1
|
Costello L, Zetterström A, Gardner P, Crespo-Picazo JL, Bussy C, Kane I, Shiels HA. Microplastics accumulate in all major organs of the mediterranean loggerhead sea turtle (Caretta caretta). MARINE ENVIRONMENTAL RESEARCH 2025; 208:107100. [PMID: 40203720 DOI: 10.1016/j.marenvres.2025.107100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/11/2025]
Abstract
Microplastics (MPs) are a pervasive marine environmental pollutant, posing a serious threat to marine ecosystems and organisms at all trophic levels. Plastic ingestion is well documented in marine turtles, and loggerhead sea turtles (Caretta caretta) have been identified as an indicator species to monitor MP pollution globally. Our understanding of the translocation and bioaccumulation potential of MPs beyond the gastrointestinal tract is, however, limited. Here we demonstrate that MP translocation occurs in these marine reptiles and present a comprehensive analysis of MP accumulation in body tissues of 10 stranded Mediterranean loggerhead turtles including the kidney, liver, spleen, heart, skeletal muscle, subcutaneous fat, stomach, intestine, and reproductive organs. Foreign microparticles were identified in 98.8 % of all samples (∼70 % being MPs) and were significantly concentrated in the reproductive organs followed by the heart. Raman spectroscopy revealed that polypropylene, cotton fibres, and polyethylene were the most common microparticle types, and optical photothermal infrared (O-PTIR) spectroscopy provided direct visualisation of cotton microfibres embedded in loggerhead heart tissue. Future studies should determine the biological impact of MP bioaccumulation in sea turtle organs, to fully appreciate the impacts of these anthropogenic pollutants on protected and vulnerable populations worldwide.
Collapse
Affiliation(s)
- Leah Costello
- Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK; Manchester Environmental Research Institute, The University of Manchester, Manchester, UK.
| | - Anna Zetterström
- School of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Peter Gardner
- School of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | | | - Cyrill Bussy
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Manchester Environmental Research Institute, The University of Manchester, Manchester, UK
| | - Ian Kane
- School of Earth and Environmental Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK; Manchester Environmental Research Institute, The University of Manchester, Manchester, UK
| | - Holly A Shiels
- Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK; Manchester Environmental Research Institute, The University of Manchester, Manchester, UK.
| |
Collapse
|