1
|
Wu G, Hu H, Zhang T, Zhang XD, Sun B. Profiles of sensitization and comorbidity in asthma patients with markedly increased serum total IgE (>1000kU/L). Allergy Asthma Proc 2022; 43:124-132. [PMID: 35317889 DOI: 10.2500/aap.2022.43.210123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background: Immunoglobulin E (IgE) plays an important role in asthma, but a few patients exhibit extremely high levels of serum total IgE. Objective: This study aimed to investigate the profiles of comorbidity and/or complications, severity, and sensitizations in patients with asthma and with a total IgE level > 1000 kU/L. Methods: We retrospectively analyzed 170 patients with asthma and with total IgE levels of >1000 kU/L from the inpatient data base. Available information, including age, gender, body mass index, diagnosis, results of routine blood tests, pulmonary function, fractional exhaled nitric oxide, induced sputum (if any), IgE (both total and specific) tests and medication records were analyzed. Results: In the study subjects, >80% were adults, and the average total IgE level was median (interquartile range) 1438 kU/L (1181-2255 kU/L). Approximately 15% of the subjects had at least one comorbidity and/or complication, and 78.82% of the subjects were positive for at least one allergen. Airway infections (44.71%) and rhinosinusitis (41.18%) accounted for the two most common conditions despite age groups. Total IgE levels did not differ among the subjects with different conditions. Overall, mites had the highest positive rate (59.4%). Serum total IgE levels were positively correlated with house-dust mite specific IgE (sIgE) levels (r = 0.23; p < 0.05), peripheral blood eosinophil counts (r = 0.21; p < 0.01), and the number of confirmed sIgE positivity (r = 0.19; p < 0.01), and optimal scaling analysis showed that asthma severity was associated with Aspergillus fumigatus sIgE levels. Conclusion: In the subjects with asthma and with a total IgE level of >1000 kU/L, the two most common conditions were airway infections and rhinosinusitis, despite sensitization. A. fumigatus sIgE levels were closely associated with total IgE levels and asthma severity.
Collapse
Affiliation(s)
- Ge Wu
- From the National Respiratory Medical Center, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University,
Guangzhou, China; and
| | - Haisheng Hu
- From the National Respiratory Medical Center, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical
University, Guangzhou, China; and
| | - Teng Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | | | - Baoqing Sun
- From the National Respiratory Medical Center, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical
University, Guangzhou, China; and
| |
Collapse
|
2
|
Ali A, Hamzaid NH, Ismail NAS. The Interplay of Nutriepigenomics, Personalized Nutrition and Clinical Practice in Managing Food Allergy. Life (Basel) 2021; 11:1275. [PMID: 34833150 PMCID: PMC8623511 DOI: 10.3390/life11111275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Food allergy in children has been a common issue due to the challenges of prescribing personalized nutrition with a lack of nutriepigenomics data. This has indeed further influenced clinical practice for appropriate management. While allergen avoidance is still the main principle in food allergy management, we require more information to advance the science behind nutrition, genes, and the immune system. Many researchers have highlighted the importance of personalized nutrition but there is a lack of data on how the decision is made. Thus, this review highlights the relationship among these key players in identifying the solution to the clinical management of food allergy with current nutriepigenomics data. The discussion integrates various inputs, including clinical assessments, biomarkers, and epigenetic information pertaining to food allergy, to curate a holistic and personalized approach to food allergy management in particular.
Collapse
Affiliation(s)
- Adli Ali
- Department of Pediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Nur Hana Hamzaid
- Dietetic Program & Centre for Rehabilitation and Special Needs Studies (iCaRehab), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Noor Akmal Shareela Ismail
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
3
|
Aounallah H, Bensaoud C, M'ghirbi Y, Faria F, Chmelar JI, Kotsyfakis M. Tick Salivary Compounds for Targeted Immunomodulatory Therapy. Front Immunol 2020; 11:583845. [PMID: 33072132 PMCID: PMC7538779 DOI: 10.3389/fimmu.2020.583845] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Immunodeficiency disorders and autoimmune diseases are common, but a lack of effective targeted drugs and the side-effects of existing drugs have stimulated interest in finding therapeutic alternatives. Naturally derived substances are a recognized source of novel drugs, and tick saliva is increasingly recognized as a rich source of bioactive molecules with specific functions. Ticks use their saliva to overcome the innate and adaptive host immune systems. Their saliva is a rich cocktail of molecules including proteins, peptides, lipid derivatives, and recently discovered non-coding RNAs that inhibit or modulate vertebrate immune reactions. A number of tick saliva and/or salivary gland molecules have been characterized and shown to be promising candidates for drug development for vertebrate immune diseases. However, further validation of these molecules at the molecular, cellular, and organism levels is now required to progress lead candidates to clinical testing. In this paper, we review the data on the immuno-pharmacological aspects of tick salivary compounds characterized in vitro and/or in vivo and present recent findings on non-coding RNAs that might be exploitable as immunomodulatory therapies.
Collapse
Affiliation(s)
- Hajer Aounallah
- Institut Pasteur de Tunis, LR19IPTX, Service d'Entomologie Médicale, Université de Tunis El Manar, Tunis, Tunisia.,Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo, Brazil
| | - Chaima Bensaoud
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Youmna M'ghirbi
- Institut Pasteur de Tunis, LR19IPTX, Service d'Entomologie Médicale, Université de Tunis El Manar, Tunis, Tunisia
| | - Fernanda Faria
- Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo, Brazil
| | - Jindr Ich Chmelar
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.,Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| |
Collapse
|
4
|
Rosmilah M, Shahnaz M, Meinir J, Masita A, Noormalin A, Jamaluddin M. Identification of parvalbumin and two new thermolabile major allergens of Thunnus tonggol using a proteomics approach. Int Arch Allergy Immunol 2013; 162:299-309. [PMID: 24193115 DOI: 10.1159/000354544] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 07/12/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The longtail tuna (Thunnus tonggol) is widely consumed in Asia. Parvalbumin, the main major allergen of fish, has been well identified in multiple fish species, yet little is known about the allergenic proteins in T. tonggol. Thus, the aim of this study was to characterize the major allergens of T. tonggol using a proteomics approach. METHODS Raw and boiled extracts of the fish were prepared. Fish proteins were separated by means of SDS-PAGE and two-dimensional (2-DE) electrophoresis. 1-DE immunoblotting of raw extract was performed with sera from fish-allergic patients. Ten sera were further analysed by 2-DE immunoblotting. Selected major allergenic protein spots were excised, trypsin digested and analysed by means of mass spectrometry. RESULTS SDS-PAGE of raw extract revealed 26 protein fractions, while boiled extract demonstrated fewer bands. The 2-DE gel profile of the raw extract further fractionated the protein bands to more than 100 distinct protein spots. 1-DE immunoblotting of raw extract exhibited two thermolabile protein fractions of 42 and 51 kDa as the major allergens, while the boiled extract only revealed a single IgE-binding band at 151 kDa. 2-DE immunoblotting of raw extract further detected numerous major IgE-reactive spots of 11-13, 42 and 51 kDa. Mass spectrometry analysis of the peptides generated from the 12, 42 and 51 kDa digested spots indicated that these spots were parvalbumin, creatine kinase and enolase, respectively. CONCLUSIONS In addition to parvalbumin, two new thermolabile allergens were identified as major allergenic proteins of T. tonggol. This study proved that both thermostable and thermolabile proteins are important in local tuna allergy and should be included in diagnostic strategies.
Collapse
Affiliation(s)
- Misnan Rosmilah
- Department of Biology, Faculty of Science and Mathematics, Sultan Idris Education University, Tanjong Malim, Perak, Malaysia
| | | | | | | | | | | |
Collapse
|
5
|
Brown P, Nair B, Mahajan SD, Sykes DE, Rich G, Reynolds JL, Aalinkeel R, Wheeler J, Schwartz SA. Single nucleotide polymorphisms (SNPs) in key cytokines may modulate food allergy phenotypes. Eur Food Res Technol 2012; 235:971-980. [PMID: 23230389 DOI: 10.1007/s00217-012-1827-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Single nucleotide polymorphisms (SNPs) can play a direct or indirect role in phenotypic expression in food allergy pathogenesis. Our goal was to quantitate the expression of SNPs in relevant cytokines that were expressed in food allergic patients. SNPs in cytokine genes IL-4 and IL-10 are known to be important in IgE generation and regulation. We examined IL-4 (C-590T), IL-4Rα (1652A/G) and IL-10 (C-627A) SNPs using real-time PCR followed by restriction fragment length polymorphism (RFLP) analysis. Our results show that the AA, AG and GG genotypes for IL-4Rα (1652A/G) polymorphisms were statistically different in radioallergosorbent test (RAST) positive versus negative patients, and although no statistically significant differences were observed between genotypes in the IL-4 (C-590T) and IL-10 (C-627A) SNPs, we observed a significant decrease in IL-4 (C-590T) gene expression and increase in IL-4Rα (1652A/G) and IL-10 (C-627A) gene expression between RAST(+) versus RAST(-) patients, respectively. We also observed significant modulation in the protein expression of IL-4 and IL-10 in the serum samples of the RAST(+) patients as compared to the RAST(-) patients indicating that changes in SNP expression resulted in altered phenotypic response in these patients.
Collapse
Affiliation(s)
- Paula Brown
- Department of Medicine, University at Buffalo, 640 Ellicott Street, Room 444 Innovation Center, Buffalo Niagara Medical Campus, Buffalo, NY 14203, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Walton SF, Weir C. The interplay between diet and emerging allergy: what can we learn from Indigenous Australians? Int Rev Immunol 2012; 31:184-201. [PMID: 22587020 DOI: 10.3109/08830185.2012.667180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The pathophysiology of atopic diseases, including asthma and allergy, is the result of complex gene-environment interactions. Since European colonization the Indigenous population of Australia has undergone significant changes with respect to their lifestyle as hunter-gatherers. These changes have had a detrimental effect on Aboriginal health, in part due to immunological modification. This review provides a comparative look at both the traditional Aboriginal/Indigenous diet and modern Western diets, examines some common allergies increasingly reported in contemporary Indigenous populations, and reviews concepts such the effect of vitamin deficiencies and changes in gut microbiota on immune function.
Collapse
Affiliation(s)
- Shelley F Walton
- School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia.
| | | |
Collapse
|
7
|
|