1
|
Vairaktari E, Schramm A, Vairaktari G, Derka S, Wilde F, Sakkas A, Yapijakis C, Kouri M, Balakas A, Lazaris A, Ebeling M, Vassiliou S. AKT and PERP Show Higher Expression in Precancerous than in Malignant Skin Neoplasms: Profiling in an Animal Model of Sequential Skin Carcinogenesis. J Pers Med 2024; 14:790. [PMID: 39201982 PMCID: PMC11355399 DOI: 10.3390/jpm14080790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
The primary aim of this study was to evaluate the activation of the PERP and Akt oncogenes in the induction of skin cancer in FVB/N mice by a stepwise chemical process. Forty four-week-old female FVB/N mice were randomly divided into a control group (n = 8) and two experimental groups (group A: n = 16, group B: n = 16). In the study, the groups were subjected to a two-stage carcinogenesis procedure. This consisted of an initial application of 97.4 nmol DMBA to shaved skin on the back, followed by applications of 32.4 nmol TPA after thirteen weeks for group A and after twenty weeks for group B. The control group received no treatment. Skin conditions were monitored weekly for tumor development. At the end of the experiment, the animals were euthanized for further tissue sampling. Examination of the skin lesions in the experimental groups showed a correlation with tumor progression, ranging from dysplasia to carcinoma. Tumor samples were examined both histologically and immunohistochemically. Notably, and PERP expression was higher in precancerous than in malignant tumors. The differences in expression between precancerous and benign tumors provide further evidence of a role for PERP and Akt in the transition from benign to malignant states. Our findings underscore the critical roles of PERP and Akt in the pathogenesis of skin cancer and suggest their potential as biomarkers for early detection and targets for therapeutic intervention.
Collapse
Affiliation(s)
- Efstathia Vairaktari
- Department of Oral and Maxillofacial Surgery, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Alexander Schramm
- Department of Oral and Maxillofacial Surgery, University Hospital Ulm, Albert-Einstein-Allee 10, 89081 Ulm, Germany
- Department of Oral and Plastic Maxillofacial Surgery, Military Hospital Ulm, Academic Hospital of the University of Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Georgia Vairaktari
- Department of Oral and Maxillofacial Surgery, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Spyridoula Derka
- Department of Oral and Maxillofacial Surgery, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Frank Wilde
- Department of Oral and Maxillofacial Surgery, University Hospital Ulm, Albert-Einstein-Allee 10, 89081 Ulm, Germany
- Department of Oral and Plastic Maxillofacial Surgery, Military Hospital Ulm, Academic Hospital of the University of Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Andreas Sakkas
- Department of Oral and Maxillofacial Surgery, University Hospital Ulm, Albert-Einstein-Allee 10, 89081 Ulm, Germany
- Department of Oral and Plastic Maxillofacial Surgery, Military Hospital Ulm, Academic Hospital of the University of Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Christos Yapijakis
- Unit of Orofacial Genetics, University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Kouri
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios Balakas
- Department of Oral and Maxillofacial Surgery, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Andreas Lazaris
- Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Marcel Ebeling
- Department of Oral and Maxillofacial Surgery, University Hospital Ulm, Albert-Einstein-Allee 10, 89081 Ulm, Germany
- Department of Oral and Plastic Maxillofacial Surgery, Military Hospital Ulm, Academic Hospital of the University of Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Stavros Vassiliou
- Department of Oral and Maxillofacial Surgery, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
2
|
Hu X, Lei X, Guo J, Fu W, Sun W, Lu Q, Su W, Xu Q, Tu K. The Emerging Role of RNA N6-Methyladenosine Modification in Pancreatic Cancer. Front Oncol 2022; 12:927640. [PMID: 35936737 PMCID: PMC9354683 DOI: 10.3389/fonc.2022.927640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/15/2022] [Indexed: 12/04/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most common malignant cancers, ranking the seventh highest causes of cancer-related deaths globally. Recently, RNA N6-methyladenosine (m6A) is emerging as one of the most abundant RNA modifications in eukaryote cells, involved in multiple RNA processes including RNA translocation, alternative splicing, maturation, stability, and degradation. As reported, m6A was dynamically and reversibly regulated by its “writers”, “erasers”, and “readers”, Increasing evidence has revealed the vital role of m6A modification in the development of multiple types of cancers including PC. Currently, aberrant m6A modification level has been found in both PC tissues and cell lines. Moreover, abnormal expressions of m6A regulators and m6A-modified genes have been reported to contribute to the malignant development of PC. Here in this review, we will focus on the function and molecular mechanism of m6A-modulated RNAs including coding RNAs as well as non-coding RNAs. Then the m6A regulators will be summarized to reveal their potential applications in the clinical diagnosis, prognosis, and therapeutics of PC.
Collapse
Affiliation(s)
- Xiaoge Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiangxiang Lei
- Institute of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jinhui Guo
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wen Fu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wen Sun
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiliang Lu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wei Su
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Provincial Key Laboratory of Pancreatic Disease; Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
- *Correspondence: Wei Su, ; Qiuran Xu, ; Kangsheng Tu,
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Wei Su, ; Qiuran Xu, ; Kangsheng Tu,
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wei Su, ; Qiuran Xu, ; Kangsheng Tu,
| |
Collapse
|
3
|
Shan BQ, Wang XM, Zheng L, Han Y, Gao J, Lv MD, Zhang Y, Liu YX, Zhang H, Chen HS, Ao L, Zhang YL, Lu X, Wu ZJ, Xu Y, Che X, Heger M, Cheng SQ, Pan WW, Zhang X. DCAF13 promotes breast cancer cell proliferation by ubiquitin inhibiting PERP expression. Cancer Sci 2022; 113:1587-1600. [PMID: 35178836 PMCID: PMC9128170 DOI: 10.1111/cas.15300] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022] Open
Abstract
Evolutionarily conserved DDB1-and CUL4-associated factor 13 (DCAF13) is a recently discovered substrate receptor for the cullin RING-finger ubiquitin ligase 4 (CRL4) E3 ubiquitin ligase that regulates cell cycle progression. DCAF13 is overexpressed in many cancers, although its role in breast cancer is currently elusive. In this study we demonstrate that DCAF13 is overexpressed in human breast cancer and that its overexpression closely correlates with poor prognosis, suggesting that DCAF13 may serve as a diagnostic marker and therapeutic target. We knocked down DCAF13 in breast cancer cell lines using CRISPR/Cas9 and found that DCAF13 deletion markedly reduced breast cancer cell proliferation, clone formation, and migration both in vitro and in vivo. In addition, DCAF13 deletion promoted breast cancer cell apoptosis and senescence, and induced cell cycle arrest in the G1/S phase. Genome-wide RNAseq analysis and western blotting revealed that loss of DCAF13 resulted in both mRNA and protein accumulation of p53 apoptosis effector related to PMP22 (PERP). Knockdown of PERP partially reversed the hampered cell proliferation induced by DCAF13 knockdown. Co-immunoprecipitation assays revealed that DCAF13 and DNA damage-binding protein 1 (DDB1) directly interact with PERP. Overexpression of DDB1 significantly increased PERP polyubiquitination, suggesting that CRL4DCAF13 E3 ligase targets PERP for ubiquitination and proteasomal degradation. In conclusion, DCAF13 and the downstream effector PERP occupy key roles in breast cancer proliferation and potentially serve as prognostics and therapeutic targets.
Collapse
Affiliation(s)
- Bao-Qian Shan
- College of Forest and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Xiao-Min Wang
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Li Zheng
- The Key Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, 314000, China
| | - Yao Han
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Jie Gao
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Meng-Dan Lv
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Yi Zhang
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Yi-Xuan Liu
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Han Zhang
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Hao-Sa Chen
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Lei Ao
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Yin-Li Zhang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Xiang Lu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Zhong-Jie Wu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Ying Xu
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Xuan Che
- Department of Anesthesiology, Jiaxing Maternity and Child Health Care Hospital, affiliated with Women and Children Hospital, Jiaxing University, Zhejiang Province, Jiaxing, 314001, China
| | - Michal Heger
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China.,Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Shu-Qun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China.,G60 STI Valley Industry & Innovation Institute, Jiaxing University
| | - Wei-Wei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China.,G60 STI Valley Industry & Innovation Institute, Jiaxing University
| | - Xin Zhang
- College of Forest and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| |
Collapse
|
4
|
Troeltzsch M, Künzel V, Haidari S, Troeltzsch M, Otto S, Ehrenfeld M, Probst F, Knösel T. Desmoglein-3 overexpression in oral squamous cell carcinoma is associated with metastasis formation and early recurrence: An immunohistochemical study. J Craniomaxillofac Surg 2021; 50:281-288. [PMID: 34887169 DOI: 10.1016/j.jcms.2021.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/15/2021] [Accepted: 11/29/2021] [Indexed: 01/22/2023] Open
Abstract
The purpose of this study was to determine the expression patterns of specific desmosomal cadherins (desmogleins [DSG] 1/2/3) in oral squamous cell carcinoma (OSCC), and to examine possible associations with clinicopathological parameters and recurrence rates. Changes in desmosomal cadherin assembly may promote tumor metastasis formation. Patients with surgically treated OSCC with 36-60 months of follow-up (median 46 months) qualified for inclusion in this retrospective cohort study. Demographic, clinical and pathohistological data were collected. DSG-1/2/3 expression patterns were determined by an immunohistochemical approach on tissue microarrays. Descriptive and inferential statistics and survival analyses were computed (p ≤ 0.05). The study sample consisted of 88 patients (female: 38; male: 50; average age: 63.02 ± 17.5 years). DSG-3 overexpression was detected in 45 of 88 specimens. The expression rates for DSG-1 (28/88) and DSG-2 (14/88) were low and inconspicuous. DSG-3 overexpression was significantly associated with poor histologic differentiation (G3, p = 0.001), the presence of cervical node metastasis at primary diagnosis (N+ status, p = 0.001) and early recurrence (p = 0.001). Due to its possible relevance for lymph node metastasis formation and early OSCC recurrence, determination of DSG-3 expression in OSCC specimens may be a valuable tool for treatment planning and post-therapeutic risk assessment.
Collapse
Affiliation(s)
- Matthias Troeltzsch
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU Munich, Germany; Center of Oral, Maxillofacial and Facial Reconstructive Surgery, Ansbach, Germany.
| | - Verena Künzel
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU Munich, Germany
| | - Selgai Haidari
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU Munich, Germany
| | - Markus Troeltzsch
- Center of Oral, Maxillofacial and Facial Reconstructive Surgery, Ansbach, Germany
| | - Sven Otto
- Department of Oral and Maxillofacial Surgery, Martin-Luther University Halle, Germany
| | - Michael Ehrenfeld
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU Munich, Germany
| | - Florian Probst
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU Munich, Germany
| | - Thomas Knösel
- Department of Pathology, University Hospital, LMU Munich, Germany
| |
Collapse
|
5
|
Liu YQ, Zou HY, Xie JJ, Fang WK. Paradoxical Roles of Desmosomal Components in Head and Neck Cancer. Biomolecules 2021; 11:914. [PMID: 34203070 PMCID: PMC8234459 DOI: 10.3390/biom11060914] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 02/05/2023] Open
Abstract
Desmosomes are intercellular adhesion complexes involved in various aspects of epithelial pathophysiology, including tissue homeostasis, morphogenesis, and disease development. Recent studies have reported that the abnormal expression of various desmosomal components correlates with tumor progression and poor survival. In addition, desmosomes have been shown to act as a signaling platform to regulate the proliferation, invasion, migration, morphogenesis, and apoptosis of cancer cells. The occurrence and progression of head and neck cancer (HNC) is accompanied by abnormal expression of desmosomal components and loss of desmosome structure. However, the role of desmosomal components in the progression of HNC remains controversial. This review aims to provide an overview of recent developments showing the paradoxical roles of desmosomal components in tumor suppression and promotion. It offers valuable insights for HNC diagnosis and therapeutics development.
Collapse
Affiliation(s)
- Yin-Qiao Liu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (Y.-Q.L.); (H.-Y.Z.)
| | - Hai-Ying Zou
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (Y.-Q.L.); (H.-Y.Z.)
| | - Jian-Jun Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (Y.-Q.L.); (H.-Y.Z.)
- Precision Medicine Research Center, Shantou University Medical College, Shantou 515041, China
| | - Wang-Kai Fang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (Y.-Q.L.); (H.-Y.Z.)
- Precision Medicine Research Center, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
6
|
Roberts O, Paraoan L. PERP-ing into diverse mechanisms of cancer pathogenesis: Regulation and role of the p53/p63 effector PERP. Biochim Biophys Acta Rev Cancer 2020; 1874:188393. [PMID: 32679166 DOI: 10.1016/j.bbcan.2020.188393] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 12/20/2022]
Abstract
The tetraspan plasma membrane protein PERP (p53 apoptosis effector related to PMP22) is a lesser-known transcriptional target of p53 and p63. A member of the PMP22/GAS3/EMP membrane protein family, PERP was originally identified as a p53 target specifically trans-activated during apoptosis, but not during cell-cycle arrest. Several studies have since shown downregulation of PERP expression in numerous cancers, suggesting that PERP is a tumour suppressor protein. This review focusses on the important advances made in elucidating the mechanisms regulating PERP expression and its function as a tumour suppressor in diverse human cancers, including breast cancer and squamous cell carcinoma. Investigating PERP's role in clinically-aggressive uveal melanoma has revealed that PERP engages a positive-feedback loop with p53 to regulate its own expression, and that p63 is required beside p53 to achieve pro-apoptotic levels of PERP in this cancer. Furthermore, the recent discovery of the apoptosis-mediating interaction of PERP with SERCA2b at the plasma membrane-endoplasmic reticulum interface demonstrates a novel mechanism of PERP stabilisation, and how PERP can mediate Ca2+ signalling to facilitate apoptosis. The multi-faceted role of PERP in cancer, involving well-documented functions in mediating apoptosis and cell-cell adhesion is discussed, alongside PERP's emerging roles in epithelial-mesenchymal transition, and PERP crosstalk with inflammation signalling pathways, and other signalling pathways. The potential for restoring PERP expression as a means of cancer therapy is also considered.
Collapse
Affiliation(s)
- Owain Roberts
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Luminita Paraoan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
7
|
Holmes BJ, von Eyben R, Attardi LD, Kong CS, Le QT, Nathan CAO. Pilot study of loss of the p53/p63 target gene PERP at the surgical margin as a potential predictor of local relapse in head and neck squamous cell carcinoma. Head Neck 2020; 42:3188-3196. [PMID: 33034918 DOI: 10.1002/hed.26358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/16/2020] [Accepted: 06/16/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND PERP (p53 apoptosis effector related to PMP22) localizes to desmosomes and suppresses squamous cell carcinoma development. Loss of PERP leads to worse local control in head and neck squamous cell carcinoma (HNSCC), likely by destabilizing desmosomes. We evaluated PERP loss at HNSCC surgical margins as a predictor of local relapse. METHODS Combining discovery (n = 17) and validation (n = 31) cohorts, we examined membranous PERP protein expression by immunohistochemistry in surgical mucosal margins with competing risk analysis of the relationship between local relapse and PERP expression. RESULTS Of the 44 analyzable patients, the 2-year cumulative incidence of local relapse was 44.4% for the PERP-negative group and 16.4% for the PERP-positive group (P = .01). A trend toward worse progression-free survival (P = .09) and overall survival (P = .06) was observed with loss of PERP. CONCLUSIONS PERP loss at surgical margins is associated with higher risk of local recurrence in HNSCC, warranting further evaluation in a larger prospective study.
Collapse
Affiliation(s)
- Brittany J Holmes
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Rie von Eyben
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Laura D Attardi
- Department of Radiation Oncology, Stanford University, Stanford, California, USA.,Department of Genetics, Stanford University, Stanford, California, USA
| | - Christina S Kong
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Cherie-Ann O Nathan
- Department of Otolaryngology-Head and Neck Surgery, Louisiana State University Health Science Center, Shreveport, Louisiana, USA
| |
Collapse
|
8
|
Analysis of gene expression profiles of lung cancer subtypes with machine learning algorithms. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165822. [PMID: 32360590 DOI: 10.1016/j.bbadis.2020.165822] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/13/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
Lung cancer is one of the most common cancer types worldwide and causes more than one million deaths annually. Lung adenocarcinoma (AC) and lung squamous cell cancer (SCC) are two major lung cancer subtypes and have different characteristics in several aspects. Identifying their differentially expressed genes and different gene expression patterns can deepen our understanding of these two subtypes at the transcriptomic level. In this work, we used several machine learning algorithms to investigate the gene expression profiles of lung AC and lung SCC samples retrieved from Gene Expression Omnibus. First, the profiles were analyzed by using a powerful feature selection method, namely, Monte Carlo feature selection. A feature list, ranking all features according to their importance, and some informative features were obtained. Then, the feature list was used in the incremental feature selection method to extract optimal features, which can allow the support vector machine (SVM) to yield the best performance for classifying lung AC and lung SCC samples. Some top genes (CSTA, TP63, SERPINB13, CLCA2, BICD2, PERP, FAT2, BNC1, ATP11B, FAM83B, KRT5, PARD6G, PKP1) were extensively analyzed to prove that they can be differentially expressed genes between lung AC and lung SCC. Meanwhile, a rule learning procedure was applied on informative features to construct the classification rules. These rules provide a clear procedure of classification and show some different gene expression patterns between lung AC and lung SCC.
Collapse
|
9
|
Efremov YR, Proskurina AS, Potter EA, Dolgova EV, Efremova OV, Taranov OS, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. Cancer Stem Cells: Emergent Nature of Tumor Emergency. Front Genet 2018; 9:544. [PMID: 30505319 PMCID: PMC6250818 DOI: 10.3389/fgene.2018.00544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
A functional analysis of 167 genes overexpressed in Krebs-2 tumor initiating cells was performed. In the first part of the study, the genes were analyzed for their belonging to one or more of the three groups, which represent the three major phenotypic manifestation of malignancy of cancer cells, namely (1) proliferative self-sufficiency, (2) invasive growth and metastasis, and (3) multiple drug resistance. 96 genes out of 167 were identified as possible contributors to at least one of these fundamental properties. It was also found that substantial part of these genes are also known as genes responsible for formation and/or maintenance of the stemness of normal pluri-/multipotent stem cells. These results suggest that the malignancy is simply the ability to maintain the stem cell specific genes expression profile, and, as a consequence, the stemness itself regardless of the controlling effect of stem niches. In the second part of the study, three stress factors combined into the single concept of "generalized cellular stress," which are assumed to activate the expression of these genes, were defined. In addition, possible mechanisms for such activation were identified. The data obtained suggest the existence of a mechanism for the de novo formation of a pluripotent/stem phenotype in the subpopulation of "committed" tumor cells.
Collapse
Affiliation(s)
- Yaroslav R Efremov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Anastasia S Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina A Potter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenia V Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oksana V Efremova
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Oleg S Taranov
- The State Research Center of Virology and Biotechnology Vector, Koltsovo, Russia
| | - Aleksandr A Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena R Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey S Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
10
|
Bennett JA, Singh KP, Welle SL, Boule LA, Lawrence BP, Gasiewicz TA. Conditional deletion of Ahr alters gene expression profiles in hematopoietic stem cells. PLoS One 2018; 13:e0206407. [PMID: 30388136 PMCID: PMC6214519 DOI: 10.1371/journal.pone.0206407] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 10/14/2018] [Indexed: 01/01/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand activated bHLH transcription factor that belongs to the Per-Arnt-Sim (PAS) superfamily of proteins involved in mediating responses to cellular environment regulating normal physiological and developmental pathways. The AHR binds a broad range of naturally derived and synthetic compounds, and plays a major role in mediating effects of certain environmental chemicals. Although our understanding of the physiological roles of the AHR in the immune system is evolving, there is little known about its role in hematopoiesis and hematopoietic diseases. Prior studies demonstrated that AHR null (AHR-KO) mice have impaired hematopoietic stem cell (HSC) function; they develop myeloproliferative changes in peripheral blood cells, and alterations in hematopoietic stem and progenitor cell populations in the bone marrow. We hypothesized mice lacking AHR expression only within hematopoietic cells (AHRVav1 mice) would develop similar changes. However, we did not observe a complete phenocopy of AHR-KO and AHRVav1 animals at 2 or 18 months of age. To illuminate the signaling mechanisms underlying the alterations in hematopoiesis observed in these mice, we sorted a population of cells highly enriched for HSC function (LSK cells: CD34-CD48-CD150+) and performed microarray analyses. Ingenuity Pathway and Gene Set Enrichment Analyses revealed that that loss of AHR within HSCs alters several gene and signaling networks important for HSC function. Differences in gene expression networks among HSCs from AHR-KO and AHRVav1 mice suggest that AHR in bone marrow stromal cells also contributes to HSC function. In addition, numerous studies have suggested a role for AHR in both regulation of hematopoietic cells, and in the development of blood diseases. More work is needed to define what these signals are, and how they act upon HSCs.
Collapse
Affiliation(s)
- John A. Bennett
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Kameshwar P. Singh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Stephen L. Welle
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Lisbeth A. Boule
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - B. Paige Lawrence
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Thomas A. Gasiewicz
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
11
|
Ozawa H, Ranaweera RS, Izumchenko E, Makarev E, Zhavoronkov A, Fertig EJ, Howard JD, Markovic A, Bedi A, Ravi R, Perez J, Le QT, Kong CS, Jordan RC, Wang H, Kang H, Quon H, Sidransky D, Chung CH. SMAD4 Loss Is Associated with Cetuximab Resistance and Induction of MAPK/JNK Activation in Head and Neck Cancer Cells. Clin Cancer Res 2017; 23:5162-5175. [PMID: 28522603 DOI: 10.1158/1078-0432.ccr-16-1686] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 12/01/2016] [Accepted: 05/15/2017] [Indexed: 01/01/2023]
Abstract
Purpose: We previously demonstrated an association between decreased SMAD4 expression and cetuximab resistance in head and neck squamous cell carcinoma (HNSCC). The purpose of this study was to further elucidate the clinical relevance of SMAD4 loss in HNSCC.Experimental Design: SMAD4 expression was assessed by IHC in 130 newly diagnosed and 43 patients with recurrent HNSCC. Correlative statistical analysis with clinicopathologic data was also performed. OncoFinder, a bioinformatics tool, was used to analyze molecular signaling in TCGA tumors with low or high SMAD4 mRNA levels. The role of SMAD4 was investigated by shRNA knockdown and gene reconstitution of HPV-negative HNSCC cell lines in vitro and in vivoResults: Our analysis revealed that SMAD4 loss was associated with an aggressive, HPV-negative, cetuximab-resistant phenotype. We found a signature of prosurvival and antiapoptotic pathways that were commonly dysregulated in SMAD4-low cases derived from TCGA-HNSCC dataset and an independent oral cavity squamous cell carcinoma (OSCC) cohort obtained from GEO. We show that SMAD4 depletion in an HNSCC cell line induces cetuximab resistance and results in worse survival in an orthotopic mouse model in vivo We implicate JNK and MAPK activation as mediators of cetuximab resistance and provide the foundation for the concomitant EGFR and JNK/MAPK inhibition as a potential strategy for overcoming cetuximab resistance in HNSCCs with SMAD4 loss.Conclusions: Our study demonstrates that loss of SMAD4 expression is a signature characterizing the cetuximab-resistant phenotype and suggests that SMAD4 expression may be a determinant of sensitivity/resistance to EGFR/MAPK or EGFR/JNK inhibition in HPV-negative HNSCC tumors. Clin Cancer Res; 23(17); 5162-75. ©2017 AACR.
Collapse
Affiliation(s)
- Hiroyuki Ozawa
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Ruchira S Ranaweera
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Evgeny Izumchenko
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eugene Makarev
- Insilico Medicine, Inc, ETC, Johns Hopkins University, Baltimore, Maryland
| | - Alex Zhavoronkov
- Insilico Medicine, Inc, ETC, Johns Hopkins University, Baltimore, Maryland
| | - Elana J Fertig
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
- Department of Health Science Informatics, Johns Hopkins University, Baltimore, Maryland
| | - Jason D Howard
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Ana Markovic
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Atul Bedi
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rajani Ravi
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jimena Perez
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Quynh-Thu Le
- Department of Pathology, Stanford University School of Medicine Stanford, California
| | - Christina S Kong
- Department of Pathology, Stanford University School of Medicine Stanford, California
| | - Richard C Jordan
- Departments of Orofacial Sciences and Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Hao Wang
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Hyunseok Kang
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Harry Quon
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christine H Chung
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
12
|
Khan IA, Yoo BH, Masson O, Baron S, Corkery D, Dellaire G, Attardi LD, Rosen KV. ErbB2-dependent downregulation of a pro-apoptotic protein Perp is required for oncogenic transformation of breast epithelial cells. Oncogene 2016; 35:5759-5769. [PMID: 27109096 DOI: 10.1038/onc.2016.109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/21/2015] [Accepted: 01/19/2016] [Indexed: 12/14/2022]
Abstract
The ability of breast cancer cells to resist anoikis, apoptosis caused by detachment of the non-malignant epithelial cells from the extracellular matrix (ECM), is thought to be critical for breast tumor growth, invasion and metastasis. ErbB2, an oncoprotein that is often overproduced in breast tumors, can block breast cancer cell anoikis via mechanisms that are understood only in part. In an effort to understand them better we found that detachment of the non-malignant human breast epithelial cells from the ECM upregulates a protein Perp in these cells. Perp is a component of the desmosomes, multiprotein complexes involved in cell-to-cell adhesion. Perp can cause apoptosis via unknown mechanisms. We demonstrated that Perp upregulation by cell detachment is driven by detachment-induced loss of epidermal growth factor receptor (EGFR). We also found that Perp knockdown by RNA interference (RNAi) rescues detached cells from death which indicates that Perp contributes to their anoikis. We observed that ErbB2, when overexpressed in detached breast epithelial cells, causes Perp downregulation. Furthermore, ErbB2-directed RNAi or treatment with lapatinib, an ErbB2/EGFR small-molecule inhibitor used for breast cancer therapy, upregulated Perp in ErbB2-positive human breast and ovarian carcinoma cells. We established that ErbB2 downregulates Perp by activating an ErbB2 effector protein kinase Mek that blocks detachment-induced EGFR loss in a manner that requires the presence of a signaling protein Sprouty-2. Finally, we observed that restoration of the wild-type Perp levels in ErbB2-overproducing breast epithelial cells increases their anoikis susceptibility and blocks their clonogenicity in the absence of adhesion to the ECM. In summary, we have identified a novel mechanism of ErbB2-mediated mechanism of anoikis resistance of ErbB2-overproducing breast epithelial cells. This mechanism allows such cells to grow without adhesion to the ECM and is driven by ErbB2-induced activation of Mek, subsequent EGFR upregulation and further EGFR-dependent Perp loss.
Collapse
Affiliation(s)
- I A Khan
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - B H Yoo
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - O Masson
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - S Baron
- Department of Radiation and Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - D Corkery
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - G Dellaire
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - L D Attardi
- Department of Radiation and Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - K V Rosen
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
13
|
Abstract
Desmosomes are cell-cell junctions that mediate adhesion and couple the intermediate filament cytoskeleton to sites of cell-cell contact. This architectural arrangement integrates adhesion and cytoskeletal elements of adjacent cells. The importance of this robust adhesion system is evident in numerous human diseases, both inherited and acquired, which occur when desmosome function is compromised. This review focuses on autoimmune and infectious diseases that impair desmosome function. In addition, we discuss emerging evidence that desmosomal genes are often misregulated in cancer. The emphasis of our discussion is placed on the way in which human diseases can inform our understanding of basic desmosome biology and in turn, the means by which fundamental advances in the cell biology of desmosomes might lead to new treatments for acquired diseases of the desmosome.
Collapse
|