1
|
Loozen LD, Kruyt MC, Kragten AHM, Schoenfeldt T, Croes M, Oner CF, Dhert WJA, Alblas J. BMP-2 gene delivery in cell-loaded and cell-free constructs for bone regeneration. PLoS One 2019; 14:e0220028. [PMID: 31365542 PMCID: PMC6668905 DOI: 10.1371/journal.pone.0220028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/08/2019] [Indexed: 11/18/2022] Open
Abstract
To induce osteogenicity in bone graft substitutes, plasmid-based expression of BMP-2 (pBMP-2) has been successfully applied in gene activated matrices based on alginate polymer constructs. Here, we investigated whether cell seeding is necessary for non-viral BMP-2 gene expression in vivo. Furthermore, to gain insight in the role of BMP-producing cells, we compared inclusion of bone progenitor cells with non-osteogenic target cells in gene delivery constructs. Plasmid DNA encoding GFP (pGFP) was used to trace transfection of host tissue cells and seeded cells in a rat model. Transgene expression was followed in both cell-free alginate-ceramic constructs as well as constructs seeded with syngeneic fibroblasts or multipotent mesenchymal stromal cells (MSCs). Titration of pGFP revealed that the highest pGFP dose resulted in frequent presence of positive host cells in the constructs. Both cell-loaded groups were associated with transgene expression, most effectively in the MSC-loaded constructs. Subsequently, we investigated effectiveness of cell-free and cell-loaded alginate-ceramic constructs with pBMP-2 to induce bone formation. Local BMP-2 production was found in all groups containing BMP-2 plasmid DNA, and was most pronounced in the groups with MSCs transfected with high concentration pBMP-2. Bone formation was only apparent in the recombinant protein BMP-2 group. In conclusion, we show that non-viral gene delivery of BMP-2 is a potentially effective way to induce transgene expression in vivo, both in cell-seeded as well as cell-free conditions. However, alginate-based gene delivery of BMP-2 to host cells or seeded cells did not result in protein levels adequate for bone formation in this setting, calling for more reliable scaffold compatible transfection methods.
Collapse
Affiliation(s)
- Loek D. Loozen
- Dept. Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Moyo C. Kruyt
- Dept. Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Ted Schoenfeldt
- Dept. Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michiel Croes
- Dept. Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cumhur F. Oner
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Wouter J. A. Dhert
- Dept. Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jacqueline Alblas
- Dept. Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
Loozen LD, Kruyt MC, Vandersteen A, Kragten AHM, Croes M, Öner FC, Alblas J. Osteoinduction by Ex Vivo Nonviral Bone Morphogenetic Protein Gene Delivery Is Independent of Cell Type. Tissue Eng Part A 2018; 24:1423-1431. [PMID: 29766760 DOI: 10.1089/ten.tea.2018.0032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ex vivo nonviral gene delivery of bone inductive factors has the potential to heal bone defects. Due to their inherent role in new bone formation, multipotent stromal cells (MSCs) have been studied as the primary target cell for gene delivery in a preclinical setting. The relative contribution of autocrine and paracrine mechanisms, and the need of osteogenic cells, remains unclear. This study investigates the contribution of MSCs as producer of transgenic bone morphogenetic proteins (BMPs) and to what extent the seeded MSCs participate in actual osteogenesis. Rat-derived MSCs or fibroblasts (FBs) were cotransfected with pBMP-2 and pBMP-6 or pBMP-7 via nucleofection. The bioactivity of BMP products was shown through in vitro osteogenic differentiation assays. To investigate their role in new bone formation, transfected cells were seeded on ceramic scaffolds and implanted subcutaneously in rats. Bone formation was assessed by histomorphometry after 8 weeks. As a proof of principle, we also investigated the suitability of bone marrow-derived mononuclear cells and the stromal vascular fraction isolated from adipose tissue for a one-stage gene delivery strategy. Bone formation was induced in all conditions containing cells overexpressing BMP heterodimers. Constructs seeded with FBs transfected with BMP-2/6 and MSCs transfected with BMP-2/6 showed comparable bone volumes, both significantly higher than controls. Single-stage gene delivery proved possible and resulted in some bone formation. We conclude that bone formation as a result of ex vivo BMP gene delivery can be achieved even without direct osteogenic potential of the transfected cell type, suggesting that transfected cells mainly function as a production facility for osteoinductive proteins. In addition, single-stage transfection and reimplantation of cells appeared feasible, thus facilitating future clinical translation of the method.
Collapse
Affiliation(s)
- Loek D Loozen
- Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Moyo C Kruyt
- Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Angela Vandersteen
- Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Angela H M Kragten
- Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Michiel Croes
- Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| | - F Cumhur Öner
- Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Jacqueline Alblas
- Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| |
Collapse
|
3
|
Corre P, Merceron C, Vignes C, Sourice S, Masson M, Durand N, Espitalier F, Pilet P, Cordonnier T, Mercier J, Remy S, Anegon I, Weiss P, Guicheux J. Determining a clinically relevant strategy for bone tissue engineering: an "all-in-one" study in nude mice. PLoS One 2013; 8:e81599. [PMID: 24349093 PMCID: PMC3862877 DOI: 10.1371/journal.pone.0081599] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 10/15/2013] [Indexed: 11/20/2022] Open
Abstract
Purpose Autologous bone grafting (BG) remains the standard reconstruction strategy for large craniofacial defects. Calcium phosphate (CaP) biomaterials, such as biphasic calcium phosphate (BCP), do not yield consistent results when used alone and must then be combined with cells through bone tissue engineering (BTE). In this context, total bone marrow (TBM) and bone marrow-derived mesenchymal stem cells (MSC) are the primary sources of cellular material used with biomaterials. However, several other BTE strategies exist, including the use of growth factors, various scaffolds, and MSC isolated from different tissues. Thus, clinicians might be unsure as to which method offers patients the most benefit. For this reason, the aim of this study was to compare eight clinically relevant BTE methods in an “all-in-one” study. Methods We used a transgenic rat strain expressing green fluorescent protein (GFP), from which BG, TBM, and MSC were harvested. Progenitor cells were then mixed with CaP materials and implanted subcutaneously into nude mice. After eight weeks, bone formation was evaluated by histology and scanning electron microscopy, and GFP-expressing cells were tracked with photon fluorescence microscopy. Results/Conclusions Bone formation was observed in only four groups. These included CaP materials mixed with BG or TBM, in which abundant de novo bone was formed, and BCP mixed with committed cells grown in two- and three-dimensions, which yielded limited bone formation. Fluorescence microscopy revealed that only the TBM and BG groups were positive for GFP expressing-cells, suggesting that these donor cells were still present in the host and contributed to the formation of bone. Since the TBM-based procedure does not require bone harvest or cell culture techniques, but provides abundant de novo bone formation, we recommend consideration of this strategy for clinical applications.
Collapse
Affiliation(s)
- Pierre Corre
- INSERM (Institut National de la Santé et de la Recherche Médicale), UMR (Unité Mixte de Recherche) 791, center for osteoarticular and dental tissue engineering, Université de Nantes, Nantes, France
- Centre Hospitalier Universitaire de Nantes, Clinique de Stomatologie et de Chirurgie maxillo-faciale, Nantes, France
- Centre Hospitalier Universitaire de Nantes, Pôle Hospitalo-Universitaire 4, Nantes, France
- * E-mail:
| | - Christophe Merceron
- INSERM (Institut National de la Santé et de la Recherche Médicale), UMR (Unité Mixte de Recherche) 791, center for osteoarticular and dental tissue engineering, Université de Nantes, Nantes, France
- Centre Hospitalier Universitaire de Nantes, Pôle Hospitalo-Universitaire 4, Nantes, France
| | - Caroline Vignes
- INSERM (Institut National de la Santé et de la Recherche Médicale), UMR (Unité Mixte de Recherche) 791, center for osteoarticular and dental tissue engineering, Université de Nantes, Nantes, France
- Centre Hospitalier Universitaire de Nantes, Pôle Hospitalo-Universitaire 4, Nantes, France
| | - Sophie Sourice
- INSERM (Institut National de la Santé et de la Recherche Médicale), UMR (Unité Mixte de Recherche) 791, center for osteoarticular and dental tissue engineering, Université de Nantes, Nantes, France
- Centre Hospitalier Universitaire de Nantes, Pôle Hospitalo-Universitaire 4, Nantes, France
| | - Martial Masson
- INSERM (Institut National de la Santé et de la Recherche Médicale), UMR (Unité Mixte de Recherche) 791, center for osteoarticular and dental tissue engineering, Université de Nantes, Nantes, France
- Centre Hospitalier Universitaire de Nantes, Pôle Hospitalo-Universitaire 4, Nantes, France
| | - Nicolas Durand
- INSERM (Institut National de la Santé et de la Recherche Médicale), UMR (Unité Mixte de Recherche) 791, center for osteoarticular and dental tissue engineering, Université de Nantes, Nantes, France
- Centre Hospitalier Universitaire de Nantes, Clinique d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, Nantes, France
- Centre Hospitalier Universitaire de Nantes, Pôle Hospitalo-Universitaire 4, Nantes, France
| | - Florent Espitalier
- INSERM (Institut National de la Santé et de la Recherche Médicale), UMR (Unité Mixte de Recherche) 791, center for osteoarticular and dental tissue engineering, Université de Nantes, Nantes, France
- Centre Hospitalier Universitaire de Nantes, Clinique d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, Nantes, France
- Centre Hospitalier Universitaire de Nantes, Pôle Hospitalo-Universitaire 4, Nantes, France
| | - Paul Pilet
- INSERM (Institut National de la Santé et de la Recherche Médicale), UMR (Unité Mixte de Recherche) 791, center for osteoarticular and dental tissue engineering, Université de Nantes, Nantes, France
- Centre Hospitalier Universitaire de Nantes, Pôle Hospitalo-Universitaire 4, Nantes, France
| | - Thomas Cordonnier
- INSERM (Institut National de la Santé et de la Recherche Médicale), UMR (Unité Mixte de Recherche) 791, center for osteoarticular and dental tissue engineering, Université de Nantes, Nantes, France
- Centre Hospitalier Universitaire de Nantes, Pôle Hospitalo-Universitaire 4, Nantes, France
| | - Jacques Mercier
- Centre Hospitalier Universitaire de Nantes, Clinique de Stomatologie et de Chirurgie maxillo-faciale, Nantes, France
- Centre Hospitalier Universitaire de Nantes, Pôle Hospitalo-Universitaire 4, Nantes, France
| | - Séverine Remy
- INSERM, UMR 1064, Centre pour la recherche en transplantation et immunologie et Plate-forme Transgenic Rats Nantes, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Ignacio Anegon
- INSERM, UMR 1064, Centre pour la recherche en transplantation et immunologie et Plate-forme Transgenic Rats Nantes, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Pierre Weiss
- INSERM (Institut National de la Santé et de la Recherche Médicale), UMR (Unité Mixte de Recherche) 791, center for osteoarticular and dental tissue engineering, Université de Nantes, Nantes, France
- Centre Hospitalier Universitaire de Nantes, Pôle Hospitalo-Universitaire 4, Nantes, France
| | - Jérôme Guicheux
- INSERM (Institut National de la Santé et de la Recherche Médicale), UMR (Unité Mixte de Recherche) 791, center for osteoarticular and dental tissue engineering, Université de Nantes, Nantes, France
- Centre Hospitalier Universitaire de Nantes, Pôle Hospitalo-Universitaire 4, Nantes, France
| |
Collapse
|
4
|
Rai B, Lin JL, Lim ZX, Guldberg RE, Hutmacher DW, Cool SM. Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL–TCP scaffolds. Biomaterials 2010; 31:7960-70. [DOI: 10.1016/j.biomaterials.2010.07.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 07/01/2010] [Indexed: 01/13/2023]
|
5
|
Giannoni P, Scaglione S, Daga A, Ilengo C, Cilli M, Quarto R. Short-time survival and engraftment of bone marrow stromal cells in an ectopic model of bone regeneration. Tissue Eng Part A 2010; 16:489-99. [PMID: 19712045 DOI: 10.1089/ten.tea.2009.0041] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In tissue-engineered applications bone marrow stromal cells (BMSCs) are combined with scaffolds to target bone regeneration; animal models have been devised and the cells' long-term engraftment has been widely studied. However, in regenerated bone, the cell number is severely reduced with respect to the initially seeded BMSCs. This reflects the natural low cellularity of bone but underlines the selectivity of the differentiation processes. In this respect, we evaluated the short-term survival of BMSCs, transduced with the luciferase gene, after implantation of cell-seeded scaffolds in a nude mouse model. Cell proliferation/survival was assessed by bioluminescence imaging: light production was decreased by 30% on the first day, reaching a 50% loss within 48 h. Less than 5% of the initial signal remained after 2 months in vivo. Apoptotic BMSCs were detected within the first 2 days of implantation. Interestingly, the initial frequency of clonogenic progenitors matched the percentage of in vivo surviving cells. Cytokines and inflammation may contribute to the apoptotic onset at the implant milieu. However, preculturing cells with tumor necrosis factor alpha enhanced survival, allowing detection of 8.1% of the seeded BMSCs 2 months after implantation. Thus culturing conditions may reduce the apoptotic overload of seeded osteoprogenitors, strengthening the constructs' osteogenic potential.
Collapse
Affiliation(s)
- Paolo Giannoni
- Stem Cell Laboratory, Advanced Biotechnology Center, Genova, Italy.
| | | | | | | | | | | |
Collapse
|
6
|
Hydrogel/calcium phosphate composites require specific properties for three-dimensional culture of human bone mesenchymal cells. Acta Biomater 2010; 6:2932-9. [PMID: 20152947 DOI: 10.1016/j.actbio.2010.02.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 01/12/2010] [Accepted: 02/04/2010] [Indexed: 11/21/2022]
Abstract
To provide multipotent cells with a three-dimensional environment closer to bone matrix, an engineered construct mimicking bone components has been designed and evaluated. A biocompatible hydrogel (silated hydroxypropylmethyl cellulose) was used as an extra-cellular matrix while biphasic calcium phosphate ceramic particles were used to replace mineralized matrix. Finally, human bone mesenchymal cells were cultured in three dimensions in the resulting constructs to study their cell viability, proliferation, interactions within the composites, and maintenance of their osteogenic potential. This approach resulted in homogeneous structures in which cells were viable and retained their osteoblastic differentiation potential. However, the cells did not proliferate nor colonize the constructs, possibly because of a lack of suitable interactions with their micro-environment.
Collapse
|
7
|
van Eijk F, Saris DB, Fedorovich NE, Kruyt MC, Willems WJ, Verbout AJ, Martens AC, Dhert WJ, Creemers L. In Vivo Matrix Production by Bone Marrow Stromal Cells Seeded on PLGA Scaffolds for Ligament Tissue Engineering. Tissue Eng Part A 2009; 15:3109-17. [DOI: 10.1089/ten.tea.2008.0541] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Floor van Eijk
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daniel B.F. Saris
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Natalja E. Fedorovich
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Moyo C. Kruyt
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - W. Jaap Willems
- OLVG, Department of Orthopaedics, Amsterdam, The Netherlands
| | - Abraham J. Verbout
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anton C. Martens
- Department of Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wouter J.A. Dhert
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Laura Creemers
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
8
|
Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthritis Cartilage 2009; 17:705-13. [PMID: 19101179 DOI: 10.1016/j.joca.2008.11.008] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 11/11/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Review the literature for single site cartilage defect research and evaluate the respective strengths and weaknesses of different preclinical animal models. METHOD A literature search for animal models evaluating single site cartilage defects was performed. Variables tabulated and analyzed included animal species, age and number, defect depth and diameter and study duration. Cluster analyses were then used to separate animals with only distal femoral defects into similar groups based on defect dimensions. Representative human studies were included allowing comparison of common clinical lesions to animal models. The suitability of each species for single site cartilage defect research and its relevance to clinical human practice is then discussed. RESULTS One hundred thirteen studies relating to single site cartilage defects were reviewed. Cluster analysis included 101 studies and placed the murine, laprine, ovine, canine, porcine and caprine models in group 1. Group 2 contained ovine, canine, porcine, caprine and equine models. Group 3 contained only equine models and humans. Species in each group are similar with regard to defect dimensions. Some species occur in multiple groups reflecting utilization of a variety defect sizes. We report and discuss factors to be considered when selecting a preclinical animal model for single site cartilage defect research. DISCUSSION Standardization of study design and outcome parameters would help to compare different studies evaluating various novel therapeutic concepts. Comparison to the human clinical counterpart during study design may help increase the predictive value of preclinical research using animal models and improve the process of developing efficacious therapies.
Collapse
|
9
|
Olivo C, Alblas J, Verweij V, Van Zonneveld AJ, Dhert WJA, Martens ACM. In vivo bioluminescence imaging study to monitor ectopic bone formation by luciferase gene marked mesenchymal stem cells. J Orthop Res 2008; 26:901-9. [PMID: 18271011 DOI: 10.1002/jor.20582] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mesenchymal stem cells (MSCs) represent a powerful tool for applications in regenerative medicine. In this study, we used in vivo bioluminescence imaging to noninvasively investigate the fate and the contribution to bone formation of adult MSCs in tissue engineered constructs. Goat MSCs expressing GFP-luciferase were seeded on ceramic scaffolds and implanted subcutaneously in immune-deficient mice. The constructs were monitored weekly with bioluminescence imaging and were retrieved after 7 weeks to quantify bone formation by histomorphometry. With increasing amounts of seeded MSCs (from 0 to 1 x 10(6) MSC/scaffold), a cell-dose related increase in bioluminescence was observed at all time points, correlating with increased bone formation at 7 weeks. To investigate the relevance of MSC proliferation to bone deposition, cell-seeded scaffolds were irradiated. The irradiated cells were functional with respect to oxygen consumption but no increase in bioluminescence was observed in vivo, and only minimal bone was produced. Proliferating MSCs are likely required for initiation of bone formation in tissue engineered constructs in vivo. Bioluminescence is a useful tool to monitor cellular responses and predict bone formation in vivo.
Collapse
Affiliation(s)
- Cristina Olivo
- Department of Immunology, UMC Utrecht, HP: KC02.085.2, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
10
|
Janssen FW, Oostra J, Oorschot AV, van Blitterswijk CA. A perfusion bioreactor system capable of producing clinically relevant volumes of tissue-engineered bone: In vivo bone formation showing proof of concept. Biomaterials 2006; 27:315-23. [PMID: 16125223 DOI: 10.1016/j.biomaterials.2005.07.044] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 07/27/2005] [Indexed: 11/18/2022]
Abstract
In an effort to produce clinically relevant volumes of tissue-engineered bone products, we report a direct perfusion bioreactor system. Goat bone marrow stromal cells (GBMSCs) were dynamically seeded and proliferated in this system in relevant volumes (10 cc) of small sized macroporous biphasic calcium phosphate scaffolds (BCP, 2-6 mm). Cell load and cell distribution were shown using methylene blue block staining and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining was used to demonstrate viability of the present cells. After 19 days of cultivation, the scaffolds were covered with a viable, homogeneous cell layer. The hybrid structures became interconnected and a dense layer of extracellular matrix was present as visualized by environmental scanning electron microscopy (ESEM). ESEM images showed within the extracellular matrix sphere like structures which were identified as calcium phosphate nodules by energy dispersive X-ray analysis (EDX). On line oxygen measurements during cultivation were correlated with proliferating GBMSCs. It was shown that the oxygen consumption can be used to estimate GBMSC population doubling times during growth in this bioreactor system. Implantation of hybrid constructs, which were proliferated dynamically, showed bone formation in nude mice after 6 weeks of implantation. On the basis of our results we conclude that a direct perfusion bioreactor system is capable of producing clinically relevant volumes of tissue-engineered bone in a bioreactor system which can be monitored on line during cultivation and show bone formation after implantation in nude mice.
Collapse
Affiliation(s)
- Frank W Janssen
- Institute for Biomedical Technology, Twente University, Department Bilthoven, Prof. Bronkhorstlaan 10-D, 3723 MB, Bilthoven, The Netherlands.
| | | | | | | |
Collapse
|