1
|
Mangano C, Giuliani A, De Tullio I, Raspanti M, Piattelli A, Iezzi G. Case Report: Histological and Histomorphometrical Results of a 3-D Printed Biphasic Calcium Phosphate Ceramic 7 Years After Insertion in a Human Maxillary Alveolar Ridge. Front Bioeng Biotechnol 2021; 9:614325. [PMID: 33937211 PMCID: PMC8082101 DOI: 10.3389/fbioe.2021.614325] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/08/2021] [Indexed: 02/04/2023] Open
Abstract
Introduction: Dental implant placement can be challenging when insufficient bone volume is present and bone augmentation procedures are indicated. The purpose was to assess clinically and histologically a specimen of 30%HA-60%β-TCP BCP 3D-printed scaffold, after 7-years. Case Description: The patient underwent bone regeneration of maxillary buccal plate with 3D-printed biphasic-HA block in 2013. After 7-years, a specimen of the regenerated bone was harvested and processed to perform microCT and histomorphometrical analyses. Results: The microarchitecture study performed by microCT in the test-biopsy showed that biomaterial volume decreased more than 23% and that newly-formed bone volume represented more than 57% of the overall mineralized tissue. Comparing with unloaded controls or peri-dental bone, Test-sample appeared much more mineralized and bulky. Histological evaluation showed complete integration of the scaffold and signs of particles degradation. The percentage of bone, biomaterials and soft tissues was, respectively, 59.2, 25.6, and 15.2%. Under polarized light microscopy, the biomaterial was surrounded by lamellar bone. These results indicate that, while unloaded jaws mimicked the typical osteoporotic microarchitecture after 1-year without loading, the BCP helped to preserve a correct microarchitecture after 7-years. Conclusions: BCP 3D-printed scaffolds represent a suitable solution for bone regeneration: they can lead to straightforward and less time-consuming surgery, and to bone preservation.
Collapse
Affiliation(s)
| | - Alessandra Giuliani
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Ilaria De Tullio
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Mario Raspanti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy.,Chair of Biomaterials Engineering, Catholic University of San Antonio de Murcia (UCAM), Murcia, Spain.,Fondazione Villaserena per la Ricerca, Città Sant'Angelo, Italy
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
2
|
Integrated 3D Information for Custom-Made Bone Grafts: Focus on Biphasic Calcium Phosphate Bone Substitute Biomaterials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17144931. [PMID: 32650587 PMCID: PMC7399868 DOI: 10.3390/ijerph17144931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 12/24/2022]
Abstract
Purpose: Several studies showed that the sintering temperature of 1250 °C could affect the formation of α-Ca3(PO4)2, which is responsible for the reduction of the hardness value of biphasic calcium phosphate biocomposites, but they did not evaluate the inference of the sintering time at peak temperature on transition of β-Ca3(PO4)2 to α-Ca3(PO4)2. This analysis explored, in an innovative way, inferences and correlations between volumetric microstructure, mechanical properties, sintering temperature, and time at peak temperature in order to find the best sintering conditions for biphasic calcium phosphate composites grafted in severe alveolar bone defects. Methods: Sintered biphasic calcium phosphates (30%-hydroxyapatite/70%-tricalcium phosphate) were tested by microCT imaging for the 3D morphometric analysis, by compressive loading to find their mechanical parameters, and by X-ray diffraction to quantify the phases via Rietveld refinement for different sintering temperatures and times at the peak temperature. Data were analysed in terms of statistical inference using Pearson’s correlation coefficients. Results: All the studied scaffolds closely mimicked the alveolar organization of the jawbone, independently on the sintering temperatures and times; however, mechanical testing revealed that the group with peak temperature, which lasted for 2 hours at 1250 °C, showed the highest strength both at the ultimate point and at fracture point. Conclusion: The good mechanical performances of the group with peak temperature, which lasted for 2 hours at 1250 °C, is most likely due to the absence of the α-Ca3(PO4)2 phase, as revealed by X-ray diffraction. However, we detected its presence after sintering at the same peak temperature for longer times, showing the time-dependence, combined with the temperature-dependence, of the β-Ca3(PO4)2 to α-Ca3(PO4)2 transition.
Collapse
|
3
|
Iezzi G, Mangano C, Barone A, Tirone F, Baggi L, Tromba G, Piattelli A, Giuliani A. Jawbone remodeling: a conceptual study based on Synchrotron High-resolution Tomography. Sci Rep 2020; 10:3777. [PMID: 32123216 PMCID: PMC7052147 DOI: 10.1038/s41598-020-60718-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
One of the most important aspects of bone remodeling is the constant turnover mainly driven by the mechanical loading stimulus. The remodeling process produces changes not only in the bone microarchitecture but also in the density distribution of the mineralized matrix - i.e. in calcium concentrations- and in the osteocyte lacunar network. Synchrotron radiation-based X-ray microtomography (microCT) has proven to be an efficient technique, capable to achieve the analysis of 3D bone architecture and of local mineralization at different hierarchical length scales, including the imaging of the lacuno-canalicular network. In the present study, we used microCT within a conceptual study of jawbone remodeling, demonstratively focusing the investigation in two critical contexts, namely in the peri-dental and the peri-implant tissues. The microCT analysis showed that a relevant inhomogeneity was clearly present in both peri-dental and peri-implant biopsies, not only in terms of microarchitecture and mineralization degree, but also considering the lacunar network, i.e. size and numerical density of the osteocyte lacunae. The correlated histological results obtained on the same samples confirmed these observations, also adding information related to non-mineralized tissues. Despite its demonstrative nature, it was concluded that the proposed method was powerful in studying jawbone remodeling because it revealed a direct correlation of its rate with the lacunar density, as achieved by the analysis of the osteocyte lacunar network, and an inverse correlation with the local bone mineral density, as revealed with the Roschger approach.
Collapse
Affiliation(s)
- Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti Scalo, CH, Italy
| | | | - Antonio Barone
- Department of Medical, Surgical, Molecular and of the Critical Area Pathologies, University of Pisa, Pisa, Italy
| | | | - Luigi Baggi
- Department of Social Dentistry, National Institute for Health, Migration and Poverty, Rome, Italy.,School of Dentistry, University of Rome "Tor Vergata", Rome, Italy
| | | | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti Scalo, CH, Italy.,Chair of Biomaterials Engineering, Catholic University of Murcia (UCAM), Murcia, Spain.,Villa Serena Foundation for Research, Città Sant'Angelo (Pescara), Italy
| | - Alessandra Giuliani
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy.
| |
Collapse
|
4
|
Osteogenic Potential of Bovine Bone Graft in Combination with Laser Photobiomodulation: An Ex Vivo Demonstrative Study in Wistar Rats by Cross-Linked Studies Based on Synchrotron Microtomography and Histology. Int J Mol Sci 2020; 21:ijms21030778. [PMID: 31991756 PMCID: PMC7037661 DOI: 10.3390/ijms21030778] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Alveolar bone defects are usually the main concern when planning implant treatments for the appropriate oral rehabilitation of patients. To improve local conditions and achieve implant treatments, there are several methods used for increasing bone volume, among which one of the most successful, versatile, and effective is considered to be guided bone regeneration. The aim of this demonstrative study was to propose an innovative analysis protocol for the evaluation of the effect of photobiomodulation on the bone regeneration process, using rat calvarial defects of 5 mm in diameter, filled with xenograft, covered with collagen membrane, and then exposed to laser radiation. METHODS The animals were sacrificed at different points in time (i.e., after 14, 21, and 30 days). Samples of identical dimensions were harvested in order to compare the results obtained after different periods of healing. The analysis was performed by cross-linking the information obtained using histology and high-resolution synchrotron-based tomography on the same samples. A comparison was made with both the negative control (NC) group (with a bone defect which was left for spontaneous healing), and the positive control (PC) group (in which the bone defects were filled with xenografts and collagen membrane without receiving laser treatment). RESULTS We demonstrated that using photobiomodulation provides a better healing effect than when receiving only the support of the biomaterial. This effect has been evident for short times treatments, i.e., during the first 14 days after surgery. CONCLUSION The proposed analysis protocol was effective in detecting the presence of higher quantities of bone volumes under remodeling after photobiomodulation with respect to the exclusive bone regeneration guided by the xenograft.
Collapse
|
5
|
Advanced 3D Imaging of Uterine Leiomyoma's Morphology by Propagation-based Phase-Contrast Microtomography. Sci Rep 2019; 9:10580. [PMID: 31332223 PMCID: PMC6646365 DOI: 10.1038/s41598-019-47048-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
Uterine leiomyoma is the most common benign smooth muscle tumor in women pelvis, originating from the myometrium. It is caused by a disorder of fibrosis, with a large production and disruption of extracellular matrix (ECM). Medical treatments are still very limited and no preventative therapies have been developed. We supposed that synchrotron-based phase-contrast microtomography (PhC-microCT) may be an appropriate tool to assess the 3D morphology of uterine leiomyoma, without the use of any contrast agent. We used this technique to perform the imaging and the quantitative morphometric analysis of healthy myometrium and pathologic leiomyomas. The quantitative morphometric analysis of collagen bundles was coupled to the Roschger approach. This method, previously only used to evaluate mineralized bone density distribution, was applied here to study the fibrosis mass density distribution in healthy and pathologic biopsies from two patients. This protocol was shown to be powerful in studying uterine leiomyomas, detecting also small signs of the ECM alteration. This is of paramount importance not only for the follow-up of the present study, i.e. the investigation of different compounds and their possible therapeutic benefits, but also because it offers new methodologic possibilities for future studies of the ECM in soft tissues of different body districts.
Collapse
|
6
|
Comparative Study between Laser Light Stereo-Lithography 3D-Printed and Traditionally Sintered Biphasic Calcium Phosphate Scaffolds by an Integrated Morphological, Morphometric and Mechanical Analysis. Int J Mol Sci 2019; 20:ijms20133118. [PMID: 31247936 PMCID: PMC6651383 DOI: 10.3390/ijms20133118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 01/05/2023] Open
Abstract
In dental districts, successful bone regeneration using biphasic calcium phosphate materials was recently explored. The present study aimed to perform a comparative study between 3D-printed scaffolds produced by laser light stereo-lithography (SLA) and traditionally sintered biphasic calcium phosphate scaffolds by an integrated morphological, morphometric and mechanical analysis. Methods: Biphasic calcium phosphate (30% HA/70% β-TCP) samples, produced by SLA-3D-printing or by traditional sintering methods, were tested. The experimental sequence included: (1) Microtomography (microCT) analyses, to serve as control-references for the 3D morphometric analysis; (2) loading tests in continuous mode, with compression up to fracture, to reconstruct their mechanical characteristics; and (3) microCT of the same samples after the loading tests, for the prediction of the morphometric changes induced by compressive loading of the selected materials. All the biomaterials were also studied by complementary scanning electron microscopy to evaluate fracture regions and surfaces. Results: The characterization of the 3D mineralized microarchitecture showed that the SLA-3D-printed biomaterials offer performances comparable to and in some cases better than the traditionally sintered ones, with higher mean thickness of struts and pores. Interestingly, the SLA-3D-printed samples had a higher ultimate strength than the sintered ones, with a smaller plastic region. Moreover, by SEM observation, it was observed that fractures in the SLA-3D-printed samples were localized in the structure nodes or on the external shells of the rods, while all the traditionally sintered samples revealed a ductile fracture surface. Conclusions: The reduction of the region of plastic deformation in the SLA-3D-printed samples with respect to traditionally sintered biomaterials is expected to positively influence, in vivo, the cell adhesion. Both microCT and SEM imaging revealed that the studied biomaterials exhibit a structure more similar to human jaw than the sintered biomaterials.
Collapse
|
7
|
Sarmiento L AK. Resolution without surgery of an advanced stage of medication-related osteonecrosis of the jaw (MRONJ) in a patient who could not suspend her treatment for osteoporosis. Oral Oncol 2019; 99:104318. [PMID: 31174983 DOI: 10.1016/j.oraloncology.2019.05.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Ana Karina Sarmiento L
- Oral and Maxillofacial Surgeon at Fundación Santa Fé de Bogotá, Colombia; Professor at Universidad de los Andes Bogotá, Colombia.
| |
Collapse
|
8
|
Giuliani A, Iezzi G, Mozzati M, Gallesio G, Mazzoni S, Tromba G, Zanini F, Piattelli A, Mortellaro C. Three-dimensional microarchitecture and local mineralization of human jaws affected by bisphosphonate-related osteonecrosis. Oral Oncol 2018; 84:128-130. [PMID: 30033337 DOI: 10.1016/j.oraloncology.2018.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Alessandra Giuliani
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy.
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti Scalo, CH, Italy.
| | - Marco Mozzati
- SIOM Oral Surgery and Implantology Center, Torino, Italy.
| | | | - Serena Mazzoni
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | - Franco Zanini
- Elettra Sincrotrone Trieste S.C.p.A, Trieste, Italy.
| | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti Scalo, CH, Italy; Honorary Degree (Laurea Honoris Causa), University of Valencia, Valencia, Spain; Honorary Degree (Laurea Honoris Causa), Catholic University of San Antonio de Murcia (UCAM), Murcia, Spain.
| | - Carmen Mortellaro
- Science Department, Department of Health Sciences ''A. Avogadro,'' University of Eastern Piedmont, Novara, Italy.
| |
Collapse
|