1
|
Yan H, Gou Z, Wang H, Zhu X, Liu J, Ling W, Huang L, Luo Y. Photoacoustic oxygenation imaging to identify ischemia/hypoxia injury and necrosis of intestine after acute intussusception: A comparative study with CDFI/CEUS. PHOTOACOUSTICS 2025; 43:100706. [PMID: 40115736 PMCID: PMC11923806 DOI: 10.1016/j.pacs.2025.100706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/05/2025] [Accepted: 02/23/2025] [Indexed: 03/23/2025]
Abstract
Acute intussusception is a pediatric abdominal emergency that requires immediate diagnosis and treatment. However, accurately identifying bowel necrosis non-invasively remains challenging with conventional sonography. In our study, we investigated the potential of photoacoustic imaging (PAI) as an innovative method for assessing ischemia/hypoxia injury and intestinal necrosis in cases of acute intussusception. Using PAI, we measured intestinal oxygen saturation (sO2) levels and total hemoglobin (HbT) in various models of acute intussusception at different time points. Additionally, we evaluated blood supply and ischemia/hypoxia injury using color Doppler flow imaging (CDFI) and contrast-enhanced ultrasound (CEUS). Based on histopathological results, intestinal sO₂ measured by PAI demonstrated optimal diagnostic performance for both ischemia/hypoxia injury and intestinal necrosis, with AUC values of 0.997 and 0.982, respectively, while CDFI and CEUS showed relatively high diagnostic performance for both ischemia/hypoxia injury and intestinal necrosis. In conclusion, PAI represents a promising, non-invasive imaging modality for assessing acute intussusception.
Collapse
Affiliation(s)
- Hualin Yan
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 641400, China
| | - Zehui Gou
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 641400, China
| | - Hong Wang
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 641400, China
| | - Xiaoxia Zhu
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 641400, China
| | - Juxian Liu
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenwu Ling
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 641400, China
| | - Lin Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yan Luo
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 641400, China
| |
Collapse
|
2
|
Buehler A, Brown EL, Eckstein M, Thoma OM, Wachter F, Mandelbaum H, Ludwig P, Claßen M, Oraiopoulou ME, Rother U, Neurath MF, Woelfle J, Waldner MJ, Friedrich O, Knieling F, Bohndiek SE, Regensburger AP. Guided Multispectral Optoacoustic Tomography for 3D Imaging of the Murine Colon. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413434. [PMID: 39836529 PMCID: PMC11905093 DOI: 10.1002/advs.202413434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/07/2025] [Indexed: 01/23/2025]
Abstract
Multispectral optoacoustic tomography is a promising medical imaging modality that combines light and sound to provide molecular imaging information at depths of several centimeters, based on the optical absorption of endogenous chromophores, such as hemoglobin. Assessment of inflammatory bowel disease has emerged as a promising clinical application of optoacoustic tomography. In this context, preclinical studies in animal models are essential to identify novel disease-specific imaging biomarkers and understand findings from emerging clinical pilot studies, however to-date, these studies have been limited by the precise identification of the bowel wall. Herein, a transrectal-absorber guide is applied, serving as a high-contrast landmark for 3D optoacoustic tomography of the colon. This study shows that guided multispectral optoacoustic tomography is able to measure changes in blood oxygenation status over the course of acute, chemically-induced colitis in mice and correlates with standard disease activity scores. This novel approach depicts intestinal hemoglobin composition non-invasively during murine inflammation. These results underscore the potential for optoacoustic imaging in translational inflammatory bowel disease research.
Collapse
Affiliation(s)
- Adrian Buehler
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Emma L Brown
- Department of Physics and Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Oana-Maria Thoma
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, University Hospital Erlangen, 91054, Erlangen, Germany
| | - Felix Wachter
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Henriette Mandelbaum
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Petra Ludwig
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Merle Claßen
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Mariam-Eleni Oraiopoulou
- Department of Physics and Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Ulrich Rother
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, University Hospital Erlangen, 91054, Erlangen, Germany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Maximilian J Waldner
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, University Hospital Erlangen, 91054, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Sarah E Bohndiek
- Department of Physics and Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Adrian P Regensburger
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| |
Collapse
|
3
|
Kim D, Ahn J, Kim D, Kim JY, Yoo S, Lee JH, Ghosh P, Luke MC, Kim C. Quantitative volumetric photoacoustic assessment of vasoconstriction by topical corticosteroid application in mice skin. PHOTOACOUSTICS 2024; 40:100658. [PMID: 39553383 PMCID: PMC11563941 DOI: 10.1016/j.pacs.2024.100658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024]
Abstract
Topical corticosteroids manage inflammatory skin conditions via their action on the immune system. An effect of application of corticosteroids to the skin is skin blanching caused by peripheral vasoconstriction. This has been used to characterize, in some cases relative potency and also as a way to compare skin penetration. Chromameters have been used to assess skin blanching-the outcome of vasoconstriction caused by topical corticosteroids-but do not directly measure vasoconstriction. Here, we demonstrate quantitative volumetric photoacoustic microscopy (PAM) as a tool for directly assessing the vasoconstriction followed by topical corticosteroid application, noninvasively visualizing skin vasculature without any exogeneous contrast agent. We photoacoustically differentiated the vasoconstrictive ability of four topical corticosteroids in small animals through multiparametric analyses, offering detailed 3D insights into vasoconstrictive mechanisms across different skin depths. Our findings highlight the potential of PAM as a noninvasive tool for measurement of comparative vasoconstriction with potential for clinical, pharmaceutical, and bioequivalence applications.
Collapse
Affiliation(s)
- Donggyu Kim
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Joongho Ahn
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Opticho Inc., Pohang, Republic of Korea
| | - Donghyun Kim
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jin Young Kim
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Opticho Inc., Pohang, Republic of Korea
| | - Seungah Yoo
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Hyun Lee
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Priyanka Ghosh
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Markham C. Luke
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Chulhong Kim
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Opticho Inc., Pohang, Republic of Korea
| |
Collapse
|
4
|
Buehler A, Brown EL, Nedoschill E, Eckstein M, Ludwig P, Wachter F, Mandelbaum H, Raming R, Oraiopoulou M, Paulus L, Rother U, Friedrich O, Neurath MF, Woelfle J, Waldner MJ, Knieling F, Bohndiek SE, Regensburger AP. In Vivo Assessment of Deep Vascular Patterns in Murine Colitis Using Optoacoustic Mesoscopic Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404618. [PMID: 39439243 PMCID: PMC11615813 DOI: 10.1002/advs.202404618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/15/2024] [Indexed: 10/25/2024]
Abstract
The analysis of vascular morphology and functionality enables the assessment of disease activity and therapeutic effects in various pathologies. Raster-scanning optoacoustic mesoscopy (RSOM) is an imaging modality that enables the visualization of superficial vascular networks in vivo. In murine models of colitis, deep vascular networks in the colon wall can be visualized by transrectal absorber guide raster-scanning optoacoustic mesoscopy (TAG-RSOM). In order to accelerate the implementation of this technology in translational studies of inflammatory bowel disease, an image-processing pipeline for TAG-RSOM data has been developed. Using optoacoustic data from a murine model of chemically-induced colitis, different image segmentation methods are compared for visualization and quantification of deep vascular patterns in terms of vascular network length and complexity, blood volume, and vessel diameter. The presented image-processing pipeline for TAG-RSOM enables label-free in vivo assessment of changes in the vascular network in murine colitis with broad applications for inflammatory bowel disease research.
Collapse
Affiliation(s)
- Adrian Buehler
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Emma L. Brown
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCB2 0RECambridgeUnited Kingdom
| | - Emmanuel Nedoschill
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Markus Eckstein
- Institute of PathologyFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Petra Ludwig
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Felix Wachter
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Henriette Mandelbaum
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Roman Raming
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | | | - Lars‐Philip Paulus
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Ulrich Rother
- Department of Vascular SurgeryUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Oliver Friedrich
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91052ErlangenGermany
| | - Markus F. Neurath
- Department of Medicine 1University Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91052ErlangenGermany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Maximilian J. Waldner
- Department of Medicine 1University Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91052ErlangenGermany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Sarah E. Bohndiek
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCB2 0RECambridgeUnited Kingdom
| | - Adrian P. Regensburger
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| |
Collapse
|
5
|
Tan L, Zschüntzsch J, Meyer S, Stobbe A, Bruex H, Regensburger AP, Claßen M, Alves F, Jüngert J, Rother U, Li Y, Danko V, Lang W, Türk M, Schmidt S, Vorgerd M, Schlaffke L, Woelfle J, Hahn A, Mensch A, Winterholler M, Trollmann R, Heiß R, Wagner AL, Raming R, Knieling F. Non-invasive optoacoustic imaging of glycogen-storage and muscle degeneration in late-onset Pompe disease. Nat Commun 2024; 15:7843. [PMID: 39245687 PMCID: PMC11381542 DOI: 10.1038/s41467-024-52143-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
Pompe disease (PD) is a rare autosomal recessive glycogen storage disorder that causes proximal muscle weakness and loss of respiratory function. While enzyme replacement therapy (ERT) is the only effective treatment, biomarkers for disease monitoring are scarce. Following ex vivo biomarker validation in phantom studies, we apply multispectral optoacoustic tomography (MSOT), a laser- and ultrasound-based non-invasive imaging approach, in a clinical trial (NCT05083806) to image the biceps muscles of 10 late-onset PD (LOPD) patients and 10 matched healthy controls. MSOT is compared with muscle magnetic resonance imaging (MRI), ultrasound, spirometry, muscle testing and quality of life scores. Next, results are validated in an independent LOPD patient cohort from a second clinical site. Our study demonstrates that MSOT enables imaging of subcellular disease pathology with increases in glycogen/water, collagen and lipid signals, providing higher sensitivity in detecting muscle degeneration than current methods. This translational approach suggests implementation in the complex care of these rare disease patients.
Collapse
Affiliation(s)
- Lina Tan
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
- Translational Pediatrics, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Jana Zschüntzsch
- Neuromuscular Disease Research, Clinic for Neurology, University Medical Center Göttingen (UMG), Göttingen, 37075, Germany
| | - Stefanie Meyer
- Neuromuscular Disease Research, Clinic for Neurology, University Medical Center Göttingen (UMG), Göttingen, 37075, Germany
| | - Alica Stobbe
- Neuromuscular Disease Research, Clinic for Neurology, University Medical Center Göttingen (UMG), Göttingen, 37075, Germany
| | - Hannah Bruex
- Neuromuscular Disease Research, Clinic for Neurology, University Medical Center Göttingen (UMG), Göttingen, 37075, Germany
| | - Adrian P Regensburger
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
- Translational Pediatrics, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Merle Claßen
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
- Translational Pediatrics, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Frauke Alves
- Translational Molecular Imaging, Max-Planck Institute for Multidisciplinary Sciences (MPI-NAT), City Campus, Göttingen, 37075, Germany
- Clinic for Haematology and Medical Oncology, Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen (UMG), Göttingen, 37075, Germany
| | - Jörg Jüngert
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Ulrich Rother
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Yi Li
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Vera Danko
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
- Translational Pediatrics, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Werner Lang
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Matthias Türk
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Sandy Schmidt
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Matthias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, 44789, Bochum, Germany
| | - Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789, Bochum, Germany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus-Liebig-Universität Giessen, 35385, Giessen, Germany
| | - Alexander Mensch
- Department of Neurology, Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | | | - Regina Trollmann
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
- Center for Social Pediatrics, University Hospital Erlangen: Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Rafael Heiß
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Alexandra L Wagner
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
- Translational Pediatrics, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
- Department of Pediatric Neurology, Center for Chronically Sick Children, Charité Berlin, 13353, Berlin, Germany
| | - Roman Raming
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
- Translational Pediatrics, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany.
- Translational Pediatrics, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany.
| |
Collapse
|
6
|
Li Y, Gröhl J, Haney B, Caranovic M, Lorenz-Meyer E, Papatheodorou N, Kempf J, Regensburger AP, Nedoschill E, Buehler A, Siebenlist G, Lang W, Uder M, Neurath MF, Waldner M, Knieling F, Rother U. Teachability of multispectral optoacoustic tomography. JOURNAL OF BIOPHOTONICS 2024; 17:e202400106. [PMID: 38719459 DOI: 10.1002/jbio.202400106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 07/13/2024]
Abstract
To date, the appropriate training required for the reproducible operation of multispectral optoacoustic tomography (MSOT) is poorly discussed. Therefore, the aim of this study was to assess the teachability of MSOT imaging. Five operators (two experienced and three inexperienced) performed repositioning imaging experiments. The inexperienced received the following introductions: personal supervision, video meeting, or printed introduction. The task was to image the exact same position on the calf muscle for seven times on five volunteers in two rounds of investigations. In the first session, operators used ultrasound guidance during measurements while using only photoacoustic data in the second session. The performance comparison was carried out with full-reference image quality measures to quantitatively assess the difference between repeated scans. The study demonstrates that given a personal supervision and hybrid ultrasound real-time imaging in MSOT measurements, inexperienced operators are able to achieve the same level as experienced operators in terms of repositioning accuracy.
Collapse
Affiliation(s)
- Yi Li
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Janek Gröhl
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Physics, University of Cambridge, Cambridge, UK
| | - Briain Haney
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Milenko Caranovic
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Eva Lorenz-Meyer
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nikolaos Papatheodorou
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Julius Kempf
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Adrian P Regensburger
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Emmanuel Nedoschill
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Adrian Buehler
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Gregor Siebenlist
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Werner Lang
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian Waldner
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ulrich Rother
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
7
|
Noversa de Sousa R, Tascilar K, Corte G, Atzinger A, Minopoulou I, Ohrndorf S, Waldner M, Schmidkonz C, Kuwert T, Knieling F, Kleyer A, Ramming A, Schett G, Simon D, Fagni F. Metabolic and molecular imaging in inflammatory arthritis. RMD Open 2024; 10:e003880. [PMID: 38341194 PMCID: PMC10862311 DOI: 10.1136/rmdopen-2023-003880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
It is known that metabolic shifts and tissue remodelling precede the development of visible inflammation and structural organ damage in inflammatory rheumatic diseases such as the inflammatory arthritides. As such, visualising and measuring metabolic tissue activity could be useful to identify biomarkers of disease activity already in a very early phase. Recent advances in imaging have led to the development of so-called 'metabolic imaging' tools that can detect these changes in metabolism in an increasingly accurate manner and non-invasively.Nuclear imaging techniques such as 18F-D-glucose and fibroblast activation protein inhibitor-labelled positron emission tomography are increasingly used and have yielded impressing results in the visualisation (including whole-body staging) of inflammatory changes in both early and established arthritis. Furthermore, optical imaging-based bedside techniques such as multispectral optoacoustic tomography and fluorescence optical imaging are advancing our understanding of arthritis by identifying intra-articular metabolic changes that correlate with the onset of inflammation with high precision and without the need of ionising radiation.Metabolic imaging holds great potential for improving the management of patients with inflammatory arthritis by contributing to early disease interception and improving diagnostic accuracy, thereby paving the way for a more personalised approach to therapy strategies including preventive strategies. In this narrative review, we discuss state-of-the-art metabolic imaging methods used in the assessment of arthritis and inflammation, and we advocate for more extensive research endeavours to elucidate their full field of application in rheumatology.
Collapse
Affiliation(s)
- Rita Noversa de Sousa
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Serviço de Medicina Interna, Hospital Pedro Hispano, Matosinhos, Portugal
- Deutsches Zentrum fuer Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Koray Tascilar
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum fuer Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Giulia Corte
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum fuer Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Armin Atzinger
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ioanna Minopoulou
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum fuer Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Sarah Ohrndorf
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maximilian Waldner
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Christian Schmidkonz
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Institute for Medical Engineering, Ostbayerische Technische Hochschule Amberg-Weiden, Amberg, Germany
| | - Torsten Kuwert
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Arnd Kleyer
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum fuer Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum fuer Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - David Simon
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Filippo Fagni
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum fuer Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
8
|
Hoerning A, Jüngert J, Siebenlist G, Knieling F, Regensburger AP. Ultrasound in Pediatric Inflammatory Bowel Disease-A Review of the State of the Art and Future Perspectives. CHILDREN (BASEL, SWITZERLAND) 2024; 11:156. [PMID: 38397268 PMCID: PMC10887069 DOI: 10.3390/children11020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Inflammatory bowel disease (IBD) comprises a group of relapsing, chronic diseases of the gastrointestinal tract that, in addition to adults, can affect children and adolescents. To detect relapses of inflammation, these patients require close observation, frequent follow-up, and therapeutic adjustments. While reference standard diagnostics include anamnestic factors, laboratory and stool sample assessment, performing specific imaging in children and adolescents is much more challenging than in adults. Endoscopic and classic cross-sectional imaging modalities may be invasive and often require sedation for younger patients. For this reason, intestinal ultrasound (IUS) is becoming increasingly important for the non-invasive assessment of the intestine and its inflammatory affection. In this review, we would like to shed light on the current state of the art and provide an outlook on developments in this field that could potentially spare these patients more invasive follow-up procedures.
Collapse
Affiliation(s)
- André Hoerning
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jörg Jüngert
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Gregor Siebenlist
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Adrian P Regensburger
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
9
|
Liu H, Wang M, Ji F, Jiang Y, Yang M. Mini review of photoacoustic clinical imaging: a noninvasive tool for disease diagnosis and treatment evaluation. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11522. [PMID: 38230369 PMCID: PMC10790789 DOI: 10.1117/1.jbo.29.s1.s11522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
Significance Photoacoustic (PA) imaging is an imaging modality that integrates anatomical, functional, metabolic, and histologic insights. It has been a hot topic of medical research and draws extensive attention. Aim This review aims to explore the applications of PA clinical imaging in human diseases, highlighting recent advancements. Approach A systemic survey of the literature concerning the clinical utility of PA imaging was conducted, with a particular focus on its application in tumors, autoimmune diseases, inflammatory conditions, and endocrine disorders. Results PA imaging is emerging as a valuable tool for human disease investigation. Information provided by PA imaging can be used for diagnosis, grading, and prognosis in multiple types of tumors including breast tumors, ovarian neoplasms, thyroid nodules, and cutaneous malignancies. PA imaging facilitates the monitoring of disease activity in autoimmune and inflammatory diseases such as rheumatoid arthritis, systemic sclerosis, arteritis, and inflammatory bowel disease by capturing dynamic functional alterations. Furthermore, its unique capability of visualizing vascular structure and oxygenation levels aids in assessing diabetes mellitus comorbidities and thyroid function. Conclusions Despite extant challenges, PA imaging offers a promising noninvasive tool for precision disease diagnosis, long-term evaluation, and prognosis anticipation, making it a potentially significant imaging modality for clinical practice.
Collapse
Affiliation(s)
- Huazhen Liu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Department of Ultrasound, Beijing, China
| | - Ming Wang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Department of Ultrasound, Beijing, China
| | - Fei Ji
- Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Department of Ultrasound, Beijing, China
| | - Yuxin Jiang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Department of Ultrasound, Beijing, China
| | - Meng Yang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Department of Ultrasound, Beijing, China
| |
Collapse
|