1
|
He Y, Deng P, Yan Y, Zhu L, Chen H, Li T, Li Y, Li J. Matrisome provides a supportive microenvironment for oral squamous cell carcinoma progression. J Proteomics 2021; 253:104454. [PMID: 34922012 DOI: 10.1016/j.jprot.2021.104454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/03/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a common pernicious tumor in the head and neck regions. However, the function of tumor extracellular matrix (ECM) has not been elucidated. A tissue engineering method was applied for remodeling ECM through decellularization. The cellular components were removed, and the biological composition was mostly preserved. Proteomics was performed to analyze the characterization between normal and tumor ECM. According to LC-MS/MS results, 26 proteins just showed in tumor ECM, and 14 proteins only showed in late-stage tumor ECM. KEGG pathway analysis showed that most variant proteins were linked to metabolic regulation and tumor immunity (such as SCC-Ag1, LOX). To affirm the influence of tumor ECM on the progression of OSCC, tumor cells and macrophages were co-cultured with ECM scaffold. Marked differences in proliferation, apoptosis, and migration of OSCC cells were observed between tumor and normal ECM. Tumor ECM polarized macrophages towards an anti-inflammatory phenotype (higher IL-10 and CD68, and relatively lower CD86 and IL1-β). Collectively, these findings suggest that tumor ECM served as a permissive role in OSCC progression. SIGNIFICANCE: The variation between OSCC ECM and normal ECM confirm tumor ECM plays a significant role in OSCC deterioration, which is conducive to exploring the occurrence and progression mechanisms of OSCC, and further improving the curative effect of this disease.
Collapse
Affiliation(s)
- Yungang He
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Pingmeng Deng
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ying Yan
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Luying Zhu
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Hongying Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ting Li
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yong Li
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| | - Jie Li
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
2
|
Stem cell exosomes inhibit angiogenesis and tumor growth of oral squamous cell carcinoma. Sci Rep 2019; 9:663. [PMID: 30679544 PMCID: PMC6345809 DOI: 10.1038/s41598-018-36855-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022] Open
Abstract
Recently, exosomes secreted by menstrual mesenchymal stem cells have been identified as inhibitory agents of tumor angiogenesis and modulators of the tumor cell secretome in prostate and breast cancer. However, their direct effect on endothelial cells and paracrine mediators have not yet been investigated. Using a carrier-based cell culture system to test the scalability for exosome production, we showed that different types of endothelial cells present specific kinetics for exosomes internalization. Exosome-treatment of endothelial cells increased cytotoxicity and reduced VEGF secretion and angiogenesis in a dose-dependent manner. Using the hamster buccal pouch carcinoma as a preclinical model for human oral squamous cell carcinoma, we demonstrated a significant antitumor effect of intra-tumoral injection of exosomes associated with a loss of tumor vasculature. These results address up-scaling of exosome production, a relevant issue for their clinical application, and also assess menstrual stem cell exosomes as potential anti-angiogenic agents for the treatment of neoplastic conditions.
Collapse
|
3
|
Sano Y, Sugiuchi A, Mitomo K, Yanagisawa A, Kambe R, Furusawa M, Muramatsu T. Changes of CD90 expression and immunoreactive cell localisation in rat dental pulp after cavity preparation. AUST ENDOD J 2018; 45:189-195. [PMID: 30242795 PMCID: PMC7328718 DOI: 10.1111/aej.12307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2018] [Indexed: 12/01/2022]
Abstract
CD90 expression and immunoreactive cell localisation in rat dental pulp cells after cavity preparation was investigated. Cavity preparation was performed on the maxillary first molar of 8-week-old Wistar rats (n = 36), and immunohistochemistry and quantitative real-time PCR were performed. CD90-immunoreactivity was observed among subodontoblastic cells in the control group. One day after cavity preparation, the CD90-immunoreactivity disappeared under the cavity area. While CD90-immunoreactivity was faint after 3 days, the re-arrangement of odontoblasts was detected in contact with dentine. After 5 days, the odontoblasts were observed beneath the dentine, and CD90-immunoreactive cells were localised under the odontoblast layer. Immunofluorescence showed co-localisation of CD90 and nestin was detected after 3 days. After 5 days, CD90-immunoreactivity increased at the subodontoblastic layer. mRNA expression of CD90 and DSPP decreased after cavity preparation, and gradually recovered (P < 0.01). These results suggest that CD90-immunoreactive cells in the subodontoblastic layer contribute to regeneration of odontoblast and subodontoblastic layers following cavity preparation.
Collapse
Affiliation(s)
- Yousuke Sano
- Department of Endodontics, Tokyo Dental College, Chiyoda-Ku, Tokyo, Japan
| | - Akina Sugiuchi
- Department of Endodontics, Tokyo Dental College, Chiyoda-Ku, Tokyo, Japan
| | - Keisuke Mitomo
- Department of Operative Dentistry, Cariology and Pulp Biology, Tokyo Dental College, Chiyoda-Ku, Tokyo, Japan
| | - Akihide Yanagisawa
- Department of Endodontics, Tokyo Dental College, Chiyoda-Ku, Tokyo, Japan
| | - Ryo Kambe
- Department of Endodontics, Tokyo Dental College, Chiyoda-Ku, Tokyo, Japan
| | - Masahiro Furusawa
- Department of Endodontics, Tokyo Dental College, Chiyoda-Ku, Tokyo, Japan
| | - Takashi Muramatsu
- Department of Operative Dentistry, Cariology and Pulp Biology, Tokyo Dental College, Chiyoda-Ku, Tokyo, Japan
| |
Collapse
|
4
|
Zhang XF, Weng DS, Pan K, Zhou ZQ, Pan QZ, Zhao JJ, Tang Y, Jiang SS, Chen CL, Li YQ, Zhang HX, Chang AE, Wicha MS, Zeng YX, Li Q, Xia JC. Dendritic-cell-based immunotherapy evokes potent anti-tumor immune responses in CD105+ human renal cancer stem cells. Mol Carcinog 2017; 56:2499-2511. [DOI: 10.1002/mc.22697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Xiao-Fei Zhang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - De-sheng Weng
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Ke Pan
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Zi-Qi Zhou
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Qiu-zhong Pan
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Jing-Jing Zhao
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Yan Tang
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Shan-Shan Jiang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Chang-Long Chen
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Yong-Qiang Li
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Hong-Xia Zhang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Alfred E. Chang
- University of Michigan Comprehensive Cancer Center; Ann Arbor Michigan
| | - Max S. Wicha
- University of Michigan Comprehensive Cancer Center; Ann Arbor Michigan
| | | | - Qiao Li
- University of Michigan Comprehensive Cancer Center; Ann Arbor Michigan
| | - Jian-Chuan Xia
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| |
Collapse
|
5
|
High-level β1-integrin expression in a subpopulation of highly tumorigenic oral cancer cells. Clin Oral Investig 2013; 18:1277-1284. [PMID: 23982443 DOI: 10.1007/s00784-013-1088-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 08/11/2013] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The β1 integrin (CD29) is a putative marker for cancerous epithelial stem cells. Cancer stem cells are essential to drive tumor growth, recurrence, and metastasis. We investigated the role of β1-integrin expression in the development of malignant phenotypes of oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS Immunostaining was used to analyze the expression levels of β1 integrins in different types of cell colonies and tumor spheres. The results of cell viability and migration assays with and without siRNA knockdown of β1-integrin expression were compared. Cells expressing β1 integrins were evaluated for their tumorigenicity in mice. The expression of β1 integrins in human specimens of oral cancers at different clinical stages was semiquantified based on immunohistochemical staining of the β1-integrin protein. RESULTS The expression level of β1 integrins in Meng-1 oral epidermoid carcinoma cells (OECM-1) cells was significantly higher in holoclonal colonies and tumor spheres compared to control cells. The knockdown of β1-integrin expression in OECM-1 cells reduced cell proliferation, migration, and tumor sphere formation. Beta-1 integrin (+) cells were more tumorigenic in the mouse xenograft model than β1 integrin (-) cells. In the human specimens, the expression level of the β1-integrin protein positively correlated with the clinical stage. CONCLUSION The expression of β1 integrin in OECM-1 cells is involved in the development of malignant phenotypes of OSCC. CLINICAL RELEVANCE Inhibitors for β1-integrin signaling may be suitable to become target-specific therapies for OSCC.
Collapse
|
6
|
Valentine H, Daugherity EK, Singh B, Maurer KJ. The Experimental Use of Syrian Hamsters. THE LABORATORY RABBIT, GUINEA PIG, HAMSTER, AND OTHER RODENTS 2012. [PMCID: PMC7149563 DOI: 10.1016/b978-0-12-380920-9.00034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The Syrian hamster (Mesocricetus auratus) is a widely used experimental animal model. This chapter focuses primarily on the most current research uses of the hamster. More classical uses are covered only as they pertain to these current uses. Hamsters possess unique anatomical and physiological features, which make them desirable research models. Unlike other commonly used laboratory rodents, hamsters possess a cheek pouch, which can be easily everted and examined at both the gross and microscopic level. The hamster's relative size also allows for better visualization of certain biological systems including the respiratory and reproductive systems when compared to the mouse. Further, laboratory hamsters develop a variety of inherited diseases, which display similarities to human conditions. Hamsters possessing some of these inherited traits are commercially available. They are susceptible to a variety of carcinogens and develop tumors that other research animals less commonly develop. Also they are susceptible to the induction of a variety of metabolic disorders through the use of dietary manipulations. The antagonistic nature of hamsters is used to study the effect of treatment on male aggressive and defensive behaviors. Syrian hamsters display several unique characteristics that make them desired models for carcinogenesis studies.
Collapse
|
7
|
Chen YK, Lin LM. DMBA-induced hamster buccal pouch carcinoma and VX2-induced rabbit cancer as a model for human oral carcinogenesis. Expert Rev Anticancer Ther 2011; 10:1485-96. [PMID: 20836683 DOI: 10.1586/era.10.108] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this article, we have described and compared the advantages and disadvantages of two potential animal cancer models (the hamster buccal pouch cancer model and the VX2-induced rabbit cancer model) for human squamous cell carcinomas of the oral mucosa. Currently, no animal cancer model is perfectly applicable to human oral squamous cell carcinomas. This is because the hamster buccal pouch cancer model has a different etiology and genetic constitution compared with human oral carcinomas. In addition, the VX2-induced rabbit cancer model is not produced in situ and, consequently, its natural behavior is totally reliant on the location of transplantation. Nonetheless, with the use of these two animal cancer models together, researchers could evaluate different aspects of the cellular and molecular biological characteristics or assess potential novel treatment regimens for squamous cell carcinomas of the human oral mucosa.
Collapse
Affiliation(s)
- Yuk-Kwan Chen
- Department of Oral Pathology, Faculty of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | |
Collapse
|