1
|
Chen H, Xie H, Shao D, Chen L, Chen S, Wang L, Han X. Oral Microbiota, a Potential Determinant for the Treatment Efficacy of Gastric Helicobacter pylori Eradication in Humans. Pol J Microbiol 2022; 71:227-239. [PMID: 35676833 PMCID: PMC9252142 DOI: 10.33073/pjm-2022-020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/22/2022] [Indexed: 12/04/2022] Open
Abstract
The oral cavity serves as another reservoir for gastric Helicobacter pylori and may contribute to the failure of gastric H. pylori eradication therapy. However, changes to the oral microbial composition after gastric H. pylori eradication therapy has not yet been identified. This study aims to dissect whether the oral microbiota is involved and which bacterium mediates the clinic failure in H. pylori eradication. In the present study, the oral microorganisms from patients who had received the gastric H. pylori eradication treatment were analyzed by a high-throughput 16S rRNA deep sequencing. We found that the β diversity and composition of oral microbiota were remarkably changed in the patients who had experienced successful gastric H. pylori eradication treatment (SE group) compared to the failure group (FE group). Significantly enriched families, including Prevotellaceae, Streptococcaceae, Caulobacteraceae, and Lactobacillaceae, were detected in the SE group. In contrast, the bacterial families, such as Weeksellaceae, Neisseriaceae, Peptostreptococcaceae, Spirochaetaceae, and Veillonellaceae, were abundantly expressed in the FE group. Five operational taxonomic units (OTUs) were positively correlated with DOB values, while two OTUs exhibited negative trends. These different enriched OTUs were extensively involved in the 20 metabolic pathways. These results suggest that a balanced environment in the oral microbiota contributes to H. pylori eradication and metabolic homeostasis in humans. Our data demonstrated that the changes in oral microbiota might contribute to the therapeutic effects of antibiotic therapy. Therefore, a different therapy on the detrimental oral microbiota will increase the therapeutic efficacy of antibiotics on H. pylori infection. ![]()
Collapse
Affiliation(s)
- Huixia Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Hui Xie
- Department of Orthodontics, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Dong Shao
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, China
| | - Liju Chen
- Department of Orthodontics, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Siyu Chen
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| |
Collapse
|