1
|
Yang G, Wei L, Thong BKS, Fu Y, Cheong IH, Kozlakidis Z, Li X, Wang H, Li X. A Systematic Review of Oral Biopsies, Sample Types, and Detection Techniques Applied in Relation to Oral Cancer Detection. BIOTECH 2022; 11:5. [PMID: 35822813 PMCID: PMC9245907 DOI: 10.3390/biotech11010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Early identification of the stage of oral cancer development can lead to better treatment outcomes and avoid malignant transformation. Therefore, this review aims to provide a comprehensive overview that describes the development of standardized procedures for oral sample collection, characterization, and molecular risk assessment. This can help investigators to choose the appropriate sampling method and downstream analyses for different purposes. Methods: This systematic review was conducted according to the PRISMA guidelines. Using both PubMed and Web of Science databases, four independent authors conducted a literature search between 15 and 21 June 2021. We used key search terms to broaden the search for studies. Non-conforming articles were removed using an EndNote-based and manual approach. Reviewers used a designed form to extract data. Results: This review included a total of 3574 records, after eliminating duplicate articles and excluding papers that did not meet the inclusion criteria. Finally, 202 articles were included in this review. We summarized the sampling methods, biopsy samples, and downstream analysis. The biopsy techniques were classified into tissue and liquid biopsy. The common sequential analysis of tissue biopsy includes histopathological examination such as H&E or IHC to identify various pathogenic features. Meanwhile, liquid samples such as saliva, blood, and urine are analyzed for the purpose of screening to detect mutations in cancer. Commonly used technologies are PCR, RT-PCR, high-throughput sequencing, and metabolomic analysis. Conclusions: Currently, tissue biopsies provide increased diagnostic value compared to liquid biopsy. However, the minimal invasiveness and convenience of liquid biopsy make it a suitable method for mass screening and eventual clinical adoption. The analysis of samples includes histological and molecular analysis. Metabolite analysis is rising but remains scarce.
Collapse
Affiliation(s)
- Guanghuan Yang
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (G.Y.); (L.W.); (B.K.S.T.); (Y.F.); (I.H.C.); (X.L.)
| | - Luqi Wei
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (G.Y.); (L.W.); (B.K.S.T.); (Y.F.); (I.H.C.); (X.L.)
| | - Benjamin K. S. Thong
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (G.Y.); (L.W.); (B.K.S.T.); (Y.F.); (I.H.C.); (X.L.)
| | - Yuanyuan Fu
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (G.Y.); (L.W.); (B.K.S.T.); (Y.F.); (I.H.C.); (X.L.)
| | - Io Hong Cheong
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (G.Y.); (L.W.); (B.K.S.T.); (Y.F.); (I.H.C.); (X.L.)
| | - Zisis Kozlakidis
- International Agency for Research on Cancer, World Health Organization, 69372 Lyon, France;
| | - Xue Li
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (G.Y.); (L.W.); (B.K.S.T.); (Y.F.); (I.H.C.); (X.L.)
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (G.Y.); (L.W.); (B.K.S.T.); (Y.F.); (I.H.C.); (X.L.)
| | - Xiaoguang Li
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (G.Y.); (L.W.); (B.K.S.T.); (Y.F.); (I.H.C.); (X.L.)
| |
Collapse
|
2
|
Ploypetch S, Roytrakul S, Jaresitthikunchai J, Phaonakrop N, Krobthong S, Suriyaphol G. Salivary proteomics of canine oral tumors using MALDI-TOF mass spectrometry and LC-tandem mass spectrometry. PLoS One 2019; 14:e0219390. [PMID: 31318878 PMCID: PMC6638856 DOI: 10.1371/journal.pone.0219390] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/22/2019] [Indexed: 02/07/2023] Open
Abstract
Canine oral tumors are relatively common neoplasms in dogs. For disease monitoring and early diagnosis, salivary biomarkers are appropriate because saliva collection is non-invasive and requires no professional skills. In the era of omics, matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry (MALDI-TOF MS) coupled with liquid chromatography-tandem MS (LC-MS/MS) are suitable to identify potential disease-associated peptides and proteins. The present study aimed to use MALDI-TOF MS and LC-MS/MS to search for particular peptide mass fingerprints (PMFs) and conceivable biomarkers in saliva of dogs with early- and late-stage oral melanoma (EOM and LOM, respectively), oral squamous cell carcinoma (OSCC), benign oral tumors (BN), and periodontitis and healthy controls (CP). Pooled saliva samples in each group were used to be representative of population change. Unique PMFs were obtained and specific peptide fragments were sequenced by LC-MS/MS and BLAST-searched with mammalian protein databases. Seven peptide fragments appeared in the tumor groups (EOM, LOM, OSCC and BN) at 1096, 1208, 1322, 1794, 1864, 2354 and 2483 Da, two peptide fragments appeared in the LOM and OSCC groups at 2450 and 3492 Da, and in the CP controls at 2544 and 3026 Da. Also, protein–chemotherapy drug interaction networks were exhibited. Using western blot analysis, the expression of sentrin-specific protease 7 (SENP7), a peptide fragment at 1096 Da, in OSCC was significantly increased, as was the expression of TLR4, a peptide fragment at 3492 Da, in LOM and OSCC, compared with the CP group. The expression of nuclear factor kappa B (NF-κB), a TLR4 partner, was notably increased in OSCC compared with CP, BN and EOM. The expression was also enhanced in LOM compared with EOM. Expressed protein sequences from western blots were verified by LC-MS/MS. Western blots were then performed with individual samples in each group. The results showed the elevated expression of TLR4 in LOM and OSCC, compared with that in CP and BN, the increased expression of NF-κB in LOM and OSCC, compared with CP and in LOM compared with BN, and the enhanced expression of SENP7 in LOM and OSCC, compared with that in CP and BN. In conclusion, discrete clusters of EOM, LOM, OSCC, BN and CP groups and potential protein candidates associated with the diseases were demonstrated by salivary proteomics. Western blot analysis verified SENP7, TLR4 and NF-κB as potential salivary biomarkers of canine oral tumors.
Collapse
Affiliation(s)
- Sekkarin Ploypetch
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Companion Animal Cancer Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Janthima Jaresitthikunchai
- Proteomics Research Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Narumon Phaonakrop
- Proteomics Research Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sucheewin Krobthong
- Proteomics Research Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Gunnaporn Suriyaphol
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Companion Animal Cancer Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
3
|
Pisamai S, Roytrakul S, Phaonakrop N, Jaresitthikunchai J, Suriyaphol G. Proteomic analysis of canine oral tumor tissues using MALDI-TOF mass spectrometry and in-gel digestion coupled with mass spectrometry (GeLC MS/MS) approaches. PLoS One 2018; 13:e0200619. [PMID: 30001383 PMCID: PMC6042759 DOI: 10.1371/journal.pone.0200619] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/29/2018] [Indexed: 12/15/2022] Open
Abstract
Oral tumors, including highly invasive and metastatic oral melanoma (OM), non-tonsillar oral squamous cell carcinoma (OSCC) and benign tumors (BN), are common neoplasms in dogs. Although these tumors behave differently, limited data of their protein expression profiles have been exhibited, particularly at the proteome level. The present study aimed to i.) characterize peptide-mass fingerprints (PMFs) and identify potential protein candidates of OM, OSCC, BN and normal control subjects, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and liquid chromatography tandem mass spectrometry (LC-MS/MS), ii.) identify potential protein candidates associated with the diseases, using in-gel digestion coupled with mass spectrometric analysis (GeLC-MS/MS) and iii.) search for relationships between chemotherapy drugs and disease-perturbed proteins. A distinct cluster of each sample group and unique PMFs with identified protein candidates were revealed. The unique peptide fragment at 2,274 Da of sacsin molecular chaperone (SACS) was observed in early-stage OM whereas the fragment at 1,958 Da of sodium voltage-gated channel alpha subunit 10 (SCN10A) was presented in early- and late-stage OM. The peptide mass at 2,316 Da of Notch1 appeared in early-stage OM and benign oral tumors while the peptide mass at 2,505 Da of glutamate ionotropic receptor N-methyl-D-aspartate type subunit 3A (GRIN3A) was identified in all groups. Markedly expressed proteins from GeLC-MS/MS included Jumonji domain containing 1C (JMJD1C) in benign tumors, inversin (INVS) and rho guanine nucleotide exchange factor 28 (ARHGEF28) in OM, BTB domain-containing 16 (BTBD16) in OSCC, and protein tyrosine phosphatase non-receptor type 1 (PTPN1), BRCA2, DNA repair associated (BRCA2), WW domain binding protein 2 (WBP2), purinergic receptor P2Y1 and proteasome activator subunit 4 (PSME4) in all cancerous groups. The network connections between these proteins and chemotherapy drugs, cisplatin and doxorubicin, were also demonstrated. In conclusion, this study unveiled the unique PMFs and novel candidate protein markers of canine oral tumors.
Collapse
Affiliation(s)
- Sirinun Pisamai
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Companion Animal Cancer Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Narumon Phaonakrop
- Proteomics Research Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Janthima Jaresitthikunchai
- Proteomics Research Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Gunnaporn Suriyaphol
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Companion Animal Cancer Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
4
|
Olms C, Hix N, Neumann H, Yahiaoui-Doktor M, Remmerbach TW. Clinical comparison of liquid-based and conventional cytology of oral brush biopsies: a randomized controlled trial. Head Face Med 2018; 14:9. [PMID: 29843756 PMCID: PMC5975412 DOI: 10.1186/s13005-018-0166-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/15/2018] [Indexed: 11/10/2022] Open
Abstract
Background Exfoliative cytology performed on oral brush samples can help dentists to decide, whether a given oral lesion is (pre-) malignant. The use of non-invasive brush biopsies as an auxiliary tool in the diagnosis of oral mucosal lesions has gained renewed interest since improvements in cytological techniques such as the development of adjuvant diagnostic tools and liquid-based cell preparation techniques. Methods The aim of this study was to compare the quality of two different preparation techniques (cell collectors): the conventional transfer procedure to glass slides and the so-called liquid-based cytology preparation method. Cell smears were collected from 10 orally healthy individuals (mean age: 24 years) from the palatine mucosa at two different times (baseline and 4 weeks later). Slides of both techniques were stained by Giemsa (n = 40) and May-Gruenwald Giemsa (n = 40). The statistical analysis was performed with Excel. Results On specimen analysis, the liquid-based cytology showed statistically significant improvement compared to conventional glass sides (p < 0.001). Thin layers, which were performed by liquid-based cytology showed significantly better results in the parameters (p < 0.001): uniform distribution, cellular overlapping, cellular disformation, mucus, microbial colonies and debris. The conventional glass slides approach showed more cell overlapping and contamination with extraneous material than thin layers, which were performed by Orcellex® Brush cell collectors. Conclusions Both techniques are diagnostically reliable. The liquid-based method showed an overall improvement on sample preservation, specimen adequacy, visualization of cell morphology and reproducibility. Liquid-based cytology simplifies cell collection due to easier handling and less transfer errors by dentists.
Collapse
Affiliation(s)
- Constanze Olms
- Department of Dental Prosthodontics and Materials Science, University of Leipzig, Liebigstraße 12, 04103, Leipzig, Germany.
| | - Nathalie Hix
- Department of Dental Prosthodontics and Materials Science, University of Leipzig, Liebigstraße 12, 04103, Leipzig, Germany
| | - Heinrich Neumann
- Institute of Cytopathology, Am Propsthof 3, 53121, Bonn, Germany
| | - Maryam Yahiaoui-Doktor
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
| | - Torsten W Remmerbach
- Section of Oral Medicine, Department of Head Medicine and Oral Health, University of Leipzig, Liebigstraße 10-14, 04103, Leipzig, Germany
| |
Collapse
|
5
|
Kriegsmann J, Kriegsmann M, Casadonte R. MALDI TOF imaging mass spectrometry in clinical pathology: a valuable tool for cancer diagnostics (review). Int J Oncol 2014; 46:893-906. [PMID: 25482502 DOI: 10.3892/ijo.2014.2788] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/04/2014] [Indexed: 11/06/2022] Open
Abstract
Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) imaging mass spectrometry (IMS) is an evolving technique in cancer diagnostics and combines the advantages of mass spectrometry (proteomics), detection of numerous molecules, and spatial resolution in histological tissue sections and cytological preparations. This method allows the detection of proteins, peptides, lipids, carbohydrates or glycoconjugates and small molecules.Formalin-fixed paraffin-embedded tissue can also be investigated by IMS, thus, this method seems to be an ideal tool for cancer diagnostics and biomarker discovery. It may add information to the identification of tumor margins and tumor heterogeneity. The technique allows tumor typing, especially identification of the tumor of origin in metastatic tissue, as well as grading and may provide prognostic information. IMS is a valuable method for the identification of biomarkers and can complement histology, immunohistology and molecular pathology in various fields of histopathological diagnostics, especially with regard to identification and grading of tumors.
Collapse
Affiliation(s)
- Jörg Kriegsmann
- MVZ for Histology, Cytology and Molecular Diagnostics, Trier, Germany
| | - Mark Kriegsmann
- Institute for Pathology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
6
|
MALDI-ToF mass spectrometry for the rapid diagnosis of cancerous lung nodules. PLoS One 2014; 9:e97511. [PMID: 24830707 PMCID: PMC4022527 DOI: 10.1371/journal.pone.0097511] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 04/16/2014] [Indexed: 01/03/2023] Open
Abstract
Recently, tissue-based methods for proteomic analysis have been used in clinical research and appear reliable for digestive, brain, lymphomatous, and lung cancers classification. However simple, tissue-based methods that couple signal analysis to tissue imaging are time consuming. To assess the reliability of a method involving rapid tissue preparation and analysis to discriminate cancerous from non-cancerous tissues, we tested 141 lung cancer/non-tumor pairs and 8 unique lung cancer samples among the stored frozen samples of 138 patients operated on during 2012. Samples were crushed in water, and 1.5 µl was spotted onto a steel target for analysis with the Microflex LT analyzer (Bruker Daltonics). Spectra were analyzed using ClinProTools software. A set of samples was used to generate a random classification model on the basis of a list of discriminant peaks sorted with the k-nearest neighbor genetic algorithm. The rest of the samples (n = 43 cancerous and n = 41 non-tumoral) was used to verify the classification capability and calculate the diagnostic performance indices relative to the histological diagnosis. The analysis found 53 m/z valid peaks, 40 of which were significantly different between cancerous and non-tumoral samples. The selected genetic algorithm model identified 20 potential peaks from the training set and had 98.81% recognition capability and 89.17% positive predictive value. In the blinded set, this method accurately discriminated the two classes with a sensitivity of 86.7% and a specificity of 95.1% for the cancer tissues and a sensitivity of 87.8% and a specificity of 95.3% for the non-tumor tissues. The second model generated to discriminate primary lung cancer from metastases was of lower quality. The reliability of MALDI-ToF analysis coupled with a very simple lung preparation procedure appears promising and should be tested in the operating room on fresh samples coupled with the pathological examination.
Collapse
|
7
|
Yang Y, Rhodus NL, Ondrey FG, Wuertz BRK, Chen X, Zhu Y, Griffin TJ. Quantitative proteomic analysis of oral brush biopsies identifies secretory leukocyte protease inhibitor as a promising, mechanism-based oral cancer biomarker. PLoS One 2014; 9:e95389. [PMID: 24748380 PMCID: PMC3991667 DOI: 10.1371/journal.pone.0095389] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/25/2014] [Indexed: 11/25/2022] Open
Abstract
A decrease in the almost fifty percent mortality rate from oral cancer is needed urgently. Improvements in early diagnosis and more effective preventive treatments could affect such a decrease. Towards this end, we undertook for the first time an in-depth mass spectrometry-based quantitative shotgun proteomics study of non-invasively collected oral brush biopsies. Proteins isolated from brush biopsies from healthy normal tissue, oral premalignant lesion tissue (OPMLs), oral squamous cell carcinoma (OSCC) and matched control tissue were compared. In replicated proteomic datasets, the secretory leukocyte protease inhibitor (SLPI) protein stood out based on its decrease in abundance in both OPML and OSCC lesion tissues compared to healthy normal tissue. Western blotting in additional brushed biopsy samples confirmed a trend of gradual decreasing SLPI abundance between healthy normal and OPML tissue, with a larger decrease in OSCC lesion tissue. A similar SLPI decrease was observed in-vitro comparing model OPML and OSCC cell lines. In addition, exfoliated oral cells in patients’ whole saliva showed a loss of SLPI correlated with oral cancer progression. These results, combined with proteomics data indicating a decrease in SLPI in matched healthy control tissue from OSCC patients compared to tissue from healthy normal tissue, suggested a systemic decrease of SLPI in oral cells correlated with oral cancer development. Finally, in-vitro experiments showed that treatment with SLPI significantly decreased NF-kB activity in an OPML cell line. The findings indicate anti-inflammatory activity in OPML, supporting a mechanistic role of SLPI in OSCC progression and suggesting its potential for preventative treatment of at-risk oral lesions. Collectively, our results show for the first time the potential for SLPI as a mechanism-based, non-invasive biomarker of oral cancer progression with potential in preventive treatment.
Collapse
Affiliation(s)
- Ya Yang
- Department of General Dentistry, Ninth People’s Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Nelson L. Rhodus
- Oral Medicine, Diagnosis and Radiology, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Frank G. Ondrey
- Department of Otolaryngology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Beverly R. K. Wuertz
- Department of Otolaryngology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Xiaobing Chen
- Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yaqin Zhu
- Department of General Dentistry, Ninth People’s Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
- * E-mail: (YZ); (TJG)
| | - Timothy J. Griffin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (YZ); (TJG)
| |
Collapse
|
8
|
Rezende TMB, Lima SMF, Petriz BA, Silva ON, Freire MS, Franco OL. Dentistry proteomics: From laboratory development to clinical practice. J Cell Physiol 2013; 228:2271-84. [DOI: 10.1002/jcp.24410] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 05/21/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Taia M. B. Rezende
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
- Curso de Odontologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Stella M. F. Lima
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
- Curso de Odontologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Bernardo A. Petriz
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Osmar N. Silva
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Mirna S. Freire
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Octávio L. Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| |
Collapse
|
9
|
Maurer K, Eschrich K, Schellenberger W, Bertolini J, Rupf S, Remmerbach TW. Oral brush biopsy analysis by MALDI-ToF Mass Spectrometry for early cancer diagnosis. Oral Oncol 2013; 49:152-6. [DOI: 10.1016/j.oraloncology.2012.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 10/27/2022]
|
10
|
Romick-Rosendale LE, Lui VWY, Grandis JR, Wells SI. The Fanconi anemia pathway: repairing the link between DNA damage and squamous cell carcinoma. Mutat Res 2013; 743-744:78-88. [PMID: 23333482 DOI: 10.1016/j.mrfmmm.2013.01.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 01/03/2013] [Accepted: 01/05/2013] [Indexed: 12/18/2022]
Abstract
Fanconi anemia (FA) is a rare inherited recessive disease caused by mutations in one of fifteen genes known to encode FA pathway components. In response to DNA damage, nuclear FA proteins associate into high molecular weight complexes through a cascade of post-translational modifications and physical interactions, followed by the repair of damaged DNA. Hematopoietic cells are particularly sensitive to the loss of these interactions, and bone marrow failure occurs almost universally in FA patients. FA as a disease is further characterized by cancer susceptibility, which highlights the importance of the FA pathway in tumor suppression, and will be the focus of this review. Acute myeloid leukemia is the most common cancer type, often subsequent to bone marrow failure. However, FA patients are also at an extreme risk of squamous cell carcinoma (SCC) of the head and neck and gynecological tract, with an even greater incidence in those individuals who have received a bone marrow transplant and recovered from hematopoietic disease. FA tumor suppression in hematopoietic versus epithelial compartments could be mechanistically similar or distinct. Definition of compartment specific FA activities is now critical to assess the effects of today's bone marrow failure treatments on tomorrow's solid tumor development. It is our hope that current therapies can then be optimized to decrease the risk of malignant transformation in both hematopoietic and epithelial cells. Here we review our current understanding of the mechanisms of action of the Fanconi anemia pathway as it contributes to stress responses, DNA repair and squamous cell carcinoma susceptibility.
Collapse
Affiliation(s)
- Lindsey E Romick-Rosendale
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Vivian W Y Lui
- Department of Otolaryngology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jennifer R Grandis
- Department of Otolaryngology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Susanne I Wells
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
11
|
Lohavanichbutr P, Houck J, Doody DR, Wang P, Mendez E, Futran N, Upton MP, Holsinger FC, Schwartz SM, Chen C. Gene expression in uninvolved oral mucosa of OSCC patients facilitates identification of markers predictive of OSCC outcomes. PLoS One 2012; 7:e46575. [PMID: 23029552 PMCID: PMC3460916 DOI: 10.1371/journal.pone.0046575] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/31/2012] [Indexed: 01/06/2023] Open
Abstract
Oral and oropharyngeal squamous cell carcinomas (OSCC) are among the most common cancers worldwide, with approximately 60% 5-yr survival rate. To identify potential markers for disease progression, we used Affymetrix U133 plus 2.0 arrays to examine the gene expression profiles of 167 primary tumor samples from OSCC patients, 58 uninvolved oral mucosae from OSCC patients and 45 normal oral mucosae from patients without oral cancer, all enrolled at one of the three University of Washington-affiliated medical centers between 2003 to 2008. We found 2,596 probe sets differentially expressed between 167 tumor samples and 45 normal samples. Among 2,596 probe sets, 71 were significantly and consistently up- or down-regulated in the comparison between normal samples and uninvolved oral samples and between uninvolved oral samples and tumor samples. Cox regression analyses showed that 20 of the 71 probe sets were significantly associated with progression-free survival. The risk score for each patient was calculated from coefficients of a Cox model incorporating these 20 probe sets. The hazard ratio (HR) associated with each unit change in the risk score adjusting for age, gender, tumor stage, and high-risk HPV status was 2.7 (95% CI: 2.0–3.8, p = 8.8E-10). The risk scores in an independent dataset of 74 OSCC patients from the MD Anderson Cancer Center was also significantly associated with progression-free survival independent of age, gender, and tumor stage (HR 1.6, 95% CI: 1.1–2.2, p = 0.008). Gene Set Enrichment Analysis showed that the most prominent biological pathway represented by the 71 probe sets was the Integrin cell surface interactions pathway. In conclusion, we identified 71 probe sets in which dysregulation occurred in both uninvolved oral mucosal and cancer samples. Dysregulation of 20 of the 71 probe sets was associated with progression-free survival and was validated in an independent dataset.
Collapse
Affiliation(s)
- Pawadee Lohavanichbutr
- Program in Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - John Houck
- Program in Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - David R. Doody
- Program in Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Pei Wang
- Program in Biostatistics and Biomathematics, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Eduardo Mendez
- Department of Otolaryngology – Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
- Surgery and Perioperative Care Service, VA Puget Sound Health Care System, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Neal Futran
- Department of Otolaryngology – Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
| | - Melissa P. Upton
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - F. Christopher Holsinger
- Department of Otolaryngology – Head and Neck Surgery, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Stephen M. Schwartz
- Program in Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Chu Chen
- Program in Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Otolaryngology – Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
12
|
Hattersley SM, Sylvester DC, Dyer CE, Stafford ND, Haswell SJ, Greenman J. A microfluidic system for testing the responses of head and neck squamous cell carcinoma tissue biopsies to treatment with chemotherapy drugs. Ann Biomed Eng 2011; 40:1277-88. [PMID: 21997391 DOI: 10.1007/s10439-011-0428-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 10/01/2011] [Indexed: 12/29/2022]
Abstract
Tumors are heterogeneous masses of cells characterized pathologically by their size and spread. Their chaotic biology makes treatment of malignancies hard to generalize. We present a robust and reproducible glass microfluidic system, for the maintenance and "interrogation" of head and neck squamous cell carcinoma (HNSCC) tumor biopsies, which enables continuous media perfusion and waste removal, recreating in vivo laminar flow and diffusion-driven conditions. Primary HNSCC or metastatic lymph samples were subsequently treated with 5-fluorouracil and cisplatin, alone and in combination, and were monitored for viability and apoptotic biomarker release 'off-chip' over 7 days. The concentration of lactate dehydrogenase was initially high but rapidly dropped to minimally detectable levels in all tumor samples; conversely, effluent concentration of WST-1 (cell proliferation) increased over 7 days: both factors demonstrating cell viability. Addition of cell lysis reagent resulted in increased cell death and reduction in cell proliferation. An apoptotic biomarker, cytochrome c, was analyzed and all the treated samples showed higher levels than the control, with the combination therapy showing the greatest effect. Hematoxylin- and Eosin-stained sections from the biopsy, before and after maintenance, demonstrated the preservation of tissue architecture. This device offers a novel method of studying the tumor environment, and offers a pre-clinical model for creating personalized treatment regimens.
Collapse
Affiliation(s)
- Samantha M Hattersley
- Centre for Biomedical Research, Postgraduate Medical Institute, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK
| | | | | | | | | | | |
Collapse
|