fragments, including mono- or bilayers organized in planar systems. These models facilitate fundamental studies on membrane component interactions as well as the interactions of membrane components with external agents, such as drugs, nanoparticles (NPs), or biomarkers. The applications of model cell membranes have extended beyond basic research, encompassing areas such as biosensing and nanoparticle camouflage to evade immune detection. In this review, we highlight advancements in the engineering of planar model cell membranes, focusing on the nanoarchitectonic tools used for their fabrication. We also discuss approaches for incorporating challenging materials, such as proteins and enzymes, into these models. Finally, we present our view on future perspectives in the field of planar model cell membranes.
Collapse
Affiliation(s)
- Sara Coronado
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigaciones en Catálisis (CICAT), Escuela de Ingeniería Química, Universidad Industrial de Santander, Parque Tecnológico de Guatiguará, Km 2 vía El Refugio, Piedecuesta, Santander 681911, Colombia
| | - Johan Herrera
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigaciones en Catálisis (CICAT), Escuela de Ingeniería Química, Universidad Industrial de Santander, Parque Tecnológico de Guatiguará, Km 2 vía El Refugio, Piedecuesta, Santander 681911, Colombia
| | - María Graciela Pino
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Santiago Martín
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Luz Ballesteros-Rueda
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigaciones en Catálisis (CICAT), Escuela de Ingeniería Química, Universidad Industrial de Santander, Parque Tecnológico de Guatiguará, Km 2 vía El Refugio, Piedecuesta, Santander 681911, Colombia
| | - Pilar Cea
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
7
|
Qin X, Liu J. Nanoformulations for the diagnosis and treatment of metabolic dysfunction-associated steatohepatitis. Acta Biomater 2024; 184:37-53. [PMID: 38879104 DOI: 10.1016/j.actbio.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/25/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive phase of metabolic dysfunction-associated steatotic liver disease (MASLD) that develops into irreversible liver cirrhosis and hepatocellular carcinoma, ultimately necessitating liver transplantation as the sole life-saving option. However, given the drawbacks of liver transplantation, including invasiveness, chronic immunosuppression, and a lack of donor livers, prompt diagnosis and effective treatment are indispensable. Due to the limitations of liver biopsy and conventional imaging modalities in diagnosing MASH, as well as the potential hazards associated with liver-protecting medicines, numerous nanoformulations have been created for MASH theranostics. Particularly, there has been significant study interest in artificial nanoparticles, natural biomaterials, and bionic nanoparticles that exhibit exceptional biocompatibility and bioavailability. In this review, we summarized extracellular vesicles (EVs)-based omics analysis and Fe3O4-based functional magnetic nanoparticles as magnetic resonance imaging (MRI) contrast agents for MASH diagnosis. Additionally, artificial nanoparticles such as organic and inorganic nanoparticles, as well as natural biomaterials such as cells and cell-derived EVs and bionic nanoparticles including cell membrane-coated nanoparticles, have also been reported for MASH treatment owing to their specific targeting and superior therapeutic effect. This review has the potential to stimulate advancements in nanoformulation fabrication techniques. By exploring their compatibility with cell biology, it could lead to the creation of innovative material systems for efficient theragnostic uses for MASH. STATEMENT OF SIGNIFICANCE: People with metabolic dysfunction-associated steatohepatitis (MASH) will progress to fibrosis, cirrhosis, or even liver cancer. It is imperative to establish effective theragnostic techniques to stop MASH from progressing into a lethal condition. In our review, we summarize the advancement of artificial, natural, and bionic nanoparticles applied in MASH theragnosis. Furthermore, the issues that need to be resolved for these cutting-edge techniques are summarized to realize a more significant clinical impact. We forecast the key fields that will advance further as nanotechnology and MASH research progress. Generally, our discovery has significant implications for the advancement of nanoformulation fabrication techniques, and their potential to be compatible with cell biology could lead to the creation of innovative materials systems for effective MASH theragnostic.
Collapse
Affiliation(s)
- Xueying Qin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China
| | - Jingjing Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China.
| |
Collapse
|
8
|
Mesut B, Al-Mohaya M, Gholap AD, Yeşilkaya E, Das U, Akhtar MS, Sah R, Khan S, Moin A, Faiyazuddin M. Demystifying the potential of lipid-based nanocarriers in targeting brain malignancies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03212-6. [PMID: 38963550 DOI: 10.1007/s00210-024-03212-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/02/2024] [Indexed: 07/05/2024]
Abstract
Drug targeting for brain malignancies is restricted due to the presence of the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB), which act as barriers between the blood and brain parenchyma. Certainly, the limited therapeutic options for brain malignancies have made notable progress with enhanced biological understanding and innovative approaches, such as targeted therapies and immunotherapies. These advancements significantly contribute to improving patient prognoses and represent a promising shift in the landscape of brain malignancy treatments. A more comprehensive understanding of the histology and pathogenesis of brain malignancies is urgently needed. Continued research focused on unraveling the intricacies of brain malignancy biology holds the key to developing innovative and tailored therapies that can improve patient outcomes. Lipid nanocarriers are highly effective drug delivery systems that significantly improve their solubility, bioavailability, and stability while also minimizing unwanted side effects. Surface-modified lipid nanocarriers (liposomes, niosomes, solid lipid nanoparticles, nanostructured lipid carriers, lipid nanocapsules, lipid-polymer hybrid nanocarriers, lipoproteins, and lipoplexes) are employed to improve BBB penetration and uptake through various mechanisms. This systematic review illuminates and covers various topics related to brain malignancies. It explores the different methods of drug delivery used in treating brain malignancies and delves into the benefits, limitations, and types of brain-targeted lipid-based nanocarriers. Additionally, this review discusses ongoing clinical trials and patents related to brain malignancy therapies and provides a glance into future perspectives for treating this condition.
Collapse
Affiliation(s)
- Burcu Mesut
- Pharmaceutical Technology Department, Faculty of Pharmacy, Istanbul University, Istanbul, 34216, Turkey
| | - Mazen Al-Mohaya
- Institute of Health Sciences, Istanbul University, Istanbul, 34216, Turkey
| | - Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, 401404, Maharashtra, India
| | - Eda Yeşilkaya
- Institute of Health Sciences, Istanbul University, Istanbul, 34216, Turkey
| | - Ushasi Das
- Pharmaceutical Technology Department, Jadavpur University, Kolkata, West Bengal, India
| | - Mohammad Shabib Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Ranjit Sah
- Department of Microbiology, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, 44600, Nepal.
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, 411018, Maharashtra, India.
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, 411018, Maharashtra, India.
| | | | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, 2440, Hail, Saudi Arabia
| | - Md Faiyazuddin
- School of Pharmacy, Al - Karim University, Katihar, 854106, Bihar, India.
- Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
| |
Collapse
|
9
|
Moghimipour E, Handali S. Functionalized liposomes as a potential drug delivery systems for colon cancer treatment: A systematic review. Int J Biol Macromol 2024; 269:132023. [PMID: 38697444 DOI: 10.1016/j.ijbiomac.2024.132023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Colon cancer is one of the lethal diseases in the world with approximately 700,000 fatalities annually. Nowadays, due to the side effects of existing methods in the treatment of colon cancer such as radiotherapy and chemotherapy, the use of targeted nanocarriers in cancer treatment has received wide attention, and among them, especially liposomes have been studied a lot. Based on this, anti-tumor drugs hidden in targeted active liposomes can selectively act on cancer cells. In this systematic review, the use of various ligands such as folic acid, transferrin, aptamer, hyaluronic acid and cRGD for active targeting of liposomes to achieve improved drug delivery to colon cancer cells has been reviewed. The original articles published in English in the databases of Science Direct, PubMed and Google scholar from 2012 to 2022 were reviewed. From the total of 26,256 published articles, 19 studies met the inclusion criteria. The results of in vitro and in vivo studies have revealed that targeted liposomes lead to increasing the efficacy of anti-cancer agents on colon cancer cells with reducing side effects compared to free drugs and non-targeted liposomes. To the best of our knowledge, this is the first systematic review showing promising results for improvement treatment of colon cancer using targeted liposomes.
Collapse
Affiliation(s)
- Eskandar Moghimipour
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Handali
- Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Binaymotlagh R, Hajareh Haghighi F, Chronopoulou L, Palocci C. Liposome-Hydrogel Composites for Controlled Drug Delivery Applications. Gels 2024; 10:284. [PMID: 38667703 PMCID: PMC11048854 DOI: 10.3390/gels10040284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Various controlled delivery systems (CDSs) have been developed to overcome the shortcomings of traditional drug formulations (tablets, capsules, syrups, ointments, etc.). Among innovative CDSs, hydrogels and liposomes have shown great promise for clinical applications thanks to their cost-effectiveness, well-known chemistry and synthetic feasibility, biodegradability, biocompatibility and responsiveness to external stimuli. To date, several liposomal- and hydrogel-based products have been approved to treat cancer, as well as fungal and viral infections, hence the integration of liposomes into hydrogels has attracted increasing attention because of the benefit from both of them into a single platform, resulting in a multifunctional drug formulation, which is essential to develop efficient CDSs. This short review aims to present an updated report on the advancements of liposome-hydrogel systems for drug delivery purposes.
Collapse
Affiliation(s)
- Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
11
|
Huang H, Hwang J, Anilkumar S, Kiick KL. Controlled Release of Drugs from Extracellular Matrix-Derived Peptide-Based Nanovesicles through Tailored Noncovalent Interactions. Biomacromolecules 2024; 25:2408-2422. [PMID: 38546162 DOI: 10.1021/acs.biomac.3c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Elastin-collagen nanovesicles (ECnV) have emerged as a promising platform for drug delivery due to their tunable physicochemical properties and biocompatibility. The potential of nine distinct ECnVs to serve as drug-delivery vehicles was investigated in this study, and it was demonstrated that various small-molecule cargo (e.g., dexamethasone, methotrexate, doxorubicin) can be encapsulated in and released from a set of ECnVs, with extents of loading and rates of release dictated by the composition of the elastin domain of the ECnV and the type of cargo. Elastin-like peptides (ELPs) and collagen-like peptides (CLPs) of various compositions were produced; the secondary structure of the corresponding peptides was determined using CD, and the morphology and average hydrodynamic diameter (∼100 nm) of the ECnVs were determined using TEM and DLS. It was observed that hydrophobic drugs exhibited slower release kinetics than hydrophilic drugs, but higher drug loading was achieved for the more hydrophilic Dox. The collagen-binding ability of the ECnVs was demonstrated through a 2D collagen-binding assay, suggesting the potential for longer retention times in collagen-enriched tissues or matrices. Sustained release of drugs for up to 7 days was observed and, taken together with the collagen-binding data, demonstrates the potential of this set of ECnVs as a versatile drug delivery vehicle for longer-term drug release of a variety of cargo. This study provides important insights into the drug delivery potential of ECnVs and offers useful information for future development of ECnV-based drug delivery systems for the treatment of various diseases.
Collapse
Affiliation(s)
- Haofu Huang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jeongmin Hwang
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Sudha Anilkumar
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
12
|
Elnaggar MG, He Y, Yeo Y. Recent trends in the delivery of RNA drugs: Beyond the liver, more than vaccine. Eur J Pharm Biopharm 2024; 197:114203. [PMID: 38302049 PMCID: PMC10947810 DOI: 10.1016/j.ejpb.2024.114203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
RNAs are known for versatile functions and therapeutic utility. They have gained significant interest since the approval of several RNA drugs, including COVID-19 mRNA vaccines and therapeutic agents targeting liver diseases. There are increasing expectations for a new class of RNA drugs for broader applications. Successful development of RNA drugs for new applications hinges on understanding their diverse functions and structures. In this review, we explore the last five years of literature to understand current approaches to formulate a spectrum of RNA drugs, focusing on new efforts to expand their applications beyond vaccines and liver diseases.
Collapse
Affiliation(s)
- Marwa G Elnaggar
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Yanying He
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yoon Yeo
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Purdue University Institute for Cancer Research, 201 South University Street, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
13
|
Ara N, Hafeez A. Nanocarrier-Mediated Drug Delivery via Inhalational Route for Lung Cancer Therapy: A Systematic and Updated Review. AAPS PharmSciTech 2024; 25:47. [PMID: 38424367 DOI: 10.1208/s12249-024-02758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Lung cancer is one of the most severe lethal malignancies, with approximately 1.6 million deaths every year. Lung cancer can be broadly categorised into small and non-small-cell lung cancer. The traditional chemotherapy is nonspecific, destroys healthy cells and produces systemic toxicity; targeted inhalation drug delivery in conjunction with nanoformulations has piqued interest as an approach for improving chemotherapeutic drug activity in the treatment of lung cancer. Our aim is to discuss the impact of polymer and lipid-based nanocarriers (polymeric nanoparticles, liposomes, niosomes, nanostructured lipid carriers, etc.) to treat lung cancer via the inhalational route of drug administration. This review also highlights the clinical studies, patent reports and latest investigations related to lung cancer treatment through the pulmonary route. In accordance with the PRISMA guideline, a systematic literature search was carried out for published works between 2005 and 2023. The keywords used were lung cancer, pulmonary delivery, inhalational drug delivery, liposomes in lung cancer, nanotechnology in lung cancer, etc. Several articles were searched, screened, reviewed and included. The analysis demonstrated the potential of polymer and lipid-based nanocarriers to improve the entrapment of drugs, sustained release, enhanced permeability, targeted drug delivery and retention impact in lung tissues. Patents and clinical observations further strengthen the translational potential of these carrier systems for human use in lung cancer. This systematic review demonstrated the potential of pulmonary (inhalational) drug delivery approaches based on nanocarriers for lung cancer therapy.
Collapse
Affiliation(s)
- Nargis Ara
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Abdul Hafeez
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
| |
Collapse
|
14
|
El-Tanani M, Nsairat H, Aljabali AA, Matalka II, Alkilany AM, Tambuwala MM. Dual-loaded liposomal carriers to combat chemotherapeutic resistance in breast cancer. Expert Opin Drug Deliv 2024; 21:309-324. [PMID: 38284386 DOI: 10.1080/17425247.2024.2311812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
INTRODUCTION The resistance to chemotherapy is a significant hurdle in breast cancer treatment, prompting the exploration of innovative strategies. This review discusses the potential of dual-loaded liposomal carriers to combat chemoresistance and improve outcomes for breast cancer patients. AREAS COVERED This review discusses breast cancer chemotherapy resistance and dual-loaded liposomal carriers. Drug efflux pumps, DNA repair pathways, and signaling alterations are discussed as chemoresistance mechanisms. Liposomes can encapsulate several medicines and cargo kinds, according to the review. It examines how these carriers improve medication delivery, cancer cell targeting, and tumor microenvironment regulation. Also examined are dual-loaded liposomal carrier improvement challenges and techniques. EXPERT OPINION The use of dual-loaded liposomal carriers represents a promising and innovative strategy in the battle against chemotherapy resistance in breast cancer. This article has explored the various mechanisms of chemoresistance in breast cancer, emphasizing the potential of dual-loaded liposomal carriers to overcome these challenges. These carriers offer versatility, enabling the encapsulation and precise targeting of multiple drugs with different modes of action, a crucial advantage when dealing with the complexity of breast cancer treatment.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
- Pharmacological and Diagnostic Research Center, Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Pharmacy, Yarmouk University, Irbid, Jordan
| | - Ismail I Matalka
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- Department of Pathology and Microbiology, Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | | | | |
Collapse
|
15
|
Agiba AM, Arreola-Ramírez JL, Carbajal V, Segura-Medina P. Light-Responsive and Dual-Targeting Liposomes: From Mechanisms to Targeting Strategies. Molecules 2024; 29:636. [PMID: 38338380 PMCID: PMC10856102 DOI: 10.3390/molecules29030636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 02/12/2024] Open
Abstract
In recent years, nanocarriers have played an ever-increasing role in clinical and biomedical applications owing to their unique physicochemical properties and surface functionalities. Lately, much effort has been directed towards the development of smart, stimuli-responsive nanocarriers that are capable of releasing their cargos in response to specific stimuli. These intelligent-responsive nanocarriers can be further surface-functionalized so as to achieve active tumor targeting in a sequential manner, which can be simply modulated by the stimuli. By applying this methodological approach, these intelligent-responsive nanocarriers can be directed to different target-specific organs, tissues, or cells and exhibit on-demand controlled drug release that may enhance therapeutic effectiveness and reduce systemic toxicity. Light, an external stimulus, is one of the most promising triggers for use in nanomedicine to stimulate on-demand drug release from nanocarriers. Light-triggered drug release can be achieved through light irradiation at different wavelengths, either in the UV, visible, or even NIR region, depending on the photophysical properties of the photo-responsive molecule embedded in the nanocarrier system, the structural characteristics, and the material composition of the nanocarrier system. In this review, we highlighted the emerging functional role of light in nanocarriers, with an emphasis on light-responsive liposomes and dual-targeted stimuli-responsive liposomes. Moreover, we provided the most up-to-date photo-triggered targeting strategies and mechanisms of light-triggered drug release from liposomes and NIR-responsive nanocarriers. Lastly, we addressed the current challenges, advances, and future perspectives for the deployment of light-responsive liposomes in targeted drug delivery and therapy.
Collapse
Affiliation(s)
- Ahmed M. Agiba
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico;
| | - José Luis Arreola-Ramírez
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Mexico City 14080, Mexico; (J.L.A.-R.); (V.C.)
| | - Verónica Carbajal
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Mexico City 14080, Mexico; (J.L.A.-R.); (V.C.)
| | - Patricia Segura-Medina
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Mexico City 14080, Mexico; (J.L.A.-R.); (V.C.)
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City 14380, Mexico
| |
Collapse
|
16
|
Sanati M, Afshari AR, Ahmadi SS, Kesharwani P, Sahebkar A. Advances in liposome-based delivery of RNA therapeutics for cancer treatment. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:177-218. [PMID: 38458738 DOI: 10.1016/bs.pmbts.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Liposomal drug delivery systems stand as versatile therapeutic platforms for precisely targeting related elements in cancerous tissues owing to their intrinsic passive and acquired active targeting capabilities and exceptional compatibility with physiologic environments. When the capacity of liposomes as nanocarriers is combined with the revolutionary potential of RNA therapies in affecting undruggable targets, the outcome would be promising drug candidates as game-changers in the cancer treatment arena. However, optimizing liposome composition, physicochemical properties, and surface chemistry is paramount to maximizing their pharmacokinetic and pharmacodynamic attributes. This review highlighted the potential of liposomes as nanovehicles for RNA therapeutics through a literature review and looked at the most recent preclinical and clinical advancements in utilizing liposomal RNA therapeutics for cancer management. Notably, the discovery of novel targets, advancements in liposome engineering, and organizing well-planned clinical trials would help uncover the incredible potential of these nanotherapeutics in cancer patients.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Moccia M, Pascucci B, Saviano M, Cerasa MT, Terzidis MA, Chatgilialoglu C, Masi A. Advances in Nucleic Acid Research: Exploring the Potential of Oligonucleotides for Therapeutic Applications and Biological Studies. Int J Mol Sci 2023; 25:146. [PMID: 38203317 PMCID: PMC10778772 DOI: 10.3390/ijms25010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
In recent years, nucleic acids have emerged as powerful biomaterials, revolutionizing the field of biomedicine. This review explores the multifaceted applications of nucleic acids, focusing on their pivotal role in various biomedical applications. Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), possess unique properties such as molecular recognition ability, programmability, and ease of synthesis, making them versatile tools in biosensing and for gene regulation, drug delivery, and targeted therapy. Their compatibility with chemical modifications enhances their binding affinity and resistance to degradation, elevating their effectiveness in targeted applications. Additionally, nucleic acids have found utility as self-assembling building blocks, leading to the creation of nanostructures whose high order underpins their enhanced biological stability and affects the cellular uptake efficiency. Furthermore, this review delves into the significant role of oligonucleotides (ODNs) as indispensable tools for biological studies and biomarker discovery. ODNs, short sequences of nucleic acids, have been instrumental in unraveling complex biological mechanisms. They serve as probes for studying gene expression, protein interactions, and cellular pathways, providing invaluable insights into fundamental biological processes. By examining the synergistic interplay between nucleic acids as powerful biomaterials and ODNs as indispensable tools for biological studies and biomarkers, this review highlights the transformative impact of these molecules on biomedical research. Their versatile applications not only deepen our understanding of biological systems but also are the driving force for innovation in diagnostics and therapeutics, ultimately advancing the field of biomedicine.
Collapse
Affiliation(s)
- Maria Moccia
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Strada Provinciale 35d, n. 9, 00010 Montelibretti, Italy; (M.M.); (B.P.)
| | - Barbara Pascucci
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Strada Provinciale 35d, n. 9, 00010 Montelibretti, Italy; (M.M.); (B.P.)
| | - Michele Saviano
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, URT Caserta, Via Vivaldi 43, 81100 Caserta, Italy;
| | - Maria Teresa Cerasa
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Giovanni Amendola 122/O, 70126 Bari, Italy;
| | - Michael A. Terzidis
- Laboratory of Chemical Biology, Department of Nutritional Sciences and Dietetics, Sindos Campus, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy;
- Center of Advanced Technologies, Adam Mickiewicz University, 61-712 Poznań, Poland
| | - Annalisa Masi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Strada Provinciale 35d, n. 9, 00010 Montelibretti, Italy; (M.M.); (B.P.)
| |
Collapse
|
18
|
Nsairat H, Alshaer W, Lafi Z, Ahmad S, Al-Sanabrah A, El-Tanani M. Development and validation of reversed-phase-HPLC method for simultaneous quantification of fulvestrant and disulfiram in liposomes. Bioanalysis 2023; 15:1393-1405. [PMID: 37847056 DOI: 10.4155/bio-2023-0137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
This study aims to develop and validate an HPLC technique for the determination of fulvestrant and disulfiram in liposomes. Encapsulation of both drugs into liposomes may improve their anticancer potential. Validation was performed following the International Conference on Harmonization guidelines for specificity, linearity, limit of detection, limit of quantification, precision, accuracy and robustness. Method specificity displayed no interference and linearity over 25-200 and 12.5-100 μg/ml for fulvestrant and disulfiram, respectively. Precision and accuracy exhibited a low relative standard deviation (<1.70%) and appropriate recovery. The validated method could be designated as a proper method for the simultaneous determination of fulvestrant and disulfiram in liposomes. The liposomes displayed 148.5 ± 5.1 nm size. The encapsulation efficiencies were 73.52 and 50.50% for fulvestrant and disulfiram, respectively.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological & Diagnostic Research Center, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, the University of Jordan, Amman, 11942, Jordan
| | - Zainab Lafi
- Pharmacological & Diagnostic Research Center, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Somaya Ahmad
- Pharmacological & Diagnostic Research Center, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Alaa Al-Sanabrah
- Pharmacological & Diagnostic Research Center, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Mohamed El-Tanani
- Pharmacological & Diagnostic Research Center, Al-Ahliyya Amman University, Amman, 19328, Jordan
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|
19
|
Pande S. Liposomes for drug delivery: review of vesicular composition, factors affecting drug release and drug loading in liposomes. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:428-440. [PMID: 37594208 DOI: 10.1080/21691401.2023.2247036] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Liposomes are considered among the most versatile and advanced nanoparticle delivery systems used to target drugs to specific cells and tissues. Structurally, liposomes are sphere-like vesicles of phospholipid molecules that are surrounded by equal number of aqueous compartments. The spherical shell encapsulates an aqueous interior which contains substances such as peptides and proteins, hormones, enzymes, antibiotics, antifungal and anticancer agents. This structural property of liposomes makes it an important nano-carrier for drug delivery. Extrusion is one of the most frequently used technique for preparing monodisperse uni-lamellar liposomes as the technique is used to control vesicle size. The process involves passage of lipid suspension through polycarbonate membrane with a fixed pore size to produce vesicles with a diameter near the pore size of the membrane used in preparing them. An advantage of this technique is that there is no need to remove the organic solvent or detergent from the final preparation. This review focuses on composition of liposome formulation with special emphasis on factors affecting drug release and drug-loading.
Collapse
Affiliation(s)
- Shantanu Pande
- Drug Product Technical Services, Wave Life Sciences, Lexington, MA, USA
| |
Collapse
|
20
|
Al-Ekaid NM, Al-Samydai A, Al-Deeb I, Nsairat H, Khleifat K, Alshaer W. Preparation, Characterization, and Anticancer Activity of PEGylated Nano Liposomal Loaded with Rutin against Human Carcinoma Cells (HT-29). Chem Biodivers 2023; 20:e202301167. [PMID: 37781742 DOI: 10.1002/cbdv.202301167] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/03/2023]
Abstract
The abstract discusses the development of rutin-loaded nanoliposomes and their anti-colorectal cancer activity against human carcinoma cells (HT-29). The study characterizes the nanoliposomes using the thin-film hydration method and analyzes their size, charge, and polydispersity index. The encapsulation efficiency and drug loading ability of rutin at different concentrations were investigated. The nanoliposomes were found to be stable for up to one month at 4 °C and showed sustained drug release for up to 24 h. The anti-cancer activity of the rutin-loaded nanoliposomes was found to be concentration-dependent and significantly improved compared to free rutin. PEGylated nanoliposomes with rutin (1.8 mg/ml) showed the highest encapsulation efficiency and drug loading ability, along with improved selectivity against cancer cells. Overall, the study provides important insights into the potential use of rutin-loaded nanoliposomes for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Noorin Manhal Al-Ekaid
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Ali Al-Samydai
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Ibrahim Al-Deeb
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Khaled Khleifat
- Department of Medical Analysis, Faculty of Science, Mutah University, Al-Karak, 61710, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, the University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
21
|
Attar ES, Chaudhari VH, Deokar CG, Dyawanapelly S, Devarajan PV. Nano Drug Delivery Strategies for an Oral Bioenhanced Quercetin Formulation. Eur J Drug Metab Pharmacokinet 2023; 48:495-514. [PMID: 37523008 DOI: 10.1007/s13318-023-00843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Quercetin, a naturally occurring flavonoid, has been credited with a wide spectrum of therapeutic properties. However, the oral use of quercetin is limited due to its poor water solubility, low bioavailability, rapid metabolism, and rapid plasma clearance. Quercetin has been studied extensively when used with various nanodelivery systems for enhancing quercetin bioavailability. To enhance its oral bioavailability and efficacy, various quercetin-loaded nanosystems such as nanosuspensions, polymer nanoparticles, metal nanoparticles, emulsions, liposomes or phytosomes, micelles, solid lipid nanoparticles, and other lipid-based nanoparticles have been investigated in in-vitro cells, in-vivo animal models, and humans. Among the aforementioned nanosystems, quercetin phytosomes are attracting more interest and are available on the market. The present review covers insights into the possibilities of harnessing quercetin for several therapeutic applications and a special focus on anticancer applications and the clinical benefits of nanoquercetin formulations.
Collapse
Affiliation(s)
- Esha S Attar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Vanashree H Chaudhari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Chaitanya G Deokar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
22
|
Yadav K, Sahu KK, Sucheta, Gnanakani SPE, Sure P, Vijayalakshmi R, Sundar VD, Sharma V, Antil R, Jha M, Minz S, Bagchi A, Pradhan M. Biomedical applications of nanomaterials in the advancement of nucleic acid therapy: Mechanistic challenges, delivery strategies, and therapeutic applications. Int J Biol Macromol 2023; 241:124582. [PMID: 37116843 DOI: 10.1016/j.ijbiomac.2023.124582] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023]
Abstract
In the past few decades, substantial advancement has been made in nucleic acid (NA)-based therapies. Promising treatments include mRNA, siRNA, miRNA, and anti-sense DNA for treating various clinical disorders by modifying the expression of DNA or RNA. However, their effectiveness is limited due to their concentrated negative charge, instability, large size, and host barriers, which make widespread application difficult. The effective delivery of these medicines requires safe vectors that are efficient & selective while having non-pathogenic qualities; thus, nanomaterials have become an attractive option with promising possibilities despite some potential setbacks. Nanomaterials possess ideal characteristics, allowing them to be tuned into functional bio-entity capable of targeted delivery. In this review, current breakthroughs in the non-viral strategy of delivering NAs are discussed with the goal of overcoming challenges that would otherwise be experienced by therapeutics. It offers insight into a wide variety of existing NA-based therapeutic modalities and techniques. In addition to this, it provides a rationale for the use of non-viral vectors and a variety of nanomaterials to accomplish efficient gene therapy. Further, it discusses the potential for biomedical application of nanomaterials-based gene therapy in various conditions, such as cancer therapy, tissue engineering, neurological disorders, and infections.
Collapse
Affiliation(s)
- Krishna Yadav
- Raipur Institute of Pharmaceutical Education and Research, Sarona, Raipur, Chhattisgarh 492010, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India
| | | | - Pavani Sure
- Department of Pharmaceutics, Vignan Institute of Pharmaceutical Sciences, Hyderabad, Telangana, India
| | - R Vijayalakshmi
- Department of Pharmaceutical Analysis, GIET School of Pharmacy, Chaitanya Knowledge City, Rajahmundry, AP 533296, India
| | - V D Sundar
- Department of Pharmaceutical Technology, GIET School of Pharmacy, Chaitanya Knowledge City, Rajahmundry, AP 533296, India
| | - Versha Sharma
- Department of Biotechnology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P. 470003, India
| | - Ruchita Antil
- Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, England, United Kingdom of Great Britain and Northern Ireland
| | - Megha Jha
- Department of Biotechnology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P. 470003, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, M.P., 484887, India
| | - Anindya Bagchi
- Tumor Initiation & Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road La Jolla, CA 92037, USA
| | | |
Collapse
|
23
|
Kumar L, Bisen M, Harjai K, Chhibber S, Azizov S, Lalhlenmawia H, Kumar D. Advances in Nanotechnology for Biofilm Inhibition. ACS OMEGA 2023; 8:21391-21409. [PMID: 37360468 PMCID: PMC10286099 DOI: 10.1021/acsomega.3c02239] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Biofilm-associated infections have emerged as a significant public health challenge due to their persistent nature and increased resistance to conventional treatment methods. The indiscriminate usage of antibiotics has made us susceptible to a range of multidrug-resistant pathogens. These pathogens show reduced susceptibility to antibiotics and increased intracellular survival. However, current methods for treating biofilms, such as smart materials and targeted drug delivery systems, have not been found effective in preventing biofilm formation. To address this challenge, nanotechnology has provided innovative solutions for preventing and treating biofilm formation by clinically relevant pathogens. Recent advances in nanotechnological strategies, including metallic nanoparticles, functionalized metallic nanoparticles, dendrimers, polymeric nanoparticles, cyclodextrin-based delivery, solid lipid nanoparticles, polymer drug conjugates, and liposomes, may provide valuable technological solutions against infectious diseases. Therefore, it is imperative to conduct a comprehensive review to summarize the recent advancements and limitations of advanced nanotechnologies. The present Review encompasses a summary of infectious agents, the mechanisms that lead to biofilm formation, and the impact of pathogens on human health. In a nutshell, this Review offers a comprehensive survey of the advanced nanotechnological solutions for managing infections. A detailed presentation has been made as to how these strategies may improve biofilm control and prevent infections. The key objective of this Review is to summarize the mechanisms, applications, and prospects of advanced nanotechnologies to provide a better understanding of their impact on biofilm formation by clinically relevant pathogens.
Collapse
Affiliation(s)
- Lokender Kumar
- School
of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229, India
- Cancer
Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Monish Bisen
- School
of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Kusum Harjai
- Department
of Microbiology, Panjab University, Chandigarh 160014, India
| | - Sanjay Chhibber
- Department
of Microbiology, Panjab University, Chandigarh 160014, India
| | - Shavkatjon Azizov
- Laboratory
of Biological Active Macromolecular Systems, Institute of Bioorganic
Chemistry, Academy of Sciences Uzbekistan, Tashkent 100125, Uzbekistan
- Faculty
of Life Sciences, Pharmaceutical Technical
University, Tashkent 100084, Uzbekistan
| | - Hauzel Lalhlenmawia
- Department
of Pharmacy, Regional Institute of Paramedical
and Nursing Sciences, Zemabawk, Aizawl, Mizoram 796017, India
| | - Deepak Kumar
- Department
of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh173229, India
| |
Collapse
|