1
|
Tobe-Nishimoto A, Morita Y, Nishimura J, Kitahira Y, Takayama S, Kishimoto S, Matsumiya-Matsumoto Y, Matsunaga K, Imai T, Uzawa N. Tumor microenvironment dynamics in oral cancer: unveiling the role of inflammatory cytokines in a syngeneic mouse model. Clin Exp Metastasis 2024:10.1007/s10585-024-10306-1. [PMID: 39126553 DOI: 10.1007/s10585-024-10306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
The process of cervical lymph node metastasis is dependent on the phenotype of the tumor cells and their interaction with the host microenvironment and immune system; conventional research methods that focus exclusively on tumor cells are limited in their ability to elucidate the metastatic mechanism. In cancer tissues, a specialized environment called the tumor microenvironment (TME) is established around tumor cells, and inflammation in the TME has been reported to be closely associated with the development and progression of many types of cancer and with the response to anticancer therapy. In this study, to elucidate the mechanism of metastasis establishment, including the TME, in the cervical lymph node metastasis of oral cancer, we established a mouse-derived oral squamous cell carcinoma cervical lymph node highly metastatic cell line and generated a syngeneic orthotopic transplantation mouse model. In the established highly metastatic cells, epithelial-mesenchymal transition (EMT) induction was enhanced compared to that in parental cells. In the syngeneic mouse model, lymph node metastasis was observed more frequently in tumors of highly metastatic cells than in parental cells, and Cyclooxygenase-2 (COX-2) expression and lymphatic vessels in primary tumor tissues were increased, suggesting that this model is highly useful. Moreover, in the established highly metastatic cells, EMT induction was enhanced compared to that in the parent cell line, and CCL5 and IL-6 secreted during inflammation further enhanced EMT induction in cancer cells. This suggests the possibility of a synergistic effect between EMT induction and inflammation. This model, which allows for the use of two types of cells with different metastatic and tumor growth potentials, is very useful for oral cancer research involving the interaction between cancer cells and the TME in tumor tissues and for further searching for new therapeutic agents.
Collapse
Affiliation(s)
- Ayano Tobe-Nishimoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Yoshihiro Morita
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan.
| | - Junya Nishimura
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Yukiko Kitahira
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Shun Takayama
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Satoko Kishimoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Yuka Matsumiya-Matsumoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Kazuhide Matsunaga
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Tomoaki Imai
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Narikazu Uzawa
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Nakanishi M, Ibe A, Morishita K, Shinagawa K, Yamamoto Y, Takahashi H, Ikemori K, Muragaki Y, Ehata S. Acid-sensing receptor GPR4 plays a crucial role in lymphatic cancer metastasis. Cancer Sci 2024; 115:1551-1563. [PMID: 38410865 PMCID: PMC11093208 DOI: 10.1111/cas.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Cancer tissues exhibit an acidic microenvironment owing to the accumulation of protons and lactic acid produced by cancer and inflammatory cells. To examine the role of an acidic microenvironment in lymphatic cancer metastasis, gene expression profiling was conducted using human dermal lymphatic endothelial cells (HDLECs) treated with a low pH medium. Microarray and gene set enrichment analysis revealed that acid treatment induced the expression of inflammation-related genes in HDLECs, including genes encoding chemokines and adhesion molecules. Acid treatment-induced chemokines C-X3-C motif chemokine ligand 1 (CX3CL1) and C-X-C motif chemokine ligand 6 (CXCL6) autocrinally promoted the growth and tube formation of HDLECs. The expression of vascular cell adhesion molecule 1 (VCAM-1) increased in HDLECs after acid treatment in a time-dependent manner, which, in turn, enhanced their adhesion to melanoma cells. Among various acid-sensing receptors, HDLECs basally expressed G protein-coupled receptor 4 (GPR4), which was augmented under the acidic microenvironment. The induction of chemokines or VCAM-1 under acidic conditions was attenuated by GPR4 knockdown in HDLECs. In addition, lymph node metastases in a mouse melanoma model were suppressed by administering an anti-VCAM-1 antibody or a GPR4 antagonist. These results suggest that an acidic microenvironment modifies the function of lymphatic endothelial cells via GPR4, thereby promoting lymphatic cancer metastasis. Acid-sensing receptors and their downstream molecules might serve as preventive or therapeutic targets in cancer.
Collapse
Affiliation(s)
- Masako Nakanishi
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Akiya Ibe
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kiyoto Morishita
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kazutaka Shinagawa
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Yushi Yamamoto
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Hibiki Takahashi
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kyoka Ikemori
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Yasuteru Muragaki
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Shogo Ehata
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
3
|
Guo Z, Li K, Liu P, Zhang X, Lv J, Zeng X, Zhang P. Targeted therapy for head and neck squamous cell carcinoma microenvironment. Front Med (Lausanne) 2023; 10:1257898. [PMID: 37711747 PMCID: PMC10498927 DOI: 10.3389/fmed.2023.1257898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) originates from the squamous epithelium of the oral cavity, oropharynx, larynx, and hypopharynx. HNSCC in the oral cavity and larynx is strongly associated with tobacco smoking and alcohol consumption, while oropharyngeal cancer is increasingly attributed to infection by human papillomavirus (HPV), particularly HPV-16. The tumor microenvironment (TME) is a complex network of cancer cells, immune cells, stromal cells, surrounding blood vessels, and signaling molecules, and plays a critical role in tumor cell survival, invasion, and recurrence. Therefore, it is critical to elucidate the molecular basis of the interaction between tumor cells and the TME in order to develop innovative anti-cancer therapeutic strategies.
Collapse
Affiliation(s)
- Zhaomeng Guo
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital and Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, China
| | - Kang Li
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital and Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, China
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| | - Peng Liu
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital and Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, China
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| | - Xiangmin Zhang
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital and Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, China
| | - Jie Lv
- School of Computer Science and Engineering, Yulin Normal University, Yulin, Guangxi, China
| | - Xianhai Zeng
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital and Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, China
| | - Peng Zhang
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital and Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Niklander SE. Inflammatory Mediators in Oral Cancer: Pathogenic Mechanisms and Diagnostic Potential. FRONTIERS IN ORAL HEALTH 2022; 2:642238. [PMID: 35047997 PMCID: PMC8757707 DOI: 10.3389/froh.2021.642238] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Approximately 15% of cancers are attributable to the inflammatory process, and growing evidence supports an association between oral squamous cell carcinoma (OSCC) and chronic inflammation. Different oral inflammatory conditions, such as oral lichen planus (OLP), submucous fibrosis, and oral discoid lupus, are all predisposing for the development of OSCC. The microenvironment of these conditions contains various transcription factors and inflammatory mediators with the ability to induce proliferation, epithelial-to-mesenchymal transition (EMT), and invasion of genetically predisposed lesions, thereby promoting tumor development. In this review, we will focus on the main inflammatory molecules and transcription factors activated in OSCC, with emphasis on their translational potential.
Collapse
Affiliation(s)
- Sven E Niklander
- Unidad de Patologia y Medicina Oral, Facultad de Odontologia, Universidad Andres Bello, Viña del Mar, Chile
| |
Collapse
|
5
|
Niklander SE, Murdoch C, Hunter KD. IL-1/IL-1R Signaling in Head and Neck Cancer. FRONTIERS IN ORAL HEALTH 2021; 2:722676. [PMID: 35048046 PMCID: PMC8757896 DOI: 10.3389/froh.2021.722676] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/04/2021] [Indexed: 01/22/2023] Open
Abstract
Decades ago, the study of cancer biology was mainly focused on the tumor itself, paying little attention to the tumor microenvironment (TME). Currently, it is well recognized that the TME plays a vital role in cancer development and progression, with emerging treatment strategies focusing on different components of the TME, including tumoral cells, blood vessels, fibroblasts, senescent cells, inflammatory cells, inflammatory factors, among others. There is a well-accepted relationship between chronic inflammation and cancer development. Interleukin-1 (IL-1), a potent pro-inflammatory cytokine commonly found at tumor sites, is considered one of the most important inflammatory factors in cancer, and has been related with carcinogenesis, tumor growth and metastasis. Increasing evidence has linked development of head and neck squamous cell carcinoma (HNSCC) with chronic inflammation, and particularly, with IL-1 signaling. This review focuses on the most important members of the IL-1 family, with emphasis on how their aberrant expression can promote HNSCC development and metastasis, highlighting possible clinical applications.
Collapse
Affiliation(s)
- Sven E. Niklander
- Unidad de Patología y Medicina Oral, Facultad de Odontologia, Universidad Andres Bello, Viña del Mar, Chile
| | - Craig Murdoch
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Keith D. Hunter
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
- Oral Biology and Pathology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
6
|
Vascular Endothelial Growth Factor: A Translational View in Oral Non-Communicable Diseases. Biomolecules 2021; 11:biom11010085. [PMID: 33445558 PMCID: PMC7826734 DOI: 10.3390/biom11010085] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Vascular endothelial growth factors (VEGFs) are vital regulators of angiogenesis that are expressed in response to soluble mediators, such as cytokines and growth factors. Their physiologic functions include blood vessel formation, regulation of vascular permeability, stem cell and monocyte/macrophage recruitment and maintenance of bone homeostasis and repair. In addition, angiogenesis plays a pivotal role in chronic pathologic conditions, such as tumorigenesis, inflammatory immune diseases and bone loss. According to their prevalence, morbidity and mortality, inflammatory diseases affecting periodontal tissues and oral cancer are relevant non-communicable diseases. Whereas oral squamous cell carcinoma (OSCC) is considered one of the most common cancers worldwide, destructive inflammatory periodontal diseases, on the other hand, are amongst the most prevalent chronic inflammatory conditions affecting humans and also represent the main cause of tooth loss in adults. In the recent years, while knowledge regarding the role of VEGF signaling in common oral diseases is expanding, new potential translational applications emerge. In the present narrative review we aim to explore the role of VEGF signaling in oral cancer and destructive periodontal inflammatory diseases, with emphasis in its translational applications as potential biomarkers and therapeutic targets.
Collapse
|
7
|
Role of Cyclooxygenase-2 in Head and Neck Tumorigenesis. Int J Mol Sci 2020; 21:ijms21239246. [PMID: 33287464 PMCID: PMC7731111 DOI: 10.3390/ijms21239246] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
The cyclooxygenase-2 (COX-2) is a potent enzyme that converts arachidonic acid to prostaglandins (PG), including PGE2, a key mediator of inflammation and angiogenesis. Importantly, COX-2 is activated in response to inflammatory stimuli, where it is also believed to promote the development and progression of head and neck cancers (HNC). COX-2 can mediate its protumorigenic effect through various mechanisms, such as inducing cell proliferation, inhibition of apoptosis, and suppressing the host’s immune response. Furthermore, COX-2 can induce the production of vascular endothelial growth factors, hence, promoting angiogenesis. Indeed, the ability of COX-2 inhibitors to selectively restrict the proliferation of tumor cells and mediating apoptosis provides promising therapeutic targets for cancer patients. Thus, in this comprehensive review, we summarized the reported differential expression patterns of COX-2 in different stages of head and neck carcinogenesis—from potentially premalignant lesions to invasive carcinomas. Furthermore, we examined the available meta-analysis evidence for COX-2 role in the carcinogenesis of HNC. Finally, further understanding of the biological processes of COX-2 and its role in orchestrating cell proliferation, apoptosis, and angiogenesis may give therapeutically beneficial insight to develop the management plan of HNC patients and improve their clinical outcomes.
Collapse
|
8
|
Ghasemi M, Afshar P, Sheidaei S, Moeini Y, Vahedi Larijani L. The role of immunohistochemistry expression of COX-2 in differentiating pigmented benign and malignant skin neoplasms. Med J Islam Repub Iran 2019; 33:75. [PMID: 31696069 PMCID: PMC6825383 DOI: 10.34171/mjiri.33.75] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Skin cancer is one of the most common types of cancer and its annual mortality rate is increasing. The induction enzyme of cyclooxygenase COX-2 causes biosynthesis of prostaglandin and thromboxane during inflammation of the body. Increasing the expression of COX-2 has an important role in the development and progression of malignant epithelial cancers and other types of cancers. Considering the diagnostic status of the marker, this study aimed to evaluate the expression of COX-2 for diagnosis and differentiation of benign skin pigmented neoplastic lesions from malignant melanoma types. Methods: In this diagnostic study, the immunohistochemistry of COX-2 maker in 82 paraffin blocks of pigmented benign and malignant skin neoplasms of patients (49 men; 33 women) and its association with clinicopathological features of the tumor was evaluated. Data were analyzed using chi-squared and t test in SPSS18. Significance level was set at less than 5%. Results: The findings showed that 20 patients (24.3%) had malignant melanoma and 13 had significant COX-2 (3+ High), while COX-2 marker was not detected in other benign and malignant pigmented skin neoplasms (p<0.001). A significant association was found between COX-2 marker and grade (p<0.001), but there was no significant correlation with other clinicopathological tumor criteria. Sensitivity, specificity, PPV and NPV value of the COX-2 marker were 65%, 100%, 89.9%, and 100%, respectively. Conclusion: Because of the high level of COX-2 in malignant melanoma skin marker, it can be used to distinguish benign and malignant neoplastic lesions (SCC and BCC) from melanoma and to provide effective therapeutic strategies through specific COX-2 enzyme inhibitors.
Collapse
Affiliation(s)
- Maryam Ghasemi
- Department of Pathology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Parvaneh Afshar
- Research and Development Unit of Referral Laboratory, Deputy of Health Management, Mazandaran University of Medical Sciences, Sari, Iran
| | - Somayeh Sheidaei
- Department of Pathology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Yosef Moeini
- Department of Pathology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Lale Vahedi Larijani
- Department of Pathology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
9
|
Wang Y, Liu S, Li B, Jiang Y, Zhou X, Chen J, Li M, Ren B, Peng X, Zhou X, Cheng L. Staphylococcus aureus induces COX-2-dependent proliferation and malignant transformation in oral keratinocytes. J Oral Microbiol 2019; 11:1643205. [PMID: 31448061 PMCID: PMC6691923 DOI: 10.1080/20002297.2019.1643205] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/25/2019] [Accepted: 07/03/2019] [Indexed: 02/05/2023] Open
Abstract
The COX-2/PGE2 axis can play roles in mediating the progression of tumor. COX-2 induction was observed in oral cancer. In our previous study, we found Staphylococcus aureus, a pathogen prevalent in oral cancer, can activate the COX-2/PGE2 pathway in human oral keratinocyte (HOK) cells. Here, we investigated the proliferation of HOK cells affected by COX-2 induction and the role of COX-2 induction in the malignant transformation of HOK cells. We found S. aureus was able to facilitate HOK cell proliferation through upregulating COX-2 expression. With the induction of COX-2, expression of oral cancer-associated genes cyclin D1 was upregulated and p16 was downregulated. Transcriptome analysis showed that the “NF−kappa B signaling pathway” and “TNF signaling pathway” had the highest enrichment of differentially expressed genes (DEGs) with COX-2 over-expression. Seven upregulated genes (jun, tlr4, cxcl1, lif, cxcl3, tnfrsf1β, and il1β) in these two pathways were critical for the increased proliferation of HOK cells and might be associated with COX-2. Malignant transformation of cells was evaluated by soft agar colony formation assay and S. aureus infection promoted HOK cell colony formation. These results suggest the potential of S. aureus to induce the infection-associated malignant transformation of oral epitheliums through COX-2 activation.
Collapse
Affiliation(s)
- Yuxia Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, Hospital of Stomatology, Nankai University, Tianjin, China
| | - Shiyu Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bolei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaling Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinxuan Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Jing Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Roy NK, Monisha J, Padmavathi G, Lalhruaitluanga H, Kumar NS, Singh AK, Bordoloi D, Baruah MN, Ahmed GN, Longkumar I, Arfuso F, Kumar AP, Kunnumakkara AB. Isoform-Specific Role of Akt in Oral Squamous Cell Carcinoma. Biomolecules 2019; 9:E253. [PMID: 31252679 PMCID: PMC6681224 DOI: 10.3390/biom9070253] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/05/2019] [Accepted: 06/22/2019] [Indexed: 12/15/2022] Open
Abstract
Protein kinase B (Akt) plays a very significant role in various cancers including oral cancer. However, it has three isoforms (Akt1, Akt2, and Akt3) and they perform distinct functions and even play contrasting roles in different cancers. Therefore, it becomes essential to evaluate the isoform-specific role of Akt in oral cancer. In the present study, an attempt has been made to elucidate the isoform-specific role of Akt in oral cancer. The immunohistochemical analysis of oral cancer tissues showed an overexpression of Akt1 and 2 isoforms but not Akt3. Moreover, the dataset of "The Cancer Genome Atlas" for head and neck cancer has suggested the genetic alterations of Akt1 and 2 tend to be associated with the utmost poor clinical outcome in oral cancer. Further, treatment of oral cancer cells with tobacco and its components such as benzo(a)pyrene and nicotine caused increased mRNA levels of Akt1 and 2 isoforms and also enhanced the aggressiveness of oral cancer cells in terms of proliferation, and clonogenic and migration potential. Finally, silencing of Akt1 and 2 isoforms caused decreased cell survival and induced cell cycle arrest at the G2/M phase. Akt1/2 silencing also reduced tobacco-induced aggressiveness by decreasing the clonogenic and migration potential of oral cancer cells. Moreover, silencing of Akt1 and 2 isoforms was found to decrease the expression of proteins regulating cancer cell survival and proliferation such as cyclooxygenase-2, B-cell lymphoma 2 (Bcl-2), cyclin D1, and survivin. Thus, the important role of Akt1 and 2 isoforms have been elucidated in oral cancer with in-depth mechanistic analysis.
Collapse
Affiliation(s)
- Nand Kishor Roy
- Cancer Biology Laboratory & DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Javadi Monisha
- Cancer Biology Laboratory & DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory & DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - H Lalhruaitluanga
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram 796 004, India
| | | | - Anuj Kumar Singh
- Cancer Biology Laboratory & DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory & DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | | | - Gazi Naseem Ahmed
- North-East Cancer Hospital and Research Institute, Guwahati, Assam 781023, India
| | - Imliwati Longkumar
- North-East Cancer Hospital and Research Institute, Guwahati, Assam 781023, India
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6009, Australia
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Medical School, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory & DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
11
|
Nasry WHS, Wang H, Jones K, Tesch M, Rodriguez-Lecompte JC, Martin CK. Cyclooxygenase and CD147 expression in oral squamous cell carcinoma patient samples and cell lines. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 128:400-410.e3. [PMID: 31350224 DOI: 10.1016/j.oooo.2019.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/09/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVES In oral squamous cell carcinoma (OSCC), cyclooxygenases (COX-1 and COX-2) contribute to inflammation, and cluster of differentiation factor 147 (CD147) contributes to invasiveness, but their relationship has not been previously examined within a cohort of patients with OSCC or OSCC cell lines. STUDY DESIGN COX-2 and CD147 expression was determined by using immunohistochemistry on 39 surgical biopsy specimens of OSCC. Expression in tumor cells, stroma, and adjacent oral epithelium was characterized by using a visual grading system. COX-1, COX-2, and CD147 expression was determined in vitro by using OSCC cell lines (SCC25, BHY, and HN) and reverse transcriptase-quantitative polymerase chain reaction. Secretion of prostagladin E2 (PGE2) from OSCC cell lines was determined by using PGE2 enzyme-linked immunosorbent assay. RESULTS Biopsy specimens showed higher COX-2 expression in tumor cells compared with stroma and adjacent epithelium (P < .05). There was no difference in CD147 expression among the tumor cells, stroma, and adjacent epithelium. In OSCC cell lines, there was a trend for COX-2 and CD147 gene expression to be coordinated. Interestingly, PGE2 secretion was more closely related to COX-1 expression than to COX-2 expression. CONCLUSIONS COX-1, COX-2, and CD147 appear to be independently regulated in OSCC, potentially representing 2 therapeutic targets for future investigation. COX-1 expression in OSCC deserves further study because it may be an important determinant of PGE2 secretion from OSCC cells.
Collapse
Affiliation(s)
- Walaa Hamed Shaker Nasry
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Haili Wang
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Kathleen Jones
- Diagnostic Services, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Marvin Tesch
- Provincial Health Services, Health PEI, Charlottetown, Prince Edward Island, Canada
| | - Juan Carlos Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Chelsea K Martin
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada.
| |
Collapse
|
12
|
Cote B, Rao D, Alany RG, Kwon GS, Alani AW. Lymphatic changes in cancer and drug delivery to the lymphatics in solid tumors. Adv Drug Deliv Rev 2019; 144:16-34. [PMID: 31461662 DOI: 10.1016/j.addr.2019.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/05/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023]
Abstract
Although many solid tumors use the lymphatic system to metastasize, there are few treatment options that directly target cancer present in the lymphatic system, and those that do are highly invasive, uncomfortable, and/or have limitations. In this review we provide a brief overview of lymphatic function and anatomy, discusses changes that befall the lymphatics in cancer and the mechanisms by which these changes occur, and highlight limitations of lymphatic drug delivery. We then go on to summarize relevant techniques and new research for targeting cancer populations in the lymphatics and enhancing drug delivery intralymphatically, including intralymphatic injections, isolated limb perfusion, passive nano drug delivery systems, and actively targeted nanomedicine.
Collapse
|
13
|
Yang X, Zhu J, Dai Y, Tian Z, Yang G, Shi H, Wu Y, Tao X. Multi-parametric effect in predicting tumor histological grade by using susceptibility weighted magnetic resonance imaging in tongue squamous cell carcinoma. BMC Med Imaging 2019; 19:24. [PMID: 30866854 PMCID: PMC6417004 DOI: 10.1186/s12880-019-0322-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 02/26/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Susceptibility weighted imaging (SWI) is helpful for depicting hemorrhage, calcification, and increased vascularity in some neoplasms, which may reflect tumor grade. In this study, we aimed to apply SWI in patients with oral tongue squamous cell carcinomas (OTSCCs) and relate multi-parametric effect to tumor histological grade prediction. METHODS Preoperative MR examinations were performed on a 1 .5T MRI scanner with T1-, T2- and contrast-enhanced (CE) T1-weighted imaging. In addition to routine head and neck MRI sequences, SWI was performed. Tumor thickness and volume were measured. Intratumoral susceptibility signal intensities (ITSSs), ITSS score and ITSS ratio on SWI were evaluated and recorded. Subjects were sub-grouped into low- and high-grade according to the histological findings post operation. Parameters such as tumor thickness, tumor volume and three ITSS related parameters were compared between low- and high-grade groups. ROC analysis was performed on above parameters to access the capability in predicting tumor histological grade. Different multi-parametric models were run to access multi-parametric combination effect. RESULTS Thirty patients with OTSCC were finally included in the study. Twenty of them were categorized as low-grade SCC and the other ten subjects were high-grade SCC according to the pathologic findings. No significant difference was seen for tumor thickness or tumor volume between two sub-groups. ITSSs were seen in 23/30 patients. Significant difference of ITSS scores between low- and high-grade OTSCCs was observed, with mean value of 0.95 ± 0.83 and 1.70 ± 0.95, respectively. Univariate ROC analysis demonstrated ITSSs, ITSS score and ITSS ratio were valuable parameters for predicting tumor histological grade and ITSSs was superior to the other two parameters, with an area under ROC curve of 0.790. Multi-parametric model using combination of ITSSs and tumor thickness would greatly improve the predictive capability in comparison with a univariate approach, yielding the area under ROC curve of 0.84(0.69,0.99). On contrast-enhanced SWI (CE-SWI), ITSSs were shown more clearly delineated in comparison with non-contrast enhanced SWI. CONCLUSIONS In conclusion, SWI was superior in depiction of internal characteristics of OTSCCs, which would potentially provide more diagnostic information. Multi-parametric model using combination of ITSSs and tumor thickness would be valuable in predicting tumor histological grade.
Collapse
Affiliation(s)
- Xing Yang
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China
| | - Jinyu Zhu
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China
| | - Yongming Dai
- United Imaging Healthcare, Shanghai, 201807, China
| | - Zhen Tian
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China
| | - Gongxin Yang
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China
| | - Huimin Shi
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China.
| | - Yingwei Wu
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China.
| | - Xiaofeng Tao
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China
| |
Collapse
|
14
|
Nasry WHS, Rodriguez-Lecompte JC, Martin CK. Role of COX-2/PGE2 Mediated Inflammation in Oral Squamous Cell Carcinoma. Cancers (Basel) 2018; 10:cancers10100348. [PMID: 30248985 PMCID: PMC6211032 DOI: 10.3390/cancers10100348] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/16/2018] [Accepted: 09/20/2018] [Indexed: 12/24/2022] Open
Abstract
A significant amount of research indicates that the cyclooxygenase/prostaglandin E2 (PGE2) pathway of inflammation contributes to the development and progression of a variety of cancers, including squamous cell carcinoma of the oral cavity and oropharynx (OSCC). Although there have been promising results from studies examining the utility of anti-inflammatory drugs in the treatment of OSCC, this strategy has been met with only variable success and these drugs are also associated with toxicities that make them inappropriate for some OSCC patients. Improved inflammation-targeting therapies require continued study of the mechanisms linking inflammation and progression of OSCC. In this review, a synopsis of OSCC biology will be provided, and recent insights into inflammation related mechanisms of OSCC pathobiology will be discussed. The roles of prostaglandin E2 and cluster of differentiation factor 147 (CD147) will be presented, and evidence for their interactions in OSCC will be explored. Through continued investigation into the protumourigenic pathways of OSCC, more treatment modalities targeting inflammation-related pathways can be designed with the hope of slowing tumour progression and improving patient prognosis in patients with this aggressive form of cancer.
Collapse
Affiliation(s)
- Walaa Hamed Shaker Nasry
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Juan Carlos Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Chelsea K Martin
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
15
|
Clinicopathological and prognostic significance of cyclooxygenase-2 expression in head and neck cancer: A meta-analysis. Oncotarget 2018; 7:47265-47277. [PMID: 27323811 PMCID: PMC5216940 DOI: 10.18632/oncotarget.10059] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/04/2016] [Indexed: 12/28/2022] Open
Abstract
Several studies have assessed the clinicopathological and prognostic value of cyclooxygenase-2 (COX-2) expression in patients with head and neck cancer (HNC), but their results remain controversial. To address this issue, a meta-analysis was carried out. A total of 29 studies involving 2430 patients were subjected to final analysis. Our results indicated that COX-2 expression was not statistically associated with advanced tumor stage (OR, 1.23; 95% CI, 0.98–1.55) but correlated with high risk of lymph node metastasis (OR, 1.28; 95% CI, 1.03–1.60) and advanced TNM stage (OR, 1.33; 95% CI, 1.06–1.66). Moreover, COX-2 expression had significant effect on poor OS (HR, 1.93; 95% CI, 1.29–2.90), RFS (HR, 2.02; 95% CI, 1.00–4.08) and DFS (HR, 5.14; 95% CI, 2.84–9.31). The results of subgroup analyses revealed that COX-2 expression was related with high possibility of lymph node metastasis in oral cancer (OR, 1.49; 95% CI, 1.01–2.20) and advanced TNM stage in oral cancer (OR, 1.58; 95% CI, 1.05–2.37) and no site-specific HNC (OR, 1.64; 95% CI, 1.02–2.62). However, subgroup analyses only showed a tendency without statistically significant association between COX-2 expression and survival. Significant heterogeneity was not found when analyzing clinicopathological data, but it appeared when considering survival data. No publication bias was detected in this study. This meta-analysis suggested that COX-2 expression could act as a prognostic factor for patients with HNC.
Collapse
|
16
|
Almangush A, Heikkinen I, Mäkitie AA, Coletta RD, Läärä E, Leivo I, Salo T. Prognostic biomarkers for oral tongue squamous cell carcinoma: a systematic review and meta-analysis. Br J Cancer 2017; 117:856-866. [PMID: 28751758 PMCID: PMC5589992 DOI: 10.1038/bjc.2017.244] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 05/02/2017] [Accepted: 07/03/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Identifying informative prognostic biomarkers for oral tongue squamous cell carcinoma (OTSCC) is of great importance in order to better predict tumour behaviour and to guide treatment planning. Here, we summarise existing evidence regarding immunohistochemical prognostic biomarkers for OTSCC. METHODS A systematic search of the literature was performed using the databases of Scopus, Ovid Medline, Web of Science and Cochrane Library. All studies which had investigated the prognostic significance of immunohistochemical biomarkers in OTSCC during the period from 1985 to 2015 were retrieved. For the five most often evaluated biomarkers a random-effects meta-analysis on overall survival was performed, including those studies that provided the necessary statistical results. RESULTS A total of 174 studies conducted during the last three decades were found, and in these 184 biomarkers were evaluated for the prognostication of OTSCC. The five biomarkers most frequently assessed were p53, Ki-67, p16, VEGFs and cyclin D1. In the meta-analyses, the most promising results of the prognostic power for OTSCC were obtained for cyclin D1. For studies of VEGF A and C the results were equivocal, but the pooled analysis of VEGF A separately showed it to be a useful prognosticator for OTSCC. There was no sufficient evidence to support p53, Ki-67 and p16 as prognostic biomarkers for OTSCC. Limitations in the quality of the published studies (e.g., small cohorts, lack of compliance with REMARK guidelines) are widespread. CONCLUSIONS Numerous biomarkers have been presented as useful prognosticators for OTSCC, but the quality of the conduct and reporting of original studies is overall unsatisfactory which does not allow reliable conclusions. The value of two biomarkers (VEGF-A and cyclin D1) should be validated in a multicentre study setting following REMARK guidelines.
Collapse
Affiliation(s)
- Alhadi Almangush
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
- Institute of Dentistry, University of Misurata, Misurata, Libya
| | - Ilkka Heikkinen
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Antti A Mäkitie
- Department of Otorhinolaryngology- Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Ricardo D Coletta
- Department of Oral Diagnosis, School of Dentistry, State University of Campinas, Piracicaba, São Paulo, Brazil
| | - Esa Läärä
- Department of Mathematical Sciences and Statistics, University of Oulu, Oulu, Finland
| | - Ilmo Leivo
- Department of Pathology, University of Turku, Turku, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUSLAB, Helsinki University Hospital, Helsinki, Finland
- Department of Diagnostics and Oral Medicine, Research Group of Cancer Research and Translational Medicine, Medical Faculty, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
17
|
Acidic microenvironments induce lymphangiogenesis and IL-8 production via TRPV1 activation in human lymphatic endothelial cells. Exp Cell Res 2016; 345:180-9. [PMID: 27312995 DOI: 10.1016/j.yexcr.2016.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 01/13/2023]
Abstract
Local acidosis is one of the characteristic features of the cancer microenvironment. Many reports indicate that acidosis accelerates the proliferation and invasiveness of cancer cells. However, whether acidic conditions affect lymphatic metastasis is currently unknown. In the present study, we focused on the effects of acidosis on lymphatic endothelial cells (LECs) to assess the relationship between acidic microenvironments and lymph node metastasis. We demonstrated that normal human LECs express various acid receptors by immunohistochemistry and reverse transcriptase-polymerase chain reaction (PCR). Acidic stimulation with low pH medium induced morphological changes in LECs to a spindle shape, and significantly promoted cellular growth and tube formation. Moreover, real-time PCR revealed that acidic conditions increased the mRNA expression of interleukin (IL)-8. Acidic stimulation increased IL-8 production in LECs, whereas a selective transient receptor potential vanilloid subtype 1 (TRPV1) antagonist, 5'-iodoresiniferatoxin, decreased IL-8 production. IL-8 accelerated the proliferation of LECs, and inhibition of IL-8 diminished tube formation and cell migration. In addition, phosphorylation of nuclear factor (NF)-κB was induced by acidic conditions, and inhibition of NF-κB activation reduced acid-induced IL-8 expression. These results suggest that acidic microenvironments in tumors induce lymphangiogenesis via TRPV1 activation in LECs, which in turn may promote lymphatic metastasis.
Collapse
|
18
|
Hugo HJ, Saunders C, Ramsay RG, Thompson EW. New Insights on COX-2 in Chronic Inflammation Driving Breast Cancer Growth and Metastasis. J Mammary Gland Biol Neoplasia 2015; 20:109-19. [PMID: 26193871 DOI: 10.1007/s10911-015-9333-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/29/2015] [Indexed: 12/22/2022] Open
Abstract
The medicinal use of aspirin stretches back to ancient times, before it was manufactured in its pure form in the late 19th century. Its accepted mechanistic target, cyclooxygenase (COX), was discovered in the 1970s and since this landmark discovery, the therapeutic application of aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) has increased dramatically. The most significant benefits of NSAIDs are in conditions involving chronic inflammation (CI). Given the recognized role of CI in cancer development, the use of long-term NSAID treatment in the prevention of cancer is an enticing possibility. COX-2 is a key driver of CI, and here we review COX-2 expression as a predictor of survival in various cancer types, including breast. Obesity and post-partum involution are natural inflammatory states that are associated with increased breast cancer risk. We outline the COX-2 mediated mechanisms contributing to the growth of cancers. We dissect the cellular mechanism of epithelial-mesenchymal transition (EMT) and how COX-2 may induce this to facilitate tumor progression. Finally we examine the potential regulation of COX-2 by c-Myb, and the possible interplay between c-Myb/COX-2 in proliferation, and hypoxia inducible factor-1 alpha (HIF1α)/COX-2 in invasive pathways in breast cancer.
Collapse
Affiliation(s)
- Honor J Hugo
- VBCRC Invasion and Metastasis Unit, St Vincent's Institute, Fitzroy, VIC, Australia.
| | - C Saunders
- School of Surgery, University of Western Australia, Perth, Western Australia, Australia
| | - R G Ramsay
- Differentation and Transcription Laboratory, Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - E W Thompson
- VBCRC Invasion and Metastasis Unit, St Vincent's Institute, Fitzroy, VIC, Australia
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland Institute of Technology, Brisbane, QLD, Australia
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Morita Y, Hata K, Nakanishi M, Omata T, Morita N, Yura Y, Nishimura R, Yoneda T. Cellular fibronectin 1 promotes VEGF-C expression, lymphangiogenesis and lymph node metastasis associated with human oral squamous cell carcinoma. Clin Exp Metastasis 2015; 32:739-53. [PMID: 26319373 DOI: 10.1007/s10585-015-9741-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/22/2015] [Indexed: 12/23/2022]
Abstract
Lymph node metastasis (LNM) is associated with poor survival in patients with oral squamous cell carcinoma (OSCC). Vascular endothelial growth factor-C (VEGF-C) is thought to be responsible for increased lymphangiogenesis and LNM. Understanding of the mechanism by which VEGF-C expression is regulated in OSCC is thus important to design logic therapeutic interventions. We showed that inoculation of the SAS human OSCC cells expressing the venus GFP (V-SAS cells) into the tongue in nude mice developed LNM. V-SAS cells in LNM were isolated by FACS and re-inoculated into the tongue. This procedure was repeated eight times, establishing V-SAS-LM8 cells. Differential metastasis PCR array between the parental V-SAS and V-SAS-LM8 was performed to identify a molecule responsible for lymphangiogenesis and LNM. Fibronectin 1 (FN1) expression was elevated in V-SAS-LM8 cells compared to V-SAS-cells. V-SAS-LM8 tongue tumor showed increased expression of FN1 and VEGF-C, and promoted lymphangiogenesis and LNM compared with V-SAS tumor. Further, phosphorylation of focal adhesion kinase (FAK), a main downstream signaling molecule of FN1, was up-regulated, and epithelial-mesenchymal transition (EMT) was promoted in V-SAS-LM8 cells. Silencing of FN1 by shRNA in V-SAS-LM8 cells decreased FAK phosphorylation, VEGF-C expression and inhibited lymphangiogenesis and LNM. EMT was also reversed. The FAK phosphorylation inhibitor PF573228 also decreased VEGF-C expression and reversed EMT in V-SAS-LM8 cells. Finally, we detected intense FN1 expression in some clinical specimens obtained from OSCC patients with LNM. These results demonstrate that elevated expression of cellular FN1 and following activation of FAK lead to increased VEGF-C expression, lymphangiogenesis and LNM and promoted EMT in SAS human OSCC cells and suggest that FN1-phosphorylated FAK signaling cascade is a potential therapeutic target in the treatment of LNM in OSCC.
Collapse
Affiliation(s)
- Yoshihiro Morita
- Departments of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan.,Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan.,Department of Oral and Maxillofacial Surgery, Seichokai Hannan Municipal Hospital, Hannan, Osaka, Japan
| | - Kenji Hata
- Departments of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masako Nakanishi
- Departments of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Tetsuji Omata
- Department of Oral and Maxillofacial Surgery, Kinan Hospital, Tanabe, Wakayama, Japan
| | - Nobuo Morita
- Department of Oral and Maxillofacial Surgery, Seichokai Hannan Municipal Hospital, Hannan, Osaka, Japan.,Department of Oral and Maxillofacial Surgery, Kinan Hospital, Tanabe, Wakayama, Japan.,Department of Oral-Maxillo-facial Surgery, NS Medical & Healthcare Service General Incorporation Foundation, Wakayama, Japan
| | - Yoshiaki Yura
- Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Riko Nishimura
- Departments of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Toshiyuki Yoneda
- Departments of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan. .,Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Walther Hall, R3-C321D, 980 W Walnut St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
20
|
CAO JING, GUO TAO, DONG QINGSHAN, ZHANG JIANQIANG, LI YANFENG. miR-26b is downregulated in human tongue squamous cell carcinoma and regulates cell proliferation and metastasis through a COX-2-dependent mechanism. Oncol Rep 2014; 33:974-80. [DOI: 10.3892/or.2014.3648] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/11/2014] [Indexed: 11/05/2022] Open
|