1
|
Pomella S, Melaiu O, Dri M, Martelli M, Gargari M, Barillari G. Effects of Angiogenic Factors on the Epithelial-to-Mesenchymal Transition and Their Impact on the Onset and Progression of Oral Squamous Cell Carcinoma: An Overview. Cells 2024; 13:1294. [PMID: 39120324 PMCID: PMC11311310 DOI: 10.3390/cells13151294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
High levels of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF)-2 and angiopoietin (ANG)-2 are found in tissues from oral squamous cell carcinoma (OSCC) and oral potentially malignant disorders (OPMDs). As might be expected, VEGF, FGF-2, and ANG-2 overexpression parallels the development of new blood and lymphatic vessels that nourish the growing OPMDs or OSCCs and provide the latter with metastatic routes. Notably, VEGF, FGF-2, and ANG-2 are also linked to the epithelial-to-mesenchymal transition (EMT), a trans-differentiation process that respectively promotes or exasperates the invasiveness of normal and neoplastic oral epithelial cells. Here, we have summarized published work regarding the impact that the interplay among VEGF, FGF-2, ANG-2, vessel generation, and EMT has on oral carcinogenesis. Results from the reviewed studies indicate that VEGF, FGF-2, and ANG-2 spark either protein kinase B (AKT) or mitogen-activated protein kinases (MAPK), two signaling pathways that can promote both EMT and new vessels' formation in OPMDs and OSCCs. Since EMT and vessel generation are key to the onset and progression of OSCC, as well as to its radio- and chemo-resistance, these data encourage including AKT or MAPK inhibitors and/or antiangiogenic drugs in the treatment of this malignancy.
Collapse
Affiliation(s)
- Silvia Pomella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Maria Dri
- Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Mirko Martelli
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Marco Gargari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| |
Collapse
|
2
|
Shaikh S, Basu S, Bag S, Chatterjee A, Datta S, Banerjee D, Manikantan K, Arun I, Arun P, Biswas NK, Maitra A, Mishra DK, Majumder PP, Dhar H, Mukherjee G. Uracil as a biomarker for spatial pyrimidine metabolism in the development of gingivobuccal oral squamous cell carcinoma. Sci Rep 2024; 14:11609. [PMID: 38773214 PMCID: PMC11109148 DOI: 10.1038/s41598-024-62434-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
No biomarker has yet been identified that allows accurate diagnosis and prognosis of oral cancers. In this study, we investigated the presence of key metabolites in oral cancer using proton nuclear magnetic resonance (NMR) spectroscopy to identify metabolic biomarkers of gingivobuccal oral squamous cell carcinoma (GB-OSCC). NMR spectroscopy revealed that uracil was expressed in 83.09% of tumor tissues and pyrimidine metabolism was active in GB-OSCC; these results correlated well with immunohistochemistry (IHC) and RNA sequencing data. Based on further gene and protein analyses, we proposed a pathway for the production of uracil in GB-OSCC tissues. Uridinetriphosphate (UTP) is hydrolyzed to uridine diphosphate (UDP) by CD39 in the tumor microenvironment (TME). We hypothesized that UDP enters the cell with the help of the UDP-specific P2Y6 receptor for further processing by ENTPD4/5 to produce uracil. As the ATP reserves diminish, the weakened immune cells in the TME utilize pyrimidine metabolism as fuel for antitumor activity, and the same mechanism is hijacked by the tumor cells to promote their survival. Correspondingly, the differential expression of ENTPD4 and ENTPD5 in immune and tumor cells, respectively, indicatedtheir involvement in disease progression. Furthermore, higher uracil levels were detected in patients with lymph node metastasis, indicating that metastatic potential is increased in the presence of uracil. The presence of uracil and/or expression patterns of intermediate molecules in purine and pyrimidine pathways, such asCD39, CD73, and P2Y6 receptors together with ENTPD4 and ENTPD5, hold promise as biomarker(s) for oral cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Soni Shaikh
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India
- Tata Consultancy Services (TCS), Kolkata, WB, India
| | - Sangramjit Basu
- Tata Translational Cancer Research Centre (TTCRC), 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India
| | - Swarnendu Bag
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, New Delhi, 110007, India
| | - Ankita Chatterjee
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, WB, 741251, India
| | - Sourav Datta
- Narayana Superspeciality Hospital, 120, 1, Andul Rd, Shibpur, Howrah, WB, 711103, India
- Medica Superspecialty Hospital, 127, Eastern Metropolitan Bypass, Nitai Nagar, Mukundapur, Kolkata, WB, 700099, India
| | - Devmalya Banerjee
- Narayana Superspeciality Hospital, 120, 1, Andul Rd, Shibpur, Howrah, WB, 711103, India
| | - Kapila Manikantan
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India
| | - Indu Arun
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India
| | - Pattatheyil Arun
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India
| | - Nidhan K Biswas
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, WB, 741251, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, WB, 741251, India
| | - Deepak Kumar Mishra
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India
| | - Partha P Majumder
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, WB, 741251, India
- John C. Martin Centre for Liver Research and Innovations, Sitala East, IILDS, Hospital Road, Rajpur Sonarpur, Kolkata, WB, 700150, India
| | - Harsh Dhar
- Narayana Superspeciality Hospital, 120, 1, Andul Rd, Shibpur, Howrah, WB, 711103, India.
- Medica Superspecialty Hospital, 127, Eastern Metropolitan Bypass, Nitai Nagar, Mukundapur, Kolkata, WB, 700099, India.
| | - Geetashree Mukherjee
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India.
| |
Collapse
|
3
|
Baskar G, Palaniyandi T, Viswanathan S, Wahab MRA, Surendran H, Ravi M, Sivaji A, Rajendran BK, Natarajan S, Govindasamy G. Recent and advanced therapy for oral cancer. Biotechnol Bioeng 2023; 120:3105-3115. [PMID: 37243814 DOI: 10.1002/bit.28452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Oral cancer is a common and deadly kind of tissue invasion, has a high death rate, and may induce metastasis that mostly affects adults over the age of 40. Most in vitro traditional methods for studying cancer have included the use of monolayer cell cultures and several animal models. There is a worldwide effort underway to reduce the excessive use of laboratory animals since, although being physiologically adequate, animal models rarely succeed in exactly mimicking human models. 3D culture models have gained great attention in the area of biomedicine because of their capacity to replicate parent tissue. There are many benefits to using a drug delivery approach based on nanoparticles in cancer treatment. Because of this, in vitro test methodologies are crucial for evaluating the efficacy of prospective novel nanoparticle drug delivery systems. This review discusses current advances in the utility of 3D cell culture models including multicellular spheroids, patient-derived explant cultures, organoids, xenografts, 3D bioprinting, and organoid-on-a-chip models. Aspects of nanoparticle-based drug discovery that have utilized 2D and 3D cultures for a better understanding of genes implicated in oral cancers are also included in this review.
Collapse
Affiliation(s)
- Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
- Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - Mugip Rahaman Abdul Wahab
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, India
| | | | - Sudhakar Natarajan
- Department of HIV/AIDS, ICMR - National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | - Gopu Govindasamy
- Department of Surgical Oncology, Rajiv Gandhi Government General Hospital and Madras Medical College, Chennai, India
| |
Collapse
|
4
|
Kumari P, Ghosh S, Acharya S, Mitra P, Roy S, Ghosh S, Maji M, Singh S, Mukherjee A. Cytotoxic Imidazolyl-Mesalazine Ester-Based Ru(II) Complexes Reduce Expression of Stemness Genes and Induce Differentiation of Oral Squamous Cell Carcinoma. J Med Chem 2023; 66:14061-14079. [PMID: 37831489 DOI: 10.1021/acs.jmedchem.3c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The aggressiveness and recurrence of cancer is linked to cancer stem cells (CSCs), but drugs targeting CSCs may not succeed in the clinic due to the lack of a distinct CSC subpopulation. Clinical Pt(II) drugs can increase stemness. We screened 15 RuII or IrIII complexes with mesalazine or 3-aminobenzoate Schiff bases of the general formulas [Ru(p-cym)L]+, [Ru(p-cym)L], and [Ir(Cp*)L]+ (L = L1-L9) and found three complexes (2, 12, and 13) that are active against oral squamous cell carcinoma (OSCC) CSCs. There is a putative oncogenic role of transcription factors (viz. NOTCH1, SOX2, c-MYC) to enhance the stemness. Our work shows that imidazolyl-mesalazine ester-based RuII complexes inhibit growth of CSC-enriched OSCC 3D spheroids at low micromolar doses (2 μM). Complexes 2, 12, and 13 reduce stemness gene expression and induce differentiation markers (Involucrin, CK10) in OSCC 3D cultures. The imidazolyl-mesalazine ester-based RuII complex 13 shows the strongest effect. Downregulating c-MYC suggests that RuII complexes may target c-MYC-driven cancers.
Collapse
Affiliation(s)
- Pragya Kumari
- Department of Chemical Sciences and Centre for Advance Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India
| | - Subhashis Ghosh
- National Institute of Biomedical Genomics, Kalyani-741251, West Bengal, India
| | - Sourav Acharya
- Department of Chemical Sciences and Centre for Advance Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India
| | - Paromita Mitra
- National Institute of Biomedical Genomics, Kalyani-741251, West Bengal, India
| | - Souryadip Roy
- Department of Chemical Sciences and Centre for Advance Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India
| | - Shilpendu Ghosh
- Department of Chemical Sciences and Centre for Advance Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India
| | - Moumita Maji
- Department of Chemical Sciences and Centre for Advance Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India
| | - Sandeep Singh
- National Institute of Biomedical Genomics, Kalyani-741251, West Bengal, India
| | - Arindam Mukherjee
- Department of Chemical Sciences and Centre for Advance Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India
| |
Collapse
|
5
|
A Novel Tongue Squamous Cell Carcinoma Cell Line Escapes from Immune Recognition due to Genetic Alterations in HLA Class I Complex. Cells 2022; 12:cells12010035. [PMID: 36611830 PMCID: PMC9818362 DOI: 10.3390/cells12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) have made progress in the field of anticancer treatment, but a certain number of PD-L1 negative OSCC patients still have limited benefits from ICI immuno-therapy because of primary immune evasion due to immunodeficiency. However, in existing human OSCC cell lines, cell models that can be used to study immunodeficiency have not been reported. The objective of this study was to establish a PD-L1 negative OSCC cell line, profile whether the presence of mutated genes is associated with immune deficiency, and explore its influence on the immune recognition of CD8+ T cells in vitro. Here, we established a novel tongue SCC cell line (WU-TSC-1), which escapes from immune recognition by antigen presentation defects. This cell line was from a female patient who lacked typical causative factors. The expression of PD-L1 was negative in the WU-TSC-1 primary tumor, transplanted tumor, cultured cells and lipopolysaccharide stimulation. Whole exome sequencing (WES) revealed that WU-TSC-1 harbored missense mutations, loss of copy number and structural variations in human leukocyte antigen (HLA) class I/II genes. The tumor mutation burden (TMB) score was high at 292.28. In addition, loss of heterozygosity at beta-2-microglobulin (B2M)-a component of all HLA class I complex allotypes-was detected. Compared with the commonly used OSCC cell lines, genetic alterations in HLA class I and B2M impeded the proteins' translation and inhibited the activation and killing effect of CD8+ T cells. In all, the WU-TSC-1 cell line is characterized by genetic variations and functional defects of the HLA class I complex, leading to escape from recognition by CD8+ T cells.
Collapse
|
6
|
Ghosh S, Mitra P, Saha U, Vipparthi K, Singh S. Characterizing diversity among human oral stem-like cancer cells using flow cytometry. STAR Protoc 2022; 3:101763. [PMID: 36223267 PMCID: PMC9576741 DOI: 10.1016/j.xpro.2022.101763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022] Open
Abstract
We have developed the protocol of flow cytometry for characterizing diversity among oral stem-like cancer cells (SLCCs) using CD44, CD24, and aldehyde dehydrogenase (ALDH) in oral tumors. We are also reporting the protocol for tumor-derived explant cultures to develop oral cancer cell lines and enriching these diverse hybrid states of cancer cells in 3D spheroids from established cell lines. For complete details on the use and execution of this protocol, please refer to Vipparthi et al. (2022) and Vipparthi et al. (2021).
Collapse
Affiliation(s)
- Subhashis Ghosh
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Paromita Mitra
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Uday Saha
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Kavya Vipparthi
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Sandeep Singh
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India,Corresponding author
| |
Collapse
|
7
|
Lan T, Ge Q, Zheng K, Huang L, Yan Y, Zheng L, Lu Y, Zheng D. FAT1 Upregulates in Oral Squamous Cell Carcinoma and Promotes Cell Proliferation via Cell Cycle and DNA Repair. Front Oncol 2022; 12:870055. [PMID: 35646625 PMCID: PMC9130556 DOI: 10.3389/fonc.2022.870055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/23/2022] [Indexed: 12/27/2022] Open
Abstract
Objective Previous studies have revealed that FAT atypical cadherin 1 (FAT1) plays a tumor-suppressive or oncogenic role in a context-dependent manner in various cancers. However, the functions of FAT1 are ambiguous in tumorigenesis owing to inconsistent research in oral squamous cell carcinoma (OSCC). The present study aimed at gaining an insight into the role of FAT1 in the tumor genesis and development. Methods The expression, mutant, and survival data analyses were done using data from The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database, verified with clinical samples via real-time polymerase chain reaction (qRT-PCR), Western blot (WB), and immunohistochemical (IHC) staining. OSCC cells transfected with siRNA were employed for in vitro assessment in cell proliferation, apoptosis, and migration ability in appropriate ways. The underlying mechanism was explored by RNA sequencing after FAT1 silencing. Results Overall, FAT1 significantly increased in OSCC with a poor prognosis outcome. The in vitro experiment showed the promoting effect of FAT1 in the proliferation and migration of OSCC cells. FAT1 can also inhibit both the early and late apoptosis of OSCC cells. RNA-sequencing analysis of FAT1 silencing revealed that the cell cycle, DNA replication, and some core genes (MCM2, MCM5, CCNE1 SPC24, MYBL2, KIF2C) may be the potential mechanism in OSCC. Conclusions FAT1 may act as an oncogene in OSCC with potential mechanism influencing the cell cycle and DNA repair.
Collapse
Affiliation(s)
- Ting Lan
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Qi Ge
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Ke Zheng
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Li Huang
- Department of Dentistry, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yuxiang Yan
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Lixin Zheng
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA, United States
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Vipparthi K, Hari K, Chakraborty P, Ghosh S, Patel AK, Ghosh A, Biswas NK, Sharan R, Arun P, Jolly MK, Singh S. Emergence of hybrid states of stem-like cancer cells correlates with poor prognosis in oral cancer. iScience 2022; 25:104317. [PMID: 35602941 PMCID: PMC9114525 DOI: 10.1016/j.isci.2022.104317] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/14/2022] [Accepted: 04/22/2022] [Indexed: 12/26/2022] Open
Abstract
Cancer cell state transitions emerged as powerful mechanisms responsible for drug tolerance and overall poor prognosis; however, evidences were largely missing in oral cancer. Here, by multiplexing phenotypic markers of stem-like cancer cells (SLCCs); CD44, CD24 and aldehyde dehydrogenase (ALDH), we characterized diversity among multiple oral tumor tissues and cell lines. Two distinct patterns of spontaneous transitions with stochastic bidirectional interconversions on ‘ALDH-axis’, and unidirectional non-interconvertible transitions on ‘CD24-axis’ were observed. Interestingly, plastic ‘ALDH-axis’ was harnessed by cells to adapt to a Cisplatin tolerant state. Furthermore, phenotype-specific RNA sequencing suggested the possible maintenance of intermediate hybrid cell states maintaining stemness within the differentiating subpopulations. Importantly, survival analysis with subpopulation-specific gene sets strongly suggested that cell-state transitions may drive non-genetic heterogeneity, resulting in poor prognosis. Therefore, we have described the phenotypic-composition of heterogeneous subpopulations critical for global tumor behavior in oral cancer; which may provide prerequisite knowledge for treatment strategies. Demonstrated population trajectory driven non-genetic heterogeneity in oral cancer Created transition maps for subpopulations using discrete time Markov chain model Demonstrated maintenance of stemness in cells undergoing differentiation Uniquely expressed genes of these subpopulations associated with disease prognosis
Collapse
Affiliation(s)
- Kavya Vipparthi
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Kishore Hari
- Centre for BioSystems Science and Engineering, India Institute of Science, Bengaluru, Karnataka 560012, India
| | - Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, India Institute of Science, Bengaluru, Karnataka 560012, India
| | - Subhashis Ghosh
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Ankit Kumar Patel
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Arnab Ghosh
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Nidhan Kumar Biswas
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Rajeev Sharan
- Head and Neck Surgery, Tata Medical Center, Kolkata, West Bengal 700160, India
| | - Pattatheyil Arun
- Head and Neck Surgery, Tata Medical Center, Kolkata, West Bengal 700160, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, India Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sandeep Singh
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| |
Collapse
|
9
|
Molecular Research on Oral Diseases and Related Biomaterials: A Journey from Oral Cell Models to Advanced Regenerative Perspectives. Int J Mol Sci 2022; 23:ijms23095288. [PMID: 35563679 PMCID: PMC9105421 DOI: 10.3390/ijms23095288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 02/05/2023] Open
Abstract
Oral diseases such as gingivitis, periodontitis, and oral cancer affect millions of people worldwide. Much research has been conducted to understand the pathogenetic mechanisms of these diseases and translate this knowledge into therapeutics. This review aims to take the reader on a journey from the initial molecular discoveries to complex regenerative issues in oral medicine. For this, a semi-systematic literature search was carried out in Medline and Web of Science databases to retrieve the primary literature describing oral cell models and biomaterial applications in oral regenerative medicine. First, an in vitro cell model of gingival keratinocytes is discussed, which illustrates patho- and physiologic principles in the context of oral epithelial homeostasis and carcinogenesis and represents a cellular tool to understand biomaterial-based approaches for periodontal tissue regeneration. Consequently, a layered gradient nonwoven (LGN) is described, which demonstrates that the key features of biomaterials serve as candidates for oral tissue regeneration. LGN supports proper tissue formation and obeys the important principles for molecular mechanotransduction. Furthermore, current biomaterial-based tissue regeneration trends, including polymer modifications, cell-based treatments, antimicrobial peptides and optogenetics, are introduced to represent the full spectrum of current approaches to oral disease mitigation and prevention. Altogether, this review is a foray through established and new concepts in oral regenerative medicine and illustrates the process of knowledge translation from basic molecular and cell biological research to future clinical applications.
Collapse
|