1
|
Collins KH, MacDonald GZ, Hart DA, Seerattan RA, Rios JL, Reimer RA, Herzog W. Impact of age on host responses to diet-induced obesity: Development of joint damage and metabolic set points. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:132-139. [PMID: 32099721 PMCID: PMC7031772 DOI: 10.1016/j.jshs.2019.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Osteoarthritis is one of the leading causes of pain and disability worldwide, and a large percentage of patients with osteoarthritis are individuals who are also obese. In recent years, a series of animal models have demonstrated that obesity-inducing diets can result in synovial joint damage (both with and without the superimposition of trauma), which may be related to changes in percentage of body fat and a series of low-level systemic inflammatory mediators. Of note, there is a disparity between whether the dietary challenges commence at weaning, representing a weanling onset, or at skeletal maturity, representing an adult onset of obesity. We wished to evaluate the effect of the dietary exposure time and the age at which animals are exposed to a high-fat and high-sucrose (HFS) diet to determine whether these factors may result in disparate outcomes, as there is evidence suggesting that these factors result in differential metabolic disturbances. Based on dietary exposure time, we hypothesized that rats fed an HFS diet for 14 weeks from weaning (HFS Weanling) would demonstrate an increase in knee joint damage scores, whereas rats exposed to the HFS diet for 4 weeks, starting at 12 weeks of age (HFS Adult) and rats exposed to a standard chow diet (Chow) would not display an increase in knee joint damage scores. METHODS Male Sprague-Dawley rats were fed either an HFS diet for 14 weeks from weaning (HFS Weanling) or an HFS diet for 4 weeks, starting at 12 weeks of age (HFS Adult). At sacrifice, joints were scored using the modified Mankin Criteria, and serum was analyzed for a defined subset of inflammatory markers (Interleukin-6, leptin, monocyte chemoattractant protein-1, and tumor necrosis factor α). RESULTS When the HFS Weanling and HFS Adult groups were compared, both groups had a similar percent of body fat, although the HFS Weanling group had a significantly greater body mass than the HFS Adult group. The HFS Weanling and HFS Adult animals had a significant increase in body mass and percentage of body fat when compared to the Chow group. Although knee joint damage scores were low in all 3 groups, we found, contrary to our hypothesis, that the HFS Adult group had statistically significant greater knee joint damage scores than the Chow and HFS Weanling groups. Furthermore, we observed that the HFS Weanling group did not have significant differences in knee joint damage scores relative to the Chow group. CONCLUSION These findings indicate that the HFS Weanling animals were better able to cope with the dietary challenge of an HFS diet than the HFS Adult group. Interestingly, when assessing various serum proinflammatory markers, no significant differences were detected between the HFS Adult and HFS Weanling groups. Although details regarding the mechanisms underlying an increase in knee joint damage scores in the HFS Adult group remain to be elucidated, these findings indicate that dietary exposure time maybe less important than the age at which an HFS diet is introduced. Moreover, increases in serum proinflammatory mediators do not appear to be directly linked to knee joint damage scores in the HFS Weanling group animals but may be partially responsible for the observed knee joint damage in the adults over the very short time of exposure to the HFS diet.
Collapse
Affiliation(s)
- Kelsey H Collins
- Human Performance Laboratory, University of Calgary, Calgary, AB T2N 1N4, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, AB T2N 1N4, Canada; Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63108, USA
| | - Graham Z MacDonald
- Human Performance Laboratory, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - David A Hart
- Human Performance Laboratory, University of Calgary, Calgary, AB T2N 1N4, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, AB T2N 1N4, Canada; Bone & Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB T5E 4E3, Canada
| | - Ruth A Seerattan
- Human Performance Laboratory, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Jaqueline L Rios
- Human Performance Laboratory, University of Calgary, Calgary, AB T2N 1N4, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, AB T2N 1N4, Canada
| | - Raylene A Reimer
- Human Performance Laboratory, University of Calgary, Calgary, AB T2N 1N4, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, AB T2N 1N4, Canada
| | - Walter Herzog
- Human Performance Laboratory, University of Calgary, Calgary, AB T2N 1N4, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
2
|
Mahmoudian A, Van Assche D, Herzog W, Luyten FP. Towards secondary prevention of early knee osteoarthritis. RMD Open 2018; 4:e000468. [PMID: 30167325 PMCID: PMC6109947 DOI: 10.1136/rmdopen-2017-000468] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 01/09/2023] Open
Abstract
Osteoarthritis (OA) of the knee is the most common arthritic disease, yet a convincing drug treatment is not available. The current narrative review focuses on integration of scientific evidence and professional experience to illustrate which management approaches can be taken for prototypical individual patient profiles with early knee OA. Animal models suggest that: (1) OA can progress even in the presence of fully recovered movement kinetics, kinematics and muscle activation patterns; (2) muscle weakness is an independent risk factor for the onset and possibly the rate of progression of knee OA; (3) onset and progression of OA are not related to body weight but appear to depend on the percentage of body fat. From studies in the human model, one could postulate that risk factors associated with progression of knee OA include genetic traits, preceding traumatic events, obesity, intensity of pain at baseline, static and dynamic joint malalignment and reduced muscle strength. Taken this into account, an individual can be identified as early knee OA at high risk for disease progression. A holistic patient-tailored management including education, supportive medication, weight loss, exercise therapy (aerobic, strengthening and neuromuscular) and behavioural approaches to improve self-management of early knee OA is discussed in individual prototypic patients. Secondary prevention of early knee OA provides a window of opportunity to slow down or even reverse the disease process. Yet, as the sheer number of patients early in the OA disease process is probably large, a more structured approach is needed to provide appropriate care depending on the patient's individual risk profile.
Collapse
Affiliation(s)
- Armaghan Mahmoudian
- Skeletal Biology & Engineering Research Center, Department of Development & Regeneration, KU Leuven, Leuven, Belgium
| | - Dieter Van Assche
- Skeletal Biology & Engineering Research Center, Department of Development & Regeneration, KU Leuven, Leuven, Belgium
| | - Walter Herzog
- Human Performance Laboratory, The University of Calgary, Calgary, Alberta, Canada
| | - Frank P Luyten
- Skeletal Biology & Engineering Research Center, Department of Development & Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Hart DA, Fortuna R, Herzog W. Messenger RNA profiling of rabbit quadriceps femoris after repeat injections of botulinum toxin: Evidence for a dynamic pattern without further structural alterations. Muscle Nerve 2017; 57:487-493. [DOI: 10.1002/mus.25775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/08/2017] [Accepted: 08/12/2017] [Indexed: 11/08/2022]
Affiliation(s)
- David A. Hart
- McCaig Institute for Bone & Joint Health; University of Calgary; Calgary Alberta Canada
- Human Performance Laboratory, Faculty of Kinesiology; University of Calgary; 2500 University Drive NW, Calgary Alberta T2N 1N4 Canada
| | - Rafael Fortuna
- Human Performance Laboratory, Faculty of Kinesiology; University of Calgary; 2500 University Drive NW, Calgary Alberta T2N 1N4 Canada
| | - Walter Herzog
- McCaig Institute for Bone & Joint Health; University of Calgary; Calgary Alberta Canada
- Human Performance Laboratory, Faculty of Kinesiology; University of Calgary; 2500 University Drive NW, Calgary Alberta T2N 1N4 Canada
| |
Collapse
|
4
|
Egloff C, Hart DA, Hewitt C, Vavken P, Valderrabano V, Herzog W. Joint instability leads to long-term alterations to knee synovium and osteoarthritis in a rabbit model. Osteoarthritis Cartilage 2016; 24:1054-60. [PMID: 26850822 DOI: 10.1016/j.joca.2016.01.341] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/04/2016] [Accepted: 01/21/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Joint instability is believed to promote early osteoarthritic changes in the knee. Inflammatory reactions are associated with cartilage degradation in osteoarthritis (OA) but their possible synergistic or additive effects remain largely unexplored. The goal of the present study was to investigate the in vivo effects of Botulinum Toxin A (BTX-A) induced joint instability on intraarticular alterations in an otherwise intact rabbit knee joint model. METHODS Ten 1-year-old female New Zealand White rabbits (average 5.7 kg, range 4.8-6.6 kg) were randomly assigned to receive three monthly unilateral intramuscular injections of BTX-A (experimental group), or no treatment (control group). After 90 days, all knees were analyzed for specific mRNA levels using RT-qPCR. The synovium and cartilage tissue was assessed for histological alterations using the OARSI scoring system. RESULTS Cartilage and synovial histology showed significant higher OARSI scores in the BTX-A group animals compared to the untreated controls and contralateral limbs. There were no differences between the untreated control and the contralateral experimental limbs. Gene expression showed significant elevations for collagen I, collagen III, nitric oxide, TGF-β, IL-1 and IL-6 compared to the healthy controls. CONCLUSION BTX-A induced joint instability in a muscle weakness model uniquely leads to alterations in gene expression and histological changes in the synovial membranes and cartilage in otherwise intact knee joints. These results lead to the conclusion that joint instability may promote an inflammatory intraarticular milieu, thereby contributing to the development of OA.
Collapse
Affiliation(s)
- C Egloff
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Department of Orthopaedics and Trauma Surgery, University Hospital of Basel, Basel, Switzerland.
| | - D A Hart
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, Alberta, Canada.
| | - C Hewitt
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.
| | - P Vavken
- Division of Sports Medicine & Department of Orthopedic Surgery, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA.
| | - V Valderrabano
- Orthopaedic and Trauma Department, Schmerzklinik Basel, Genolier Swiss Private Clinic Group GSMN, Basel, Switzerland.
| | - W Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
5
|
Turkoglu AN, Yucesoy CA. Simulation of effects of botulinum toxin on muscular mechanics in time course of treatment based on adverse extracellular matrix adaptations. J Biomech 2016; 49:1192-1198. [PMID: 26994785 DOI: 10.1016/j.jbiomech.2016.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 12/22/2015] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
BTX effects on muscular mechanics are highly important, but their mechanism and variability in due treatment course is not well understood. Recent modeling shows that partial muscle paralysis per se causes restricted sarcomere shortening due to muscle fiber-extracellular matrix (ECM) mechanical interactions. This leads to two notable acute-BTX effects compared to pre-BTX treatment condition: (1) enhanced potential of active force production of the non-paralyzed muscle parts, and (2) decreased muscle length range of force exertion (ℓrange). Recent experiments also indicate increased ECM stiffness of BTX treated muscle. Hence, altered muscle fiber-ECM interactions and BTX effects are plausible in due treatment course. Using finite element modeling, the aim was to test the following hypotheses: acute-BTX treatment effects elevate with increased ECM stiffness in the long-term, and are also persistent post-BTX treatment. Model results confirm these hypotheses and show that restricted sarcomere shortening effect becomes more pronounced in the long-term and is persistent or reversed (for longer muscle lengths) post-BTX treatment. Consequently, force production capacity of activated sarcomeres gets further enhanced in the long-term. Remarkably, such enhanced capacity becomes permanent for the entire muscle post-treatment. Shift of muscle optimum length to a shorter length is more pronounced in the long-term, some of which remains permanent post-treatment. Compared to Pre-BTX treatment, a narrower ℓrange (20.3%, 27.1% and 3.4%, acute, long-term and post-BTX treatment, respectively) is a consistent finding. We conclude that ECM adaptations can affect muscular mechanics adversely both during spasticity management and post-BTX treatment. Therefore, this issue deserves major future attention.
Collapse
Affiliation(s)
- Ahu N Turkoglu
- Biomedical Engineering Institute, Boğaziçi University, Istanbul, Turkey
| | - Can A Yucesoy
- Biomedical Engineering Institute, Boğaziçi University, Istanbul, Turkey.
| |
Collapse
|
6
|
Choi YL, Kim BK, Hwang YP, Moon OK, Choi WS. Effects of isometric exercise using biofeedback on maximum voluntary isometric contraction, pain, and muscle thickness in patients with knee osteoarthritis. J Phys Ther Sci 2015; 27:149-53. [PMID: 25642061 PMCID: PMC4305548 DOI: 10.1589/jpts.27.149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/03/2014] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The purpose of our study was to investigate the effects of isometric exercises
using electromyographic biofeedback (EMGBF) and ultrasound biofeedback (USBF) on maximum
voluntary isometric contraction (MVIC), pain assessed by the Visual Analogue Scale (VAS),
and vastus medialis oblique (VMO) thickness in patients with knee osteoarthritis (OA).
[Subjects and Methods] Thirty females over 65 years of age who had been diagnosed with
knee osteoarthritis were recruited and randomly assigned to three groups, each comprising
of 10 subjects. The Subjects in the EMGBF training and USBF training groups were trained
with the corresponding physical training exercise program targeting the vastus medialis
oblique, whereas the subjects in the control group were treated with conventional physical
therapies, such as a hot pack, ultrasound, and transcutaneous electrical nerve
stimulation. Subjects in each group were trained or treated for 20 min, 3 times a week for
8 weeks. [Results] The MVIC in the EMGBF and USBF training groups was significantly
increased compared with that in the control group, and the VAS score (for measurement of
pain) in the EMGBF and USBF training groups was significantly decreased compared with that
in the control group. Only the EMGBF training group showed a significantly increased VMO
thickness compared with before training. [Conclusion] These results suggest that USBF
training is similar to EMGBF training in terms of its effectiveness and is helpful for
treating patients with knee OA.
Collapse
Affiliation(s)
- Yun Lak Choi
- Segyero Hospital, Republic of Korea ; Department of Physical Therapy, International University of Korea, Republic of Korea
| | - Bo Kyung Kim
- Department of Physical Therapy, International University of Korea, Republic of Korea
| | - Yong Pil Hwang
- Department of Pharmaceutical Engineering, International University of Korea, Republic of Korea
| | - Ok Kon Moon
- Department of Physical Therapy, Howon University, Republic of Korea
| | - Wan Suk Choi
- Department of Physical Therapy, International University of Korea, Republic of Korea
| |
Collapse
|
7
|
Egloff C, Sawatsky A, Leonard T, Hart DA, Valderrabano V, Herzog W. Effect of muscle weakness and joint inflammation on the onset and progression of osteoarthritis in the rabbit knee. Osteoarthritis Cartilage 2014; 22:1886-93. [PMID: 25106675 DOI: 10.1016/j.joca.2014.07.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/27/2014] [Accepted: 07/29/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Interactions between mechanical and non-mechanical independent risk factors for the onset and progression of Osteoarthritis (OA) are poorly understood. Therefore, the goal of the present study was to investigate the in vivo effects of muscle weakness, joint inflammation and the combination on the onset and progression of OA in a rabbit knee joint model. MATERIALS AND METHODS Thirty 1-year-old female New Zealand White rabbits (average 5.7 kg, range 4.8-6.6 kg) were divided into four groups with one limb randomly assigned to be the experimental side: (1) surgical denervation of the vastus lateralis (VL) muscle; (2) muscle weakness induced by intramuscular injection of Botulinum toxin A (BTX-A); (3) intraarticular injection with Carrageenan to induce a transient inflammatory reaction; (4) combination of Carrageenan and BTX-A injection. After 90 days, cartilage histology of the articular surfaces were microscopically analyzed using the Osteoarthritis Research Society International (OARSI) histology scoring system. RESULTS VL denervation resulted in significantly higher OARSI scores in the patellofemoral joint (group 1). BTX-A administration resulted in significant cartilage damage in all four compartments of the knee (group 2). Carrageenan did not cause significant cartilage damage. BTX-A combined with Carrageenan lead to severe cartilage damage in all four compartments. CONCLUSION Muscle weakness lead to significant OA in the rabbit knee. A transient local inflammatory stimulus did not promote cartilage degradation nor did it enhance OA progression when combined with muscle weakness. These results are surprising and add to the literature the conclusion that acute inflammation is probably not an independent risk factor for OA in this rabbit model.
Collapse
Affiliation(s)
- C Egloff
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Orthopaedic Department, University Hospital, University of Basel, Basel, Switzerland.
| | - A Sawatsky
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.
| | - T Leonard
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.
| | - D A Hart
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, Alberta, Canada.
| | - V Valderrabano
- Orthopaedic Department, University Hospital, University of Basel, Basel, Switzerland.
| | - W Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
8
|
Egloff C, Sawatsky A, Leonard T, Fung T, Valderrabano V, Herzog W. Alterations in patellofemoral kinematics following vastus medialis transection in the anterior cruciate ligament deficient rabbit knee. Clin Biomech (Bristol, Avon) 2014; 29:577-82. [PMID: 24703827 DOI: 10.1016/j.clinbiomech.2014.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Anterior cruciate ligament deficiency and quadriceps muscle weakness are considered to be important risk factors for aberrant patellar tracking and subsequent patellofemoral osteoarthritis. However, data from in vivo experiments looking at dynamic patellar joint kinematics and muscle force are scarce. Therefore, the purpose of this study was to evaluate the effects of anterior cruciate ligament transection and loss of vastus medialis force on patellar tracking in the rabbit knee in vivo. METHODS Eight skeletally mature New Zealand White Rabbits, weighing 6.0kg (0.6kg standard deviation) were used. The experimental trials consisted of active, concentric and eccentric movements of the knee joint. Measurements were performed with the intact, the anterior cruciate ligament deficient, and the vastus medialis transected knee. Patellofemoral kinematics (shift, rotation) were quantified from high speed video. FINDINGS Following anterior cruciate ligament transection, patellar tracking occurred more laterally, and caused a significant lateral rotation of the patella. The addition of vastus medialis transection did not alter patellar tracking or rotation significantly for any of the force-matched experimental conditions. INTERPRETATION The loss of the anterior cruciate ligament results in lateral patellar shift and rotation while the loss of vastus medialis muscle force does not affect patellar tracking or rotation in the anterior cruciate ligament deficient knee. We suggest that the current results should be considered carefully in future interpretations of knee extensor imbalance. More research is needed to describe the contribution of vastus medialis muscle strength to medial patellofemoral stability and confirm these results in the human knee.
Collapse
Affiliation(s)
- Christian Egloff
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Orthopaedic Department, University Hospital, University of Basel, Basel, Switzerland.
| | - Andrew Sawatsky
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Tim Leonard
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Tak Fung
- Statistics, Information Technologies, University of Calgary, Calgary, Alberta, Canada
| | - Victor Valderrabano
- Orthopaedic Department, University Hospital, University of Basel, Basel, Switzerland
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Turkoglu AN, Huijing PA, Yucesoy CA. Mechanical principles of effects of botulinum toxin on muscle length–force characteristics: An assessment by finite element modeling. J Biomech 2014; 47:1565-71. [DOI: 10.1016/j.jbiomech.2014.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 02/26/2014] [Accepted: 03/11/2014] [Indexed: 11/27/2022]
|
10
|
Hart JM, Bessette M, Choi L, Hogan MV, Diduch D. Sensory response following knee joint damage in rabbits. BMC Musculoskelet Disord 2014; 15:139. [PMID: 24766654 PMCID: PMC4016734 DOI: 10.1186/1471-2474-15-139] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 04/10/2014] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Altered sensory information arising from damaged knee joint structures has been hypothesized as a contributing factor to persistent muscle dysfunction following injury. METHODS Composite femoral nerve sensory signal was measured in 24 rabbits randomly allocated (8 per group) to receive surgical anterior cruciate ligament (ACL) transection with or without autograft reconstruction or nothing (control). Two-weeks after the intervention composite afferent signals were recorded from the femoral nerve. Side-to-side ratios (surgical side vs contralateral healthy side) for peak femoral nerve afferent composite signal were used for comparison. RESULTS Femoral nerve afferent signal ratios were significantly higher in the ACL-R (2.21 ± 0.74) group when compared to the ACL-T (1.28 ± 0.61, P=0.02) group and Control group (1.31 ± 0.78, P=0.03). CONCLUSION The magnitude of sensory information recorded on the femoral nerve is increased following ACL injury and reconstruction surgery, but not after an isolated ACL injury in rabbits.
Collapse
Affiliation(s)
- Joseph M Hart
- Department of Kinesiology, University of Virginia, Charlottesville, VA, USA.
| | | | | | | | | |
Collapse
|
11
|
Tonge DP, Bardsley RG, Parr T, Maciewicz RA, Jones SW. Evidence of changes to skeletal muscle contractile properties during the initiation of disease in the ageing guinea pig model of osteoarthritis. LONGEVITY & HEALTHSPAN 2013; 2:15. [PMID: 24472412 PMCID: PMC4177544 DOI: 10.1186/2046-2395-2-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 11/20/2013] [Indexed: 12/01/2022]
Abstract
Background Osteoarthritis (OA) is the most common joint disorder in the world and represents the leading cause of pain and disability in the elderly population. Advancing age remains the single greatest risk factor for OA. Several studies have characterised disease development in the guinea pig ageing model of OA in terms of its joint histopathology and inflammatory cytokine profile. However, the quadriceps muscle has yet to be studied in relation to age-related disease onset or early disease progression. Therefore, we examined whether the initiation of OA in the Dunkin Hartley guinea pig is associated with changes in the quadriceps skeletal muscle. Male Dunkin Hartley guinea pigs (N = 24) were group housed with free access to standard guinea pig chow and water. At 2, 3, 5 and 7 months of age, six animals were selected based on their proximity to the median weight of the cohort. OA severity was graded at each time point by the assessment of toluidine blue stained step coronal sections of the total knee joint. Serum CTX II was measured as a potential biomarker of OA severity. Myosin Heavy Chain (MHC) isoforms were determined by a validated real-time PCR assay. Oxidative and glycolytic potential was determined in quadriceps homogenates via the measurement of ICDH and LDH activity. Results Initiation of OA in the DH strain guinea pig occurred between 2 and 3 months of age and progressed until 7 months when the final analyses were conducted. Serum CTX II significantly decreased during this early period of OA initiation and levels were unrelated to the histopathological severity of knee OA at any of the time points assessed. MHC mRNA measurements revealed a significant elevation in MHC IIX mRNA (associated with fast-twitch skeletal muscle fibres) coincident with the initiation of OA at 3 months of age, with preliminary findings suggestive of a positive correlation to OA severity at this time point. Conclusions These preliminary findings suggest that disease initiation in the ageing guinea pig model of OA is not associated with overt quadriceps muscle atrophy but instead is coincident with altered expression of mRNAs associated with quadriceps skeletal muscle contractile properties (specifically fast-twitch MHC IIX).
Collapse
Affiliation(s)
- Daniel P Tonge
- Nutritional Sciences, School of Biosciences, Sutton Bonington Campus, Sutton Bonington, University of Nottingham, Nottingham LE12 5RD, England.
| | | | | | | | | |
Collapse
|
12
|
Do skeletal muscle properties recover following repeat onabotulinum toxin A injections? J Biomech 2013; 46:2426-33. [PMID: 23953503 DOI: 10.1016/j.jbiomech.2013.07.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 07/12/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
Abstract
Onabotulinum toxin A (BTX-A) is a frequently used treatment modality to relax spastic muscles by preventing acetylcholine release at the motor nerve endings. Although considered safe, previous studies have shown that BTX-A injections cause muscle atrophy and deterioration in target and non-target muscles. Ideally, muscles should fully recover following BTX-A treatments, so that muscle strength and performance are not affected in the long-term. However, systematic, long-term data on the recovery of muscles exposed to BTX-A treatments are not available, thus practice guidelines on the frequency and duration of BTX-A injections, and associated recovery protocols, are based on clinical experience with little evidence-based information. Therefore, the purpose of this study was to investigate muscle recovery following a six months, monthly BTX-A injection (3.5 U/kg) protocol. Twenty seven skeletally mature NZW rabbits were divided into 5 groups: Control (n=5), zero month recovery - BTX-A+0M (n=5), one month recovery - BTX-A+1M (n=5), three months recovery - BTX-A+3M (n=5), and six months recovery - BTX-A+6M (n=7). Knee extensor strength, muscle mass and percent contractile material in injected and contralateral non-injected muscles was measured at each point of recovery. Strength and muscle mass were partially and completely recovered in injected and contralateral non-injected muscles for BTX-A+6M group animals, respectively. The percent of contractile material partially recovered in the injected, but did not recover in the contralateral non-injected muscles. We conclude from these results that neither target nor non-target muscles fully recover within six months of a BTX-A treatment protocol and that clinical studies on muscle recovery should be pursued.
Collapse
|
13
|
Horisberger M, Fortuna R, Valderrabano V, Herzog W. Long-term repetitive mechanical loading of the knee joint by in vivo muscle stimulation accelerates cartilage degeneration and increases chondrocyte death in a rabbit model. Clin Biomech (Bristol, Avon) 2013; 28:536-43. [PMID: 23701865 DOI: 10.1016/j.clinbiomech.2013.04.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND Excessive chronic loading is thought to be one factor responsible for the onset of osteoarthritis. For example, studies using treadmill running have shown an increased risk for osteoarthritis, thereby suggesting that muscle-induced joint loading may play a role in osteoarthritis onset and progression. However, in these studies, muscle-induced loading was not carefully quantified. Here, we present a model of controlled muscular loading which allows for the accurate quantification of joint loading. The aim of this study was to evaluate the effects of long-term, cyclic, isometric and dynamic, muscle-induced joint loading of physiologic magnitude but excessive intensity on cartilage integrity and cell viability in the rabbit knee. METHODS 24 rabbits were divided into an (i) eccentric, (ii) concentric, or (iii) isometric knee extensor contraction group (50 min of cyclic, submaximal stimulation 3 times/week for four weeks=19,500 cycles) controlled by the stimulation of a femoral nerve cuff electrode on the right hind limb. The contralateral knee was used as a non-loaded control. The knee articular cartilages were analysed by confocal microscopy for chondrocyte death, and histologically for Mankin Score, cartilage thickness and cell density. FINDINGS All loaded knees had significantly increased cell death rates and Mankin Scores compared to the non-loaded joints. Cartilage thicknesses did not systematically differ between loaded and control joints. INTERPRETATION Chondrocyte death and Mankin Scores were significantly increased in the loaded joints, thereby linking muscular exercise of physiologic magnitude but excessive intensity to cartilage degeneration and cell death in the rabbit knee.
Collapse
Affiliation(s)
- Monika Horisberger
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
14
|
The effects of electrical stimulation exercise on muscles injected with botulinum toxin type-A (botox). J Biomech 2012; 46:36-42. [PMID: 23122225 DOI: 10.1016/j.jbiomech.2012.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 08/03/2012] [Accepted: 09/29/2012] [Indexed: 11/23/2022]
Abstract
Botulinum toxin type A (BTX-A) is a frequently used treatment modality for a variety of neuromuscular disorders. It acts by preventing acetylcholine release at the motor nerve endings, inducing muscle paralysis. Although considered safe, studies suggest that BTX-A injections create adverse effects on target and non-target muscles. We speculate that these adverse effects are reduced by direct electrical stimulation (ES) exercising of muscles. The aims were to determine the effects of ES exercise on strength, mass, and contractile material in BTX-A injected muscles, and to investigate if BTX-A injections affect non-target muscles. Seventeen New Zealand White (NZW) rabbits were divided into three groups: (1) Control group received saline injections; (2) BTX-A group received monthly BTX-A (3.5 U/kg) injections into the quadriceps for six months and (3) BTX-A+ES group received monthly BTX-A injections and ES exercise three times a week for six months. Outcome measures included knee extensor torque, muscle mass, and contractile material percentage area in injected and contralateral, non-injected quadriceps. Glycogen depletion and direct muscle stimulation were used to assess possible muscle inhibition in non-injected quadriceps. ES exercise partially prevented muscle weakness, atrophy, and contractile material loss in injected muscles, and mostly prevented muscle degeneration in contralateral, non-injected muscles. Non-injected muscles of BTX-A+ES group showed higher force with direct muscle compared to nerve stimulation, and retained glycogen following the depletion protocol, suggesting that BTX-A inhibited activation in non-target muscles. We conclude that ES exercise provides some protection from degeneration to target and non-target muscles during BTX-A treatments.
Collapse
|
15
|
Yucesoy CA, Emre Arıkan Ö, Ateş F. BTX-A Administration to the Target Muscle Affects Forces of All Muscles Within an Intact Compartment and Epimuscular Myofascial Force Transmission. J Biomech Eng 2012; 134:111002. [DOI: 10.1115/1.4007823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Measurement of forces of mono- and bi-articular muscles of an entire intact muscle compartment can allow for a comprehensive assessment of the effects of Botulinum toxin type A (BTX-A) both at and beyond the injection site, and in conditions close to those in vivo. The goal was to test the hypotheses that BTX-A affects (1) the forces of not only the injected but also the noninjected muscles of the compartment, and (2) epimuscular myofascial force transmission (EMFT). Two groups of Wistar rats were tested: Control (no BTX-A injected) and BTX (0.1 units of BTX-A were injected exclusively to the mid-belly of TA). Isometric forces were measured simultaneously at the distal tendons of the tibialis anterior (TA) at different lengths, the restrained extensor digitorum longus (EDL) and the extensor hallucis longus (EHL) muscles and at the proximal tendon of EDL. Five days post-injection, BTX-A did affect the total forces of all muscles significantly: (1) The TA force decreased differentially (by 46.6%–55.9%) for most lengths such that a significant negative correlation was found between force reductions and increased muscle length. The maximum TA force decreased by 47.3%. However, the muscle’s length range of force production did not change significantly. (2) Distal and proximal EDL forces decreased (on average by 67.8% and 62.9%, respectively). (3) The EHL force also decreased (on average by 9.2%). The passive forces of only the TA showed a significant increase at higher lengths. EMFT effects were shown for the control group: (1) at the shortest TA lengths, the EDL proximo-distal force differences were in favor of the distal force, which was reversed at higher lengths. (2) the EHL force measured at the shortest TA length decreased (by 34%) as a function of TA lengthening. After BTX-A exposure, such EMFT effects disappeared for the EDL, whereas they remained as profound for the EHL. Exposure to BTX-A does affect forces of all muscles operating in an intact compartment. For the BTX-A injected muscle, the reduction in muscle force becomes less pronounced at higher muscle lengths. BTX-A also has effects on EMFT, however, these effects are not uniform within the anterior crural compartment. Decreased forces of the noninjected synergistic muscles suggest the presence of unintended additional effects of BTX-A both for the targeted distal joint and for the nontargeted proximal joint.
Collapse
Affiliation(s)
- Can A. Yucesoy
- Biomedical Engineering Institute, Boğaziçi University, Istanbul, 34684 Turkey
| | - Önder Emre Arıkan
- Biomedical Engineering Institute, Boğaziçi University, Istanbul, 34684 Turkey
| | - Filiz Ateş
- Biomedical Engineering Institute, Boğaziçi University, Istanbul, 34684 Turkey
| |
Collapse
|
16
|
Leumann A, Longino D, Fortuna R, Leonard T, Vaz MA, Hart DA, Herzog W. Altered cell metabolism in tissues of the knee joint in a rabbit model of Botulinum toxin A-induced quadriceps muscle weakness. Scand J Med Sci Sports 2011; 22:776-82. [DOI: 10.1111/j.1600-0838.2011.01309.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Roos EM, Herzog W, Block JA, Bennell KL. Muscle weakness, afferent sensory dysfunction and exercise in knee osteoarthritis. Nat Rev Rheumatol 2010; 7:57-63. [PMID: 21119605 DOI: 10.1038/nrrheum.2010.195] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lower-extremity muscle strength and afferent sensory dysfunction, such as reduced proprioceptive acuity, are potentially modifiable putative risk factors for knee osteoarthritis (OA). Findings from current studies suggest that muscle weakness is a predictor of knee OA onset, while there is conflicting evidence regarding the role of muscle weakness in OA progression. In contrast, the literature suggests a role for afferent sensory dysfunction in OA progression but not necessarily in OA onset. The few pilot exercise studies performed in patients who are at risk of incident OA indicate a possibility for achieving preventive structure or load modifications. In contrast, large randomized controlled trials of patients with established OA have failed to demonstrate beneficial effects of strengthening exercises. Subgroups of individuals who are at increased risk of knee OA (such as those with previous knee injuries) are easily identified, and may benefit from exercise interventions to prevent or delay OA onset.
Collapse
Affiliation(s)
- Ewa M Roos
- Unit for Musculoskeletal Function and Physiotherapy, Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark.
| | | | | | | |
Collapse
|
18
|
Fortuna R, Vaz MA, Youssef AR, Longino D, Herzog W. Changes in contractile properties of muscles receiving repeat injections of botulinum toxin (Botox). J Biomech 2010; 44:39-44. [PMID: 20828699 DOI: 10.1016/j.jbiomech.2010.08.020] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 08/12/2010] [Accepted: 08/13/2010] [Indexed: 11/19/2022]
Abstract
Botulinum toxin type A (BTX-A) is a frequently used therapeutic tool to denervate muscles in the treatment of neuromuscular disorders. Although considered safe by the US Food and Drug Administration, BTX-A can produce adverse effects in target and non-target muscles. With an increased use of BTX-A for neuromuscular disorders, the effects of repeat injections of BTX-A on strength, muscle mass and structure need to be known. Therefore, the purpose of this study was to investigate the changes in strength, muscle mass and contractile material in New Zealand White (NZW) rabbits. Twenty NZW rabbits were divided into 4 groups: control and 1, 3 and 6 months of unilateral, repeat injections of BTX-A into the quadriceps femoris. Outcome measures included knee extensor torque, muscle mass and the percentage of contractile material in the quadriceps muscles of the target and non-injected contralateral hindlimbs. Strength in the injected muscles was reduced by 88%, 89% and 95% in the 1, 3 and 6 months BTX-A injected hindlimbs compared to controls. Muscle mass was reduced by 50%, 42% and 31% for the vastus lateralis (VL), rectus femoris (RF) and vastus medialis (VM), respectively, at 1 month, by 68%, 51% and 50% at 3 months and by 76%, 44% and 13% at 6 months. The percentage of contractile material was reduced for the 3 and 6 months animals to 80-64%, respectively, and was replaced primarily by fat. Similar, but less pronounced results were also observed for the quadriceps muscles of the contralateral hindlimbs, suggesting that repeat BTX-A injections cause muscle atrophy and loss of contractile tissue in target muscles and also in non-target muscles that are far removed from the injection site.
Collapse
Affiliation(s)
- Rafael Fortuna
- Human Performance Laboratory, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
19
|
Tonge D, Jones S, Parr T, Bardsley R, Doherty M, Maciewicz R. Beta2-adrenergic agonist-induced hypertrophy of the quadriceps skeletal muscle does not modulate disease severity in the rodent meniscectomy model of osteoarthritis. Osteoarthritis Cartilage 2010; 18:555-62. [PMID: 20060953 PMCID: PMC2849930 DOI: 10.1016/j.joca.2009.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 11/18/2009] [Accepted: 11/23/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To examine whether beta2-adrenergic agonist-induced hypertrophy of the quadriceps skeletal muscle can modulate the severity of osteoarthritis (OA) in the rodent meniscectomy (MNX) model. METHODS Male Lewis rats were subcutaneously administered with 1.5 mg/kg/day clenbuterol hydrochloride (n=15) or saline vehicle (n=20) for 14 days. Following pre-treatment, five animals from each group were sacrificed to assess the immediate effects of clenbuterol. The remaining animals underwent either invasive knee surgery (clenbuterol pre-treated n=10; saline pre-treated n=10) or a sham control surgical procedure (saline pre-treated n=5). During disease initiation and progression, weight bearing was assessed by hindlimb loading. Myosin heavy chain (MHC) protein isoforms were quantified by silver stained SDS PAGE. OA severity was graded by assessment of toluidine blue stained step coronal sections of the total knee joint. RESULTS Clenbuterol treatment resulted in an increase in total bodyweight, growth rate and in quadriceps skeletal muscle mass. Meniscal surgery resulted in the development of OA-like lesions, changes to weight bearing, and changes in MHC protein expression in the quadriceps. Clenbuterol-induced skeletal muscle hypertrophy had no effect on either weight bearing or articular pathology following MNX surgery. CONCLUSIONS Our data reveal that clenbuterol-induced skeletal muscle hypertrophy is unable to mimic the beneficial clinical effects of increased musculature derived through targeted strength training in humans, in a rodent model of MNX-induced OA. In addition we observed fibre-type switching to "slow twitch" in the quadriceps muscle during the induction of OA that warrants further investigation as to its relationship to joint stability.
Collapse
Affiliation(s)
- D.P. Tonge
- Nutritional Sciences, School of Biosciences, Sutton Bonington Campus, Sutton Bonington, University of Nottingham, LE12 5RD, UK,Address correspondence and reprint requests to: Daniel P. Tonge, Nutritional Sciences, School of Biosciences, Sutton Bonington Campus, Sutton Bonington, University of Nottingham, LE12 5RD, UK.
| | - S.W. Jones
- Respiratory and Inflammation Research, AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| | - T. Parr
- Nutritional Sciences, School of Biosciences, Sutton Bonington Campus, Sutton Bonington, University of Nottingham, LE12 5RD, UK
| | - R. Bardsley
- Nutritional Sciences, School of Biosciences, Sutton Bonington Campus, Sutton Bonington, University of Nottingham, LE12 5RD, UK
| | - M. Doherty
- Academic Rheumatology, Clinical Sciences Building, City Hospital, Nottingham, NG5 1PB, UK
| | - R.A. Maciewicz
- Respiratory and Inflammation Research, AstraZeneca, Charnwood R&D, Loughborough, Leicestershire, LE11 5RH, UK
| |
Collapse
|
20
|
Miller D, Salo P, Hart DA, Leonard C, Mammoto T, Bray RC. Neural stimulation does not mediate attenuated vascular response in ACL-deficient knees: potential role of local inflammatory mediators. J Orthop Res 2010; 28:83-8. [PMID: 19621423 DOI: 10.1002/jor.20950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chronic inflammation associated with osteoarthritis (OA) alters normal responses and modifies the functionality of the articular vasculature. Altered responsiveness of the vasculature may be due to excessive neural activity associated with chronic pain and inflammation, or from the production of inflammatory mediators which induce vasodilation. Using laser speckle perfusion imaging (LSPI), blood flow to the medial collateral ligament (MCL) of adult rabbits was measured in denervated ACL transected knees (n = 6) and compared to unoperated control (n = 6) and 6-week anterial cruciate ligament (ACL)-transected knees (n = 6). Phenylephrine and neuropeptide Y were applied to the MCL vasculature in topical boluses of 100 microL (dose range 10(-14) to 10(-8) mol and 10(-14) to 10(-9) mol, respectively). Denervation diminished vasoconstrictive responsiveness to phenylephrine compared to both control and ACL-transected knees. Denervation minimally enhanced vascular responses to neuropeptide Y (NPY) compared to ACL deficiency alone, which nevertheless remained significantly diminished from control responses. To evaluate the potential role of inflammatory dilators in the diminished contractile responses, phenylephrine was coadministered with histamine, substance P, and prostaglandin E(2). High-dose histamine, and low-dose substance P and PGE(2) were able to inhibit contractile responses in the MCL of control knees. Excessive neural input does not mediate diminished vasoconstrictive responses in the ACL transected knee; inflammatory mediators may play a role in the deficient vascular responsiveness of the ACL transected knee.
Collapse
Affiliation(s)
- Daniel Miller
- McCaig Centre for Joint Injury and Arthritis Research, Department of Surgery, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | |
Collapse
|
21
|
Thomopoulos S, Kim HM, Rothermich SY, Biederstadt C, Das R, Galatz LM. Decreased muscle loading delays maturation of the tendon enthesis during postnatal development. J Orthop Res 2007; 25:1154-63. [PMID: 17506506 DOI: 10.1002/jor.20418] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Physical environment influences the development and maintenance of musculoskeletal tissues. The current study uses an animal model to explore the role of the physical environment on the postnatal development of the supraspinatus tendon enthesis. A supraspinatus intramuscular injection of botulinum toxin A was used to paralyze the left shoulders of mice at birth. The supraspinatus muscles of right shoulders were injected with saline to serve as contralateral controls. The supraspinatus enthesis was examined after 14, 21, 28, and 56 days of postnatal development. Histologic assays were used to examine fibrocartilage morphology and percentage osteoclast surface. Micro-computed tomography was used to examine muscle geometry and bone architecture. At 14 days there were no differences between groups in fibrocartilage formation, muscle geometry, bone architecture, or osteoclast surface. When comparing groups at 21, 28, and 56 days, muscle volume was decreased, fibrocartilage development was delayed, mineralized bone was decreased, and osteoclast surface was higher at each timepoint in the botulinum group compared to the contralateral saline control group. Our results indicate that the development of the tendon enthesis is sensitive to its mechanical environment. A reduction in muscle loading delayed the development of the tendon-to-bone insertion site by impeding the accumulation of mineralized bone. Physical factors did not play a significant role in enthesis maturation in the first 14 days postnatally, implying that biologic factors may drive early postnatal development.
Collapse
Affiliation(s)
- Stavros Thomopoulos
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
The purpose of this work was to establish a controlled and reversible muscle weakness model for studying the effects of weakness on joint degeneration leading to osteoarthritis (OA). The knee extensor muscles of rabbits were injected with single or repeat doses of Botulinum type-A toxin (BTX-A) to partially inhibit acetylcholine (ACh) release at the neuromuscular junction. BTX-A-injected muscles atrophied, they became weaker and push-off forces during hopping were reduced compared to control. BTX-A injections had the greatest effect at short-muscle length and low-stimulation frequencies. Superimposing BTX-A injections on anterior cruciate ligament transection did not cause greater muscle atrophy or weakness than BTX-A injections alone. Monthly repeat injections could be used to keep muscles weak for half a year without any obvious adverse effects to the animals. Gross morphology of the knees and histology of articular cartilage suggested that, in some animals, 4 weeks of muscle weakness resulted in initial signs of joint degeneration, indicating that weakness may be an independent risk factor for joint degeneration leading to OA.
Collapse
Affiliation(s)
- Walter Herzog
- Faculty of Kinesiology, Human Performance Laboratory, University of Calgary, 2500 University Drive NW, Calgary, Alta., Canada T2N 1N4.
| | | |
Collapse
|