Charone S, Portela MB, Martins KDO, Soares RM, Castro GF. Role of Candida species from HIV infected children in enamel caries lesions: an in vitro study.
J Appl Oral Sci 2017;
25:53-60. [PMID:
28198976 PMCID:
PMC5289400 DOI:
10.1590/1678-77572016-0021]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 09/23/2016] [Indexed: 02/07/2023] Open
Abstract
Objectives
This study analyzed the capacity of Candida spp. from dental biofilm of HIV infected (HIV+) children to demineralize primary molar enamel in vitro by Transversal Microhardness (TMH), Polarized Light Microscopy (PLM) and the quantity of calcium ions (Ca2+) released from the enamel.
Material and Methods
Candida spp. samples were isolated from the supragingival biofilm of HIV+ children. A hundred and forty (140) enamel blocks were randomly assigned to six groups: biofilm formed by C. albicans (Group 1); mixed biofilm formed by C. albicans and C. tropicalis (Group 2); mixed biofilm formed by C. albicans and C. parapsilosis (Group 3); mixed biofilm formed by C. albicans, C. parapsilosis and C. glabrata (Group 4); biofilm formed by C. albicans ATCC (Group 5) and medium without Candida (Group 6). Enamel blocks from each group were removed on days 3, 5, 8 and 15 after biofilm formation to evaluate the TMH and images of enamel were analyzed by PLM. The quantity of Ca2+ released, from Groups 1 and 6, was determined using an Atomic Absorption Spectrophotometer. The SPSS program was used for statistical analysis and the significance level was 5%.
Results
TMH showed a gradual reduction in enamel hardness (p<0.05) from the 1st to 15th day, but mainly five days after biofilm formation in all groups. The PLM showed superficial lesions indicating an increase in porosity. C. albicans caused the release of Ca2+ into suspension during biofilm formation.
Conclusion
Candida species from dental biofilm of HIV+ children can cause demineralization of primary enamel in vitro.
Collapse