1
|
Kalele K, Nyahatkar S, Mirgh D, Muthuswamy R, Adhikari MD, Anand K. Exosomes: A Cutting-Edge Theranostics Tool for Oral Cancer. ACS APPLIED BIO MATERIALS 2024; 7:1400-1415. [PMID: 38394624 DOI: 10.1021/acsabm.3c01243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Exosomes are a subpopulation of extracellular vesicles (EVs) secreted by cells. In cancer, they are key cellular messengers during cancer development and progression. Tumor-derived exosomes (TEXs) promote cancer progression. In oral cancer, the major complication is oral squamous cell carcinoma (OSCC). Exosomes show strong participation in several OSCC-related activities such as uncontrolled cell growth, immune suppression, angiogenesis, metastasis, and drug and therapeutic resistance. It is also a potential biomarker source for oral cancer. Some therapeutic exosome sources such as stem cells, plants (it is more effective compared to others), and engineered exosomes reduce oral cancer development. This therapeutic approach is effective because of its specificity, biocompatibility, and cell-free therapy (it reduced side effects in cancer treatment). This article highlights exosome-based theranostics signatures in oral cancer, clinical trials, challenges of exosome-based oral cancer research, and future improvements. In the future, exosomes may become an effective and affordable solution for oral cancer.
Collapse
Affiliation(s)
- Ketki Kalele
- Neuron Institute of Applied Research, Rajapeth-Irwin Square Flyover, Amravati, Maharashtra 444601, India
| | - Sidhanti Nyahatkar
- VYWS Dental College & Hospital, WQMV+7X6, Tapovan-Wadali Road, Camp Rd, SRPF Colony, Amravati, Maharashtra 444602, India
| | - Divya Mirgh
- Department of Infectious Diseases, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Raman Muthuswamy
- Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Manab Deb Adhikari
- Department of Biotechnology, University of North Bengal, Darjeeling, West Bengal 734013, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
2
|
Ogawa T, Ono K, Ryumon S, Kawai H, Nakamura T, Umemori K, Yoshida K, Kanemoto H, Obata K, Yoshioka N, Okui T, Okamoto K, Nagatsuka H, Ibaragi S. Novel mechanism of cisplatin resistance in head and neck squamous cell carcinoma involving extracellular vesicles and a copper transporter system. Head Neck 2024; 46:636-650. [PMID: 38164660 DOI: 10.1002/hed.27620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/10/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Cisplatin (CDDP) plays a central role in chemotherapy for head and neck squamous cell carcinoma (HNSCC), but drug resistance in HNSCC chemotherapy remains a problem, and the mechanism of CDDP resistance is unclear. We investigated CDDP-resistance mechanisms mediated by extracellular vesicles (EVs) and ATPase copper transporting beta (ATP7B) in HNSCC. METHODS We established CDDP-resistant sublines of HNSCC cells and verified their ATP7B expression. We used an EV secretion inhibitor (GW4869) and ATP7B short hairpin (sh)RNA transfection to examine the correlation between EV secretion and ATP7B expression. RESULTS The CDDP-resistant HNSCC sublines showed decreased CDDP sensitivity and increased ATP7B expression. GW4869 suppressed ATP7B expression, and ATP7B shRNA transfection suppressed EV secretion. The suppressions of EV secretion and ATP7B expression both enhanced CDDP's cell-killing effect. CONCLUSIONS EVs were involved in the ATP7B-mediated mechanism underlying CDDP resistance. Further clarification of the EV-induced CDDP-resistance mechanism may lead to novel therapeutic strategies for HNSCC.
Collapse
Affiliation(s)
- Tatsuo Ogawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kisho Ono
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shoji Ryumon
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tomoya Nakamura
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Koki Umemori
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kunihiro Yoshida
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hideka Kanemoto
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kyoichi Obata
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Norie Yoshioka
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tatsuo Okui
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
3
|
Bano A, Vats R, Verma D, Yadav P, Kamboj M, Bhardwaj R. Exploring salivary exosomes as early predictors of oral cancer in susceptible tobacco consumers: noninvasive diagnostic and prognostic applications. J Cancer Res Clin Oncol 2023; 149:15781-15793. [PMID: 37668794 DOI: 10.1007/s00432-023-05343-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Salivary exosome analysis provides a noninvasive and comprehensive approach with potential applications in oral cancer diagnosis and prognosis. The early detection of oral cancer has remained a critical concern in enhancing the quality of life, especially for individuals who consume tobacco and are at greater risk of developing the disease. The current study investigates the potential of salivary exosomes in screening smokers for early signs and transformations of oral cancer. METHODS Morphological characterization of salivary exosomes among three study groups (non-smokers as control, smokers as high-risk tobacco consumers, and Oral cancer) (n = 120) was carried out through dynamic light scattering, and nanoparticle tracking analysis. For molecular characterization, EXOCET and Fourier transform infrared spectroscopy methods were utilized. The expression of the exosomal surface protein CD63 was evaluated using Western blotting. RESULTS Salivary exosomes exhibit noticeable differences in size between control group and tobacco consumers. The differentiation extended beyond exosome size and included variations in concentration and bio-molecular composition, as determined by FTIR screening. Tobacco consumers and oral cancer groups showed significantly larger and more concentrated exosomes compared to the healthy group. CONCLUSION Our study provides strong evidence that the properties of salivary exosomes can serve as reliable noninvasive biomarkers for distinguishing tobacco consumers from non-smokers and oral cancer patients. Our results underscore the potential of exosome-based diagnostics in early oral cancer detection for high-risk individuals. The larger size and higher concentration of exosomes in tobacco consumers indicate early changes in cell secretions associated with the transformation from healthy to abnormal cells.
Collapse
Affiliation(s)
- Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 122001, India
| | - Ravina Vats
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 122001, India
| | - Deepika Verma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Pooja Yadav
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 122001, India
| | - Mala Kamboj
- Department of Oral Pathology, Postgraduate Institute of Dental Sciences, Rohtak, Haryana, 124001, India
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 122001, India.
| |
Collapse
|