1
|
Sparling T, Iyer L, Pasquina P, Petrus E. Cortical Reorganization after Limb Loss: Bridging the Gap between Basic Science and Clinical Recovery. J Neurosci 2024; 44:e1051232024. [PMID: 38171645 PMCID: PMC10851691 DOI: 10.1523/jneurosci.1051-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Accepted: 09/29/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the increasing incidence and prevalence of amputation across the globe, individuals with acquired limb loss continue to struggle with functional recovery and chronic pain. A more complete understanding of the motor and sensory remodeling of the peripheral and central nervous system that occurs postamputation may help advance clinical interventions to improve the quality of life for individuals with acquired limb loss. The purpose of this article is to first provide background clinical context on individuals with acquired limb loss and then to provide a comprehensive review of the known motor and sensory neural adaptations from both animal models and human clinical trials. Finally, the article bridges the gap between basic science researchers and clinicians that treat individuals with limb loss by explaining how current clinical treatments may restore function and modulate phantom limb pain using the underlying neural adaptations described above. This review should encourage the further development of novel treatments with known neurological targets to improve the recovery of individuals postamputation.Significance Statement In the United States, 1.6 million people live with limb loss; this number is expected to more than double by 2050. Improved surgical procedures enhance recovery, and new prosthetics and neural interfaces can replace missing limbs with those that communicate bidirectionally with the brain. These advances have been fairly successful, but still most patients experience persistent problems like phantom limb pain, and others discontinue prostheses instead of learning to use them daily. These problematic patient outcomes may be due in part to the lack of consensus among basic and clinical researchers regarding the plasticity mechanisms that occur in the brain after amputation injuries. Here we review results from clinical and animal model studies to bridge this clinical-basic science gap.
Collapse
Affiliation(s)
- Tawnee Sparling
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Laxmi Iyer
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland 20817
| | - Paul Pasquina
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Emily Petrus
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland 20814
| |
Collapse
|
2
|
Kuffler DP. Evolving techniques for reducing phantom limb pain. Exp Biol Med (Maywood) 2023; 248:561-572. [PMID: 37158119 PMCID: PMC10350801 DOI: 10.1177/15353702231168150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
At least two million people in the United States of America live with lost limbs, and the number is expected to double by 2050, although the incidence of amputations is significantly greater in other parts of the world. Within days to weeks of the amputation, up to 90% of these individuals develop neuropathic pain, presenting as phantom limb pain (PLP). The pain level increases significantly within one year and remains chronic and severe for about 10%. Amputation-induced changes are considered to underlie the causation of PLP. Techniques applied to the central nervous system (CNS) and peripheral nervous system (PNS) are designed to reverse amputation-induced changes, thereby reducing/eliminating PLP. The primary treatment for PLP is the administration of pharmacological agents, some of which are considered but provide no more than short-term pain relief. Alternative techniques are also discussed, which provide only short-term pain relief. Changes induced by various cells and the factors they release are required to change neurons and their environment to reduce/eliminate PLP. It is concluded that novel techniques that utilize autologous platelet-rich plasma (PRP) may provide long-term PLP reduction/elimination.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan 00901, Puerto Rico
| |
Collapse
|
3
|
Pathophysiological and Neuroplastic Changes in Postamputation and Neuropathic Pain: Review of the Literature. Plast Reconstr Surg Glob Open 2022; 10:e4549. [PMID: 36187278 PMCID: PMC9521753 DOI: 10.1097/gox.0000000000004549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/05/2022] [Indexed: 10/24/2022]
Abstract
Despite advancements in surgical and rehabilitation strategies, extremity amputations are frequently associated with disability, phantom limb sensations, and chronic pain. Investigation into potential treatment modalities has focused on the pathophysiological changes in both the peripheral and central nervous systems to better understand the underlying mechanism in the development of chronic pain in persons with amputations. Methods Presented in this article is a discussion outlining the physiological changes that occur in the peripheral and central nervous systems following amputation. In this review, the authors examine the molecular and neuroplastic changes occurring in the nervous system, as well as the state-of-the-art treatment to help reduce the development of postamputation pain. Results This review summarizes the current literature regarding neurological changes following amputation. Development of both central sensitization and neuronal remodeling in the spinal cord and cerebral cortex allows for the development of neuropathic and phantom limb pain postamputation. Recently developed treatments targeting these pathophysiological changes have enabled a reduction in the severity of pain; however, complete resolution remains elusive. Conclusions Changes in the peripheral and central nervous systems following amputation should not be viewed as separate pathologies, but rather two interdependent mechanisms that underlie the development of pathological pain. A better understanding of the physiological changes following amputation will allow for improvements in therapeutic treatments to minimize pathological pain caused by amputation.
Collapse
|
4
|
Bhoi D, Nanda S, Mohan V. Postamputation pain: A narrative review. INDIAN JOURNAL OF PAIN 2022. [DOI: 10.4103/ijpn.ijpn_95_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
5
|
Zarei AA, Jadidi AF, Lontis ER, Jensen W. Short-Term Suppression of Somatosensory Evoked Potentials and Perceived Sensations in Healthy Subjects Following TENS. IEEE Trans Biomed Eng 2021; 68:2261-2269. [PMID: 33439833 DOI: 10.1109/tbme.2021.3051307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transcutaneous electrical nerve stimulation (TENS) has been reported to alleviate pain in chronic pain patients. Currently, there is limited knowledge how TENS affects can cause cortical neuromodulation and lead to modulation of non-painful and painful sensations. Our aim was therefore to investigate the effect of conventional, high-frequency TENS on cortical activation and perceived sensations in healthy subjects. We recorded somatosensory evoked potentials (SEPs) and perceived sensations following high-frequency TENS (100 Hz) in 40 healthy subjects (sham and intervention group). The effect of TENS was examined up to an hour after the intervention phase, and results revealed significant cortical inhibition. We found that the magnitude of N100, P200 waves, and theta and alpha band power was significantly suppressed following the TENS intervention. These changes were associated with a simultaneous reduction in the perceived intensity and the size of the area where the sensation was felt. Although phantom limb pain relief previously has been associated with an inhibition of cortical activity, the efficacy of the present TENS intervention to induce such cortical inhibition and cause pain relief should be verified in a future clinical trial.
Collapse
|
6
|
Mosch B, Hagena V, Diers M. Bildgebende Untersuchungen des neuronalen
Schmerznetzwerks. AKTUEL RHEUMATOL 2020. [DOI: 10.1055/a-1202-0766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ZusammenfassungDer vorliegende Artikel soll eine Übersicht über bildgebende
Untersuchungen im Bereich chronischer Schmerzsyndrome bieten. Auf die
einleitenden Worte zur allgemeinen Phänomenologie des Schmerzes
folgt ein umfassender Einblick in die gegenwärtige Anwendung
funktioneller und struktureller Bildgebungstechniken am Beispiel
ausgewählter Schmerzsyndrome (Chronischer Rückenschmerz,
Fibromyalgiesyndrom (FMS), Phantomschmerz und Komplexes regionales
Schmerzsyndrom (CRPS)). In diesem Zusammenhang werden Gemeinsamkeiten und
Besonderheiten der spezifischen neurologischen Korrelate verschiedener
chronischer Schmerzerkrankungen diskutiert.
Collapse
Affiliation(s)
- Benjamin Mosch
- Klinik für Psychosomatische Medizin und Psychotherapie, LWL
Universitätsklinikum Bochum der Ruhr-Universität Bochum,
Bochum
| | - Verena Hagena
- Klinik für Psychosomatische Medizin und Psychotherapie, LWL
Universitätsklinikum Bochum der Ruhr-Universität Bochum,
Bochum
| | - Martin Diers
- Klinik für Psychosomatische Medizin und Psychotherapie, LWL
Universitätsklinikum Bochum der Ruhr-Universität Bochum,
Bochum
| |
Collapse
|
7
|
Role of Potassium Ions Quantum Tunneling in the Pathophysiology of Phantom Limb Pain. Brain Sci 2020; 10:brainsci10040241. [PMID: 32325702 PMCID: PMC7226264 DOI: 10.3390/brainsci10040241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022] Open
Abstract
(1) Background: multiple theories were proposed to explain the phenomenon of phantom limb pain (PLP). Nevertheless, the phenomenon is still shrouded in mystery. The aim of this study is to explore the phenomenon from a new perspective, where quantum tunneling of ions, a promising field in medical practice, might play a major role. (2) Methods: investigators designed a quantum mathematical model based on the Schrödinger equation to examine the probability of potassium ions quantum tunneling through closed membrane potassium channels to the inside of phantom axons, leading to the generation of action potential. (3) Results: the model suggests that the probability of action potential induction at a certain region of the membrane of phantom neurons, when a neuron of the stump area is stimulated over 1 mm2 surface area of the membrane available for tunneling is 1.04 × 10−2. Furthermore, upon considering two probabilities of potassium channelopathies, one that decreased the energy of the barrier by 25% and another one by 50%, the tunneling probability became 1.22 × 10−8 and 3.86 × 10−4, respectively. (4) Conclusion: quantum models of potassium ions can provide a reliable theoretical hypothesis to unveil part of the ambiguity behind PLP.
Collapse
|
8
|
Ol HS, Van Heng Y, Danielsson L, Husum H. Mirror therapy for phantom limb and stump pain: a randomized controlled clinical trial in landmine amputees in Cambodia. Scand J Pain 2019; 18:603-610. [PMID: 30207289 DOI: 10.1515/sjpain-2018-0042] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/11/2018] [Indexed: 01/29/2023]
Abstract
Background and aims The aim of the study was to examine the effect of mirror and tactile therapy on phantom and stump pain in patients with traumatic amputations, with particular reference to amputees in low-income communities. Methods The study was conducted with an open, randomized, semi-crossover case-control design in rural Cambodia. A study sample of 45 landmine victims with trans-tibial amputations was allocated to three treatment arms; mirror therapy, tactile therapy, and combined mirror-and-tactile therapy. Non-responders from the mono-therapy interventions were crossed over to the alternative intervention. The intervention consisted of 5 min of treatment every morning and evening for 4 weeks. Endpoint estimates of phantom limb pain (PLP), stump pain, and physical function were registered 3 months after the treatment. Results All three interventions were associated with more that 50% reduction in visual analogue scale (VAS)-rated PLP and stump pain. Combined mirror-tactile treatment had a significantly better effect on PLP and stump pain than mirror or tactile therapy alone. The difference between the three treatment arms were however slight, and hardly of clinical relevance. After treatment, the reduction of pain remained unchanged for an observation period of 3 months. Conclusions The study documents that a 4-week treatment period with mirror and/or tactile therapy significantly reduces PLP and stump pain after trans-tibial amputations. Implications The article reports for the first time a randomized controlled trial of mirror therapy in a homogenous sample of persons with traumatic amputations. The findings are of special relevance to amputees in low-resource communities.
Collapse
Affiliation(s)
- Ha Sam Ol
- Trauma Care Foundation Cambodia, Kamakor, Battambang, Cambodia
| | - Yang Van Heng
- Trauma Care Foundation Cambodia, Kamakor, Battambang, Cambodia
| | - Lena Danielsson
- Department of Pain, University Hospital of North Norway, Tromso, Norway.,Institute of Clinical Medicine, University of Tromso - The Arctic University of Norway, Tromso, Norway
| | - Hans Husum
- Trauma Care Foundation Norway, Banak Leir, N-9700 Lakselv, Norway, Phone: +351 911 086 502
| |
Collapse
|
9
|
Abstract
In this chapter, we provide an overview of neuroimaging studies in chronic pain. We start with an introduction about the phenomenology of pain. In the following section, the application of functional and structural imaging techniques is shown in selected chronic pain syndromes (chronic back pain, fibromyalgia syndrome (FMS), phantom limb pain, and complex regional pain syndrome (CRPS)), and commonalities and peculiarities of imaging correlates across different types of chronic pain are discussed. We conclude this chapter with implications for treatments, with focus on behavioral interventions, sensory and motor trainings, and mirror and motor imagery trainings.
Collapse
Affiliation(s)
- Martin Diers
- Clinical and Experimental Behavioral Medicine, Department of Psychosomatic Medicine and Psychotherapy, LWL University Hospital, Ruhr University Bochum, Alexandrinenstrasse 1-3, 44791, Bochum, Germany.
| |
Collapse
|
10
|
Mizuguchi N, Nakagawa K, Tazawa Y, Kanosue K, Nakazawa K. Functional plasticity of the ipsilateral primary sensorimotor cortex in an elite long jumper with below-knee amputation. NEUROIMAGE-CLINICAL 2019; 23:101847. [PMID: 31103873 PMCID: PMC6525316 DOI: 10.1016/j.nicl.2019.101847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 02/08/2023]
Abstract
Functional plasticity of the sensorimotor cortex occurs following motor practice, as well as after limb amputation. However, the joint effect of limb amputation and intensive, long-term motor practice on cortical plasticity remains unclear. Here, we recorded brain activity during unilateral contraction of the hip, knee, and ankle joint muscles from a long jump Paralympic gold medalist with a unilateral below-knee amputation (Amputee Long Jumper, ALJ). He used the amputated leg with a prosthesis for take-off. Under similar conditions to the ALJ, we also recorded brain activity from healthy long jumpers (HLJ) and non-athletes with a below-knee amputation. During a rhythmic isometric contraction of knee extensor muscles with the take-off/prosthetic leg, the ALJ activated not only the contralateral primary sensorimotor cortex (M1/S1), but also the ipsilateral M1/S1. In addition, this ipsilateral M1/S1 activation was significantly greater than that seen in the HLJ. However, we did not find any significant differences between the ALJ and HLJ in M1/S1 activation during knee muscle contraction in the non-take-off/intact leg, nor during hip muscle contraction on either side. Region of interest analysis revealed that the ALJ exhibited a greater difference in M1/S1 activity and activated areas ipsilateral to the movement side between the take-off/prosthetic and non-take-off/intact legs during knee muscle contraction compared with the other two groups. However, difference in activity in M1/S1 contralateral to the movement side did not differ across groups. These results suggest that a combination of below-knee amputation and intensive, prolonged long jump training using a prosthesis (i.e. fine knee joint control) induced an expansion of the functional representation of the take-off/prosthetic leg in the ipsilateral M1/S1 in a muscle-specific manner. These results provide novel insights into the potential for substantial cortical plasticity with an extensive motor rehabilitation program. A Paralympic gold medalist with a unilateral below-knee amputation was recruited. Brain activity during hip, knee, and ankle movements was recorded. Brain activity was compared with healthy athletes and non-athletes with amputation. Greater ipsilateral M1/S1 activity during knee movement was observed in the medalist. Intensive motor practice and limb amputation would induce drastic neural plasticity.
Collapse
Affiliation(s)
- Nobuaki Mizuguchi
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan; Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama city, Kanagawa 223-8522, Japan; The Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Kento Nakagawa
- The Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan; Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yutaka Tazawa
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Kazuyuki Kanosue
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan
| | - Kimitaka Nakazawa
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
11
|
Mo JJ, Hu WH, Zhang C, Wang X, Liu C, Zhao BT, Zhou JJ, Zhang K. Motor cortex stimulation: a systematic literature-based analysis of effectiveness and case series experience. BMC Neurol 2019; 19:48. [PMID: 30925914 PMCID: PMC6440080 DOI: 10.1186/s12883-019-1273-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/14/2019] [Indexed: 12/11/2022] Open
Abstract
Background Aim to quantitatively analyze the clinical effectiveness for motor cortex stimulation (MCS) to refractory pain. Methods The literatures were systematically searched in database of Cocharane library, Embase and PubMed, using relevant strategies. Data were extracted from eligible articles and pooled as mean with standard deviation (SD). Comparative analysis was measured by non-parametric t test and linear regression model. Results The pooled effect estimate from 12 trials (n = 198) elucidated that MCS shown the positive effect on refractory pain, and the total percentage improvement was 35.2% in post-stroke pain and 46.5% in trigeminal neuropathic pain. There is no statistical differences between stroke involved thalamus or non-thalamus. The improvement of plexus avulsion (29.8%) and phantom pain (34.1%) was similar. The highest improvement rate was seen in post-radicular plexopathy (65.1%) and MCS may aggravate the pain induced by spinal cord injury, confirmed by small sample size. Concurrently, Both the duration of disease (r = 0.233, p = 0.019*) and the time of follow-up (r = 0.196, p = 0.016*) had small predicative value, while age (p = 0.125) had no correlation to post-operative pain relief. Conclusions MCS is conducive to the patients with refractory pain. The duration of disease and the time of follow-up can be regarded as predictive factor. Meanwhile, further studies are needed to reveal the mechanism of MCS and to reevaluate the cost-benefit aspect with better-designed clinical trials. Electronic supplementary material The online version of this article (10.1186/s12883-019-1273-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jia-Jie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Wen-Han Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Chang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Bao-Tian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Jun-Jian Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
12
|
Dubois JD, Poitras I, Voisin JIA, Mercier C. Effect of pain on deafferentation-induced modulation of somatosensory evoked potentials. PLoS One 2018; 13:e0206141. [PMID: 30346981 PMCID: PMC6197665 DOI: 10.1371/journal.pone.0206141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/08/2018] [Indexed: 11/18/2022] Open
Abstract
There is a large body of evidence showing substantial sensorimotor reorganizations after an amputation. These reorganizations are believed to contribute to the development of phantom limb pain, but alternatively, pain might influence the plasticity triggered by the deafferentation. The aim of this study was to test whether pain impacts on deafferentation-induced plasticity in the somatosensory pathways. Fifteen healthy subjects participated in 2 experimental sessions (Pain, No Pain) in which somatosensory evoked potentials (SSEPs) associated with electrical stimulation of the ulnar nerve were assessed before and after temporary ischemic deafferentation induced by inflation of a cuff around the wrist. In the Pain session capsaicin cream was applied on the dorsum of the hand 30 minutes prior to cuff inflation. Results show that pain decreased the amplitude of the N20 (main effect of condition, p = 0.033), with a similar trend for the P25. Temporary ischemic deafferentation had a significant effect on SSEPs (main effect of time), with an increase in the P25 (p = 0.013) and the P45 amplitude (p = 0.005), together with a reduction of the P90 amplitude (p = 0.002). Finally, a significant time x condition interaction, reflecting state-dependent plasticity, was found for the P90 only, the presence of pain decreasing the reduction of amplitude observed in response to deafferentation. In conclusion, these results show that nociceptive input can influence the plasticity induced by a deafferentation, which could be a contributing factor in the cortical somatosensory reorganization observed in chronic pain populations.
Collapse
Affiliation(s)
- Jean-Daniel Dubois
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, Québec, Canada
- Department of Rehabilitation, Laval University, Pavillon Ferdinand-Vandry, Quebec City, Québec, Canada
| | - Isabelle Poitras
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, Québec, Canada
- Department of Rehabilitation, Laval University, Pavillon Ferdinand-Vandry, Quebec City, Québec, Canada
| | - Julien I. A. Voisin
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, Québec, Canada
- Department of Rehabilitation, Laval University, Pavillon Ferdinand-Vandry, Quebec City, Québec, Canada
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, Québec, Canada
- Department of Rehabilitation, Laval University, Pavillon Ferdinand-Vandry, Quebec City, Québec, Canada
- * E-mail:
| |
Collapse
|
13
|
Petersen BA, Nanivadekar AC, Chandrasekaran S, Fisher LE. Phantom limb pain: peripheral neuromodulatory and neuroprosthetic approaches to treatment. Muscle Nerve 2018; 59:154-167. [DOI: 10.1002/mus.26294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Bailey A. Petersen
- Department of Bioengineering; University of Pittsburgh; 3520 Fifth Avenue, Pittsburgh Pennsylvania 15213 USA
| | - Ameya C. Nanivadekar
- Department of Bioengineering; University of Pittsburgh; 3520 Fifth Avenue, Pittsburgh Pennsylvania 15213 USA
| | - Santosh Chandrasekaran
- Department of Physical Medicine and Rehabilitation; University of Pittsburgh; Pittsburgh Pennsylvania USA
| | - Lee E. Fisher
- Department of Bioengineering; University of Pittsburgh; 3520 Fifth Avenue, Pittsburgh Pennsylvania 15213 USA
- Department of Physical Medicine and Rehabilitation; University of Pittsburgh; Pittsburgh Pennsylvania USA
| |
Collapse
|
14
|
Cutaneous sensitivity in unilateral trans-tibial amputees. PLoS One 2018; 13:e0197557. [PMID: 29856766 PMCID: PMC5983436 DOI: 10.1371/journal.pone.0197557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 05/05/2018] [Indexed: 11/19/2022] Open
Abstract
Aim To examine tactile sensitivity in the leg and foot sole of below-knee amputees (diabetic n = 3, traumatic n = 1), and healthy control subjects (n = 4), and examine the association between sensation and balance. Method Vibration perception threshold (VPT; 3, 40, 250Hz) and monofilaments (MF) were used to examine vibration and light touch sensitivity on the intact limb, residual limb, and homologous locations on controls. A functional reach test was performed to assess functional balance. Results Tactile sensitivity was lower for diabetic amputee subjects compared to age matched controls for both VPT and MF; which was expected due to presence of diabetic peripheral neuropathy. In contrast, the traumatic amputee participant showed increased sensitivity for VPT at 40Hz and 250Hz vibration in both the intact and residual limbs compared to controls. Amputees with lower tactile sensitivity had shorter reach distances compared to those with higher sensitivity. Conclusion Changes in tactile sensitivity in the residual limb of trans-tibial amputees may have implications for the interaction between the amputee and the prosthetic device. The decreased skin sensitivity observed in the residual limb of subjects with diabetes is of concern as changes in skin sensitivity may be important in 1) identification/prevention of excessive pressure and 2) for functional stability. Interestingly, we saw increased residual limb skin sensitivity in the individual with the traumatic amputation. Although not measured directly in the present study, this increase in tactile sensitivity may be related to cortical reorganisation, which is known to occur following amputation, and would support similar findings observed in upper limb amputees.
Collapse
|
15
|
Collins KL, Russell HG, Schumacher PJ, Robinson-Freeman KE, O'Conor EC, Gibney KD, Yambem O, Dykes RW, Waters RS, Tsao JW. A review of current theories and treatments for phantom limb pain. J Clin Invest 2018; 128:2168-2176. [PMID: 29856366 DOI: 10.1172/jci94003] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Following amputation, most amputees still report feeling the missing limb and often describe these feelings as excruciatingly painful. Phantom limb sensations (PLS) are useful while controlling a prosthesis; however, phantom limb pain (PLP) is a debilitating condition that drastically hinders quality of life. Although such experiences have been reported since the early 16th century, the etiology remains unknown. Debate continues regarding the roles of the central and peripheral nervous systems. Currently, the most posited mechanistic theories rely on neuronal network reorganization; however, greater consideration should be given to the role of the dorsal root ganglion within the peripheral nervous system. This Review provides an overview of the proposed mechanistic theories as well as an overview of various treatments for PLP.
Collapse
Affiliation(s)
| | - Hannah G Russell
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Patrick J Schumacher
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | - Ellen C O'Conor
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Kyla D Gibney
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Olivia Yambem
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Robert W Dykes
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
| | | | - Jack W Tsao
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Neurology, Memphis Veterans Affairs Medical Center, Memphis, Tennessee, USA.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| |
Collapse
|
16
|
Ambron E, Miller A, Kuchenbecker KJ, Buxbaum LJ, Coslett HB. Immersive Low-Cost Virtual Reality Treatment for Phantom Limb Pain: Evidence from Two Cases. Front Neurol 2018. [PMID: 29515513 PMCID: PMC5825921 DOI: 10.3389/fneur.2018.00067] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Up to 90% of amputees experience sensations in their phantom limb, often including strong, persistent phantom limb pain (PLP). Standard treatments do not provide relief for the majority of people who experience PLP, but virtual reality (VR) has shown promise. This study provides additional evidence that game-like training with low-cost immersive VR activities can reduce PLP in lower-limb amputees. The user of our system views a real-time rendering of two intact legs in a head-mounted display while playing a set of custom games. The movements of both virtual extremities are controlled by measurements from inertial sensors mounted on the intact and residual limbs. Two individuals with unilateral transtibial amputation underwent multiple sessions of the VR treatment over several weeks. Both participants experienced a significant reduction of pain immediately after each VR session, and their pre-session pain levels also decreased greatly over the course of the study. Although preliminary, these data support the idea that VR interventions like ours may be an effective low-cost treatment of PLP in lower-limb amputees.
Collapse
Affiliation(s)
- Elisabetta Ambron
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Alexander Miller
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Katherine J Kuchenbecker
- Haptic Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Laurel J Buxbaum
- Cognition and Action Laboratory, Moss Rehabilitation Research Institute, Philadelphia, PA, United States
| | - H Branch Coslett
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
17
|
Mavromatis N, Gagné M, Voisin JIAV, Reilly KT, Mercier C. Experimental tonic hand pain modulates the corticospinal plasticity induced by a subsequent hand deafferentation. Neuroscience 2016; 330:403-9. [PMID: 27291642 DOI: 10.1016/j.neuroscience.2016.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 05/30/2016] [Accepted: 06/04/2016] [Indexed: 02/06/2023]
Abstract
Sensorimotor reorganization is believed to play an important role in the development and maintenance of phantom limb pain, but pain itself might modulate sensorimotor plasticity induced by deafferentation. Clinical and basic research support this idea, as pain prior to amputation increases the risk of developing post-amputation pain. The aim of this study was to examine the influence of experimental tonic cutaneous hand pain on the plasticity induced by temporary ischemic hand deafferentation. Sixteen healthy subjects participated in two experimental sessions (Pain, No Pain) in which transcranial magnetic stimulation was used to assess corticospinal excitability in two forearm muscles (flexor carpi radialis and flexor digitorum superficialis) before (T0, T10, T20, and T40) and after (T60 and T75) inflation of a cuff around the wrist. The cuff was inflated at T45 in both sessions and in the Pain session capsaicin cream was applied on the dorsum of the hand at T5. Corticospinal excitability was significantly greater during the Post-inflation phase (p=0.002) and increased similarly in both muscles (p=0.861). Importantly, the excitability increase in the Post-inflation phase was greater for the Pain than the No-Pain condition (p=0.006). Post-hoc analyses revealed a significant difference between the two conditions during the Post-inflation phase (p=0.030) but no difference during the Pre-inflation phase (p=0.601). In other words, the corticospinal facilitation was greater when pain was present prior to cuff inflation. These results indicate that pain can modulate the plasticity induced by another event, and could partially explain the sensorimotor reorganization often reported in chronic pain populations.
Collapse
Affiliation(s)
- N Mavromatis
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, Canada; Department of Rehabilitation, Laval University, Québec, Canada
| | - M Gagné
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, Canada
| | - J I A V Voisin
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, Canada; Department of Rehabilitation, Laval University, Québec, Canada
| | - K T Reilly
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct Team, Lyon, France; University Claude Bernard Lyon I, Lyon, France
| | - C Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, Canada; Department of Rehabilitation, Laval University, Québec, Canada.
| |
Collapse
|
18
|
Raffin E, Richard N, Giraux P, Reilly KT. Primary motor cortex changes after amputation correlate with phantom limb pain and the ability to move the phantom limb. Neuroimage 2016; 130:134-144. [DOI: 10.1016/j.neuroimage.2016.01.063] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 01/11/2016] [Accepted: 01/15/2016] [Indexed: 01/25/2023] Open
|
19
|
Shankar H, Hansen J, Thomas K. Phantom pain in a patient with brachial plexus avulsion injury. PAIN MEDICINE 2014; 16:777-81. [PMID: 25529640 DOI: 10.1111/pme.12635] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Phantom limb pain is a painful sensation perceived in the absent limb following surgical or traumatic amputation. Phantom limb sensations, which are nonpainful, occur in nearly all amputees. Deafferentation can also produce similar symptoms. Here we report the presence of phantom pain in a deafferented limb. DESIGN Case report. SETTING Hospital-based outpatient clinic. PATIENT A 65-year-old man was referred to the pain clinic for management of upper extremity pain secondary to brachial plexus avulsion (BPA) following a motor vehicle accident. Initially he noticed a feeling of growing and shrinking of his arm. Following this, the pain started gradually from his elbow extending to his fingertips covering all dermatomes. He described the pain as continuous, severe, and sharp. He also described the arm as being separate from his existing insensate arm and felt as though the fist was closed with the thumb pointing out. On physical examination, he had no sensation to fine touch or pressure below the elbow. There were no consistent areas of allodynia. He had diffuse muscle wasting in all the muscle groups of his left upper extremity, besides winging of the scapula. Electrodiagnostic studies showed a left brachial plexopathy consistent with multilevel nerve root avulsion sparing the dorsal rami. CONCLUSION This is a report of phantom limb sensations and phantom pain following BPA in an intact but flaccid and insensate limb.
Collapse
Affiliation(s)
- Hariharan Shankar
- Department of Anesthesiology, Clement Zablocki VA Medical Center, Milwaukee, Wisconsin, USA; Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | |
Collapse
|
20
|
Blume KR, Dietrich C, Huonker R, Götz T, Sens E, Friedel R, Hofmann GO, Miltner WHR, Weiss T. Cortical reorganization after macroreplantation at the upper extremity: a magnetoencephalographic study. ACTA ACUST UNITED AC 2014; 137:757-69. [PMID: 24480484 DOI: 10.1093/brain/awt366] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
With the development of microsurgical techniques, replantation has become a feasible alternative to stump treatment after the amputation of an extremity. It is known that amputation often induces phantom limb pain and cortical reorganization within the corresponding somatosensory areas. However, whether replantation reduces the risk of comparable persisting pain phenomena as well as reorganization of the primary somatosensory cortex is still widely unknown. Therefore, the present study aimed to investigate the potential development of persistent pain and cortical reorganization of the hand and lip areas within the sensory cortex by means of magnetoencephalographic dipole analyses after replantation of a traumatically amputated upper limb proximal to the radiocarpal joint. Cortical reorganization was investigated in 13 patients with limb replantation using air puff stimulation of the phalanges of both thumbs and both corners of the lower lip. Displacement of the centre of gravity of lip and thumb representations and increased cortical activity were found in the limb and face areas of the primary somatosensory cortex contralateral to the replanted arm when compared to the ipsilateral hemisphere. Thus, cortical reorganization in the primary somatosensory cortex also occurs after replantation of the upper extremity. Patients' reports of pain in the replanted body part were negatively correlated with the amount of cortical reorganization, i.e. the more pain the patients reported, the less reorganization of the subjects' hand representation within the primary somatosensory cortex was observed. Longitudinal studies in patients after macroreplantation are necessary to assess whether the observed reorganization in the primary somatosensory cortex is a result of changes within the representation of the replanted arm and/or neighbouring representations and to assess the relationship between the development of persistent pain and reorganization.
Collapse
Affiliation(s)
- Kathrin R Blume
- 1 Department of Biological and Clinical Psychology, Friedrich Schiller University, 07743 Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chen A, Yao J, Kuiken T, Dewald JPA. Cortical motor activity and reorganization following upper-limb amputation and subsequent targeted reinnervation. NEUROIMAGE-CLINICAL 2013; 3:498-506. [PMID: 24273732 PMCID: PMC3830062 DOI: 10.1016/j.nicl.2013.10.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 09/23/2013] [Accepted: 10/01/2013] [Indexed: 11/25/2022]
Abstract
Previous studies have postulated that the amount of brain reorganization following peripheral injuries may be correlated with negative symptoms or consequences. However, it is unknown whether restoring effective limb function may then be associated with further changes in the expression of this reorganization. Recently, targeted reinnervation (TR), a surgical technique that restores a direct neural connection from amputated sensorimotor nerves to new peripheral targets such as muscle, has been successfully applied to upper-limb amputees. It has been shown to be effective in restoring both peripheral motor and sensory functions via the reinnervated nerves as soon as a few months after the surgery. However, it was unclear whether TR could also restore normal cortical motor representations for control of the missing limb. To answer this question, we used high-density electroencephalography (EEG) to localize cortical activity related to cued motor tasks generated by the intact and missing limb. Using a case study of 3 upper-limb amputees, 2 of whom went through pre and post-TR experiments, we present unique quantitative evidence for the re-mapping of motor representations for the missing limb closer to their original locations following TR. This provides evidence that an effective restoration of peripheral function from TR can be linked to the return of more normal cortical expression for the missing limb. Therefore, cortical mapping may be used as a potential guide for monitoring rehabilitation following peripheral injuries.
Collapse
Affiliation(s)
- Albert Chen
- Department of Biomedical Engineering, Northwestern University, IL, USA ; Department of Physical Therapy and Human Movement Sciences, Northwestern University, IL, USA
| | | | | | | |
Collapse
|
22
|
|
23
|
Kern U, Busch V, Müller R, Kohl M, Birklein F. Phantom limb pain in daily practice--still a lot of work to do! PAIN MEDICINE 2012; 13:1611-26. [PMID: 23013457 DOI: 10.1111/j.1526-4637.2012.01494.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Effective treatment of phantom limb pain (PLP, pain felt in the part of the body of an amputated limb) is still difficult to achieve, and improved treatment is needed. It is therefore of paramount interest to understand the current practice of PLP therapy outside pain centers. DESIGN As a part of a nationwide survey, 537 amputees were asked 11 questions related to their treatment experiences and the pain relief. Furthermore, the patients' opinion about the quality of medical care was also asked. RESULTS Five hundred thirty-seven out of 1088 amputees returned the questionnaire (49.4%). Four hundred (74.5%) suffered from PLP. The patients rated their caregivers' knowledge about PLP lower than their own. Many (41.6%) of PLP patients had never been informed about the possibility of occurrence and mechanisms of PLP. The vast majority of the PLP patients did not try any treatment. Among those treated, more than 30% consulted more than three physicians for beneficial treatment. A >50% pain reduction was achieved in only 12.7% of PLP patients. The most successful treatments were opioids (67.4%) and anticonvulsants (51.7%). Surgery was performed in 46.4% of all PLP patients and in 29.7% due to a clinically suspected neuroma. After surgery, pain was worse or unchanged in 50% and improved in 41.6%, and 7.4% were pain-free. CONCLUSIONS Our results suggest that there are primary needs for better information about PLP pathophysiology and treatment not only for patients but also for caregivers. Limited therapeutic success reveals a further need for increased research in PLP management.
Collapse
Affiliation(s)
- Uwe Kern
- Center for Pain Management and Palliative Care, Wiesbaden, Germany.
| | | | | | | | | |
Collapse
|
24
|
Raffin E, Mattout J, Reilly KT, Giraux P. Disentangling motor execution from motor imagery with the phantom limb. ACTA ACUST UNITED AC 2012; 135:582-95. [PMID: 22345089 DOI: 10.1093/brain/awr337] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Amputees can move their phantom limb at will. These 'movements without movements' have generally been considered as motor imagery rather than motor execution, but amputees can in fact perform both executed and imagined movements with their phantom and they report distinct perceptions during each task. Behavioural evidence for this dual ability comes from the fact that executed movements are associated with stump muscle contractions whereas imagined movements are not, and that phantom executed movements are slower than intact hand executed movements whereas the speed of imagined movements is identical for both hands. Since neither execution nor imagination produces any visible movement, we hypothesized that the perceptual difference between these two motor tasks relies on the activation of distinct cerebral networks. Using functional magnetic resonance imaging and changes in functional connectivity (dynamic causal modelling), we examined the activity associated with imagined and executed movements of the intact and phantom hands of 14 upper-limb amputees. Distinct but partially overlapping cerebral networks were active during both executed and imagined phantom limb movements (both performed at the same speed). A region of interest analysis revealed a 'switch' between execution and imagination; during execution there was more activity in the primary somatosensory cortex, the primary motor cortex and the anterior lobe of the cerebellum, while during imagination there was more activity in the parietal and occipital lobes, and the posterior lobe of the cerebellum. In overlapping areas, task-related differences were detected in the location of activation peaks. The dynamic causal modelling analysis further confirmed the presence of a clear neurophysiological distinction between imagination and execution, as motor imagery and motor execution had opposite effects on the supplementary motor area-primary motor cortex network. This is the first imaging evidence that the neurophysiological network activated during phantom limb movements is similar to that of executed movements of intact limbs and differs from the phantom limb imagination network. The dual ability of amputees to execute and imagine movements of their phantom limb and the fact that these two tasks activate distinct cortical networks are important factors to consider when designing rehabilitation programmes for the treatment of phantom limb pain.
Collapse
Affiliation(s)
- Estelle Raffin
- Service de Médecine Physique et de Réadaptation, Hôpital Bellevue, CHU de Saint-Etienne, F-42055 Saint-Etienne, France
| | | | | | | |
Collapse
|
25
|
Kern KU, Kohl M, Seifert U, Schlereth T. Wirkung von Botulinumtoxin Typ B auf Stumpfschwitzen und Stumpfschmerzen. Schmerz 2012; 26:176-84. [DOI: 10.1007/s00482-011-1140-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Chen GD, Manohar S, Salvi R. Amygdala hyperactivity and tonotopic shift after salicylate exposure. Brain Res 2012; 1485:63-76. [PMID: 22464181 DOI: 10.1016/j.brainres.2012.03.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
Abstract
The amygdala, important in forming and storing memories of aversive events, is believed to play a major role in debilitating tinnitus and hyperacusis. To explore this hypothesis, we recorded from the lateral amygdala (LA) and auditory cortex (AC) before and after treating rats with a dose of salicylate that induces tinnitus and hyperacusis-like behavior. Salicylate unexpectedly increased the amplitude of the local field potential (LFP) in the LA making it hyperactive to sounds≥60 dB SPL. Frequency receptive fields (FRFs) of multiunit (MU) clusters in the LA were also dramatically altered by salicylate. Neuronal activity at frequencies below 10 kHz and above 20 kHz was depressed at low intensities, but was greatly enhanced for stimuli between 10 and 20 kHz (frequencies near the pitch of the salicylate-induced tinnitus in the rat). These frequency-dependent changes caused the FRF of many LA neurons to migrate towards 10-20 kHz thereby amplifying activity from this region. To determine if salicylate-induced changes restricted to the LA would remotely affect neural activity in the AC, we used a micropipette to infuse salicylate (20 μl, 2.8 mM) into the amygdala. Local delivery of salicylate to the amygdala significantly increased the amplitude of the LFP recorded in the AC and selectively enhanced the neuronal activity of AC neurons at the mid-frequencies (10-20 kHz), frequencies associated with the tinnitus pitch. Taken together, these results indicate that systemic salicylate treatment can induce hyperactivity and tonotopic shift in the amygdala and infusion of salicylate into the amygdala can profoundly enhance sound-evoked activity in AC, changes likely to increase the perception and emotional salience of tinnitus and loud sounds. This article is part of a Special Issue entitled: Tinnitus Neuroscience.
Collapse
Affiliation(s)
- Guang-Di Chen
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | | | | |
Collapse
|
27
|
Ibáñez A, Cardona JF, Dos Santos YV, Blenkmann A, Aravena P, Roca M, Hurtado E, Nerguizian M, Amoruso L, Gómez-Arévalo G, Chade A, Dubrovsky A, Gershanik O, Kochen S, Glenberg A, Manes F, Bekinschtein T. Motor-language coupling: direct evidence from early Parkinson's disease and intracranial cortical recordings. Cortex 2012; 49:968-84. [PMID: 22482695 DOI: 10.1016/j.cortex.2012.02.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 02/28/2012] [Accepted: 02/28/2012] [Indexed: 11/24/2022]
Abstract
Language and action systems are functionally coupled in the brain as demonstrated by converging evidence using Functional magnetic resonance imaging (fMRI), electroencephalography (EEG), transcranial magnetic stimulation (TMS), and lesion studies. In particular, this coupling has been demonstrated using the action-sentence compatibility effect (ACE) in which motor activity and language interact. The ACE task requires participants to listen to sentences that described actions typically performed with an open hand (e.g., clapping), a closed hand (e.g., hammering), or without any hand action (neutral); and to press a large button with either an open hand position or closed hand position immediately upon comprehending each sentence. The ACE is defined as a longer reaction time (RT) in the action-sentence incompatible conditions than in the compatible conditions. Here we investigated direct motor-language coupling in two novel and uniquely informative ways. First, we measured the behavioural ACE in patients with motor impairment (early Parkinson's disease - EPD), and second, in epileptic patients with direct electrocorticography (ECoG) recordings. In experiment 1, EPD participants with preserved general cognitive repertoire, showed a much diminished ACE relative to non-EPD volunteers. Moreover, a correlation between ACE performance and action-verb processing (kissing and dancing test - KDT) was observed. Direct cortical recordings (ECoG) in motor and language areas (experiment 2) demonstrated simultaneous bidirectional effects: motor preparation affected language processing (N400 at left inferior frontal gyrus and middle/superior temporal gyrus), and language processing affected activity in movement-related areas (motor potential at premotor and M1). Our findings show that the ACE paradigm requires ongoing integration of preserved motor and language coupling (abolished in EPD) and engages motor-temporal cortices in a bidirectional way. In addition, both experiments suggest the presence of a motor-language network which is not restricted to somatotopically defined brain areas. These results open new pathways in the fields of motor diseases, theoretical approaches to language understanding, and models of action-perception coupling.
Collapse
Affiliation(s)
- Agustín Ibáñez
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive Neurology (INECO); Favaloro University, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Knotkova H, Cruciani RA, Tronnier VM, Rasche D. Current and future options for the management of phantom-limb pain. J Pain Res 2012; 5:39-49. [PMID: 22457600 PMCID: PMC3308715 DOI: 10.2147/jpr.s16733] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Phantom-limb pain (PLP) belongs among difficult-to-treat chronic pain syndromes. Treatment options for PLP are to a large degree implicated by the level of understanding the mechanisms and nature of PLP. Research and clinical findings acknowledge the neuropathic nature of PLP and also suggest that both peripheral as well as central mechanisms, including neuroplastic changes in central nervous system, can contribute to PLP. Neuroimaging studies in PLP have indicated a relation between PLP and the neuroplastic changes. Further, it has been shown that the pathological neuroplastic changes could be reverted, and there is a parallel between an improvement (reversal) of the neuroplastic changes in PLP and pain relief. These findings facilitated explorations of novel neuromodulatory treatment strategies, adding to the variety of treatment approaches in PLP. Overall, available treatment options in PLP include pharmacological treatment, supportive non-pharmacological non-invasive strategies (eg, neuromodulation using transcranial magnetic stimulation, visual feedback therapy, or motor imagery; peripheral transcutaneous electrical nerve stimulation, physical therapy, reflexology, or various psychotherapeutic approaches), and invasive treatment strategies (eg, surgical destructive procedures, nerve blocks, or invasive neuromodulation using deep brain stimulation, motor cortex stimulation, or spinal cord stimulation). Venues of further development in PLP management include a technological and methodological improvement of existing treatment methods, an implementation of new techniques and products, and a development of new treatment approaches.
Collapse
Affiliation(s)
- Helena Knotkova
- Department of Pain Medicine and Palliative Care, Research Division, Institute for Non-invasive Brain Stimulation, Beth Israel Medical Center, New York, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ricardo A Cruciani
- Department of Pain Medicine and Palliative Care, Research Division, Institute for Non-invasive Brain Stimulation, Beth Israel Medical Center, New York, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Anesthesiology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Dirk Rasche
- Department of Neurosurgery, University of Lübeck, Germany
| |
Collapse
|
29
|
Gagné M, Hétu S, Reilly KT, Mercier C. The map is not the territory: motor system reorganization in upper limb amputees. Hum Brain Mapp 2012; 32:509-19. [PMID: 21391244 DOI: 10.1002/hbm.21038] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is generally considered that hand amputation changes primary motor cortex (M1) stump muscle representations. Transcranial magnetic stimulation (TMS) studies show that the corticospinal excitability of a stump muscle and its homologous muscle on the intact side is not equivalent, and that the resting level of excitability is higher in the stump muscle. Since changes in M1 stump muscle map characteristics (e.g., size and location) are identified by comparing stump and intact muscle maps, such changes might reflect between-side differences in corticospinal excitability rather than a true reorganization of the stump muscle's map. In eight above-elbow amputees we used TMS to map the M1 representation of a stump muscle and its homologous muscle on the intact side during rest and contraction. Importantly, the same relative stimulation intensity was used to construct each map; stimulation was performed at 120% of the motor threshold of each muscle (intact/amputated limb) measured in each condition (rest/active contraction). Resting motor threshold was lower in the stump muscle, but active motor thresholds did not differ. Motor-evoked potential amplitudes increased between the rest and muscle contraction conditions, but this increase was smaller for the stump muscle because its at-rest corticospinal excitability was higher than that of the intact muscle. When the between-side difference in excitability was considered no interhemispheric difference was found for map areas or for their medio-lateral locations. The present results challenge the view that after an upper limb amputation the stump representation moves laterally and occupies a larger M1 territory.
Collapse
Affiliation(s)
- Martin Gagné
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Department of Rehabilitation, Faculty of Medicine, Laval University, Quebec, QC, Canada
| | | | | | | |
Collapse
|
30
|
Brodie EE, Whyte A, Niven CA. Analgesia through the looking-glass? A randomized controlled trial investigating the effect of viewing a ‘virtual’ limb upon phantom limb pain, sensation and movement. Eur J Pain 2012; 11:428-36. [PMID: 16857400 DOI: 10.1016/j.ejpain.2006.06.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 03/30/2006] [Accepted: 06/03/2006] [Indexed: 11/21/2022]
Abstract
The extent to which viewing a 'virtual' limb, the mirror image of an intact limb, modifies the experience of a phantom limb, was investigated in 80 lower limb amputees before, during and after repeated attempts to simultaneously move both intact and phantom legs. Subjects were randomly assigned to one of two conditions, a control condition in which they only viewed the movements of their intact limb and a mirror condition in which they additionally viewed the movements of a 'virtual' limb. Although the mirror condition elicited a significantly greater number of phantom limb movements than the control condition, it did not attenuate phantom limb pain and sensations any more than the control condition. The potential of a 'virtual' limb as a treatment for phantom limb pain was discussed in terms of its ability to halt and/or reverse the cortical re-organisation of motor and somatosensory cortex following acquired limb loss.
Collapse
Affiliation(s)
- Eric E Brodie
- Department of Psychology, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| | | | | |
Collapse
|
31
|
Stieglitz T, Boretius T, Navarro X, Badia J, Guiraud D, Divoux JL, Micera S, Rossini PM, Yoshida K, Harreby KR, Kundu A, Jensen W. Development of a neurotechnological system for relieving phantom limb pain using transverse intrafascicular electrodes (TIME). ACTA ACUST UNITED AC 2012; 57:457-65. [DOI: 10.1515/bmt-2011-0140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 09/03/2012] [Indexed: 11/15/2022]
|
32
|
Dietrich C, Walter-Walsh K, Preissler S, Hofmann GO, Witte OW, Miltner WHR, Weiss T. Sensory feedback prosthesis reduces phantom limb pain: proof of a principle. Neurosci Lett 2011; 507:97-100. [PMID: 22085692 DOI: 10.1016/j.neulet.2011.10.068] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/25/2011] [Accepted: 10/27/2011] [Indexed: 11/16/2022]
Abstract
BACKGROUND Constrained functionality and phantom limb pain (PLP) are major concerns for forearm amputees. Neuroscientific investigations of PLP suggest that behaviorally relevant stimulation of the stump can decrease PLP. Furthermore the prosthesis user could use feedback information of the prosthesis hand for optimizing prosthesis motor control when handling soft and fragile objects. Somatosensory feedback information from a prosthetic hand may therefore help to improve prosthesis functionality and reduce phantom limb pain. OBJECTIVES We wanted to find out whether a two weeks training on a hand prosthesis that provides somatosensory feedback may help to improve prosthesis functionality and reduce phantom limb pain. METHODS Eight forearm amputees with phantom limb pain were trained for two weeks to use a hand prosthesis with somatosensory feedback on grip strength. RESULTS The current study demonstrates a significant increase of functionality of the prosthesis in everyday tasks. Furthermore, the study shows that usage of a prosthesis that provides somatosensory feedback on the grip strength is effective to reduce phantom limb pain. CONCLUSIONS A prosthesis with a feedback function appears to be a promising therapeutic tool to reduce phantom limb pain and to increase functionality in everyday tasks. Future studies should further investigate the scope of application of that principle.
Collapse
Affiliation(s)
- Caroline Dietrich
- Department of Biological and Clinical Psychology, Friedrich Schiller University, Am Steiger 3/Haus 1, D-07743 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Bekrater-Bodmann R, Foell J, Flor H. Relationship between bodily illusions and pain syndromes. Pain Manag 2011; 1:217-28. [DOI: 10.2217/pmt.11.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Apart from their contribution to the overall knowledge of perception and related processes, sensory illusions have been used in recent years to treat and better understand pain disorders such as phantom limb pain or complex regional pain syndrome. With the help of modern imaging techniques, we can examine connections between basic processes of integrative perception and the occurrence of chronic pain. This article gives an overview of recent developments in the area of body illusions and pain, and provides suggestions on how they might lead to novel and effective treatments for chronic pain.
Collapse
Affiliation(s)
- Robin Bekrater-Bodmann
- Department of Cognitive & Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jens Foell
- Department of Cognitive & Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | |
Collapse
|
34
|
Botulinum Toxin Type B in the Treatment of Residual Limb Hyperhidrosis for Lower Limb Amputees. Am J Phys Med Rehabil 2011; 90:321-9. [DOI: 10.1097/phm.0b013e31820636fd] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Abstract
STUDY DESIGN AND OBJECTIVES Case report and review of supernumerary phantom limbs in patients suffering from spinal cord injury (SCI). SETTING SCI rehabilitation centre. CASE REPORT After a ski accident, a 71-year-old man suffered an incomplete SCI (level C3; AIS C, central cord syndrome), with a C3/C4 dislocation fracture. From the first week after injury, he experienced a phantom duplication of both upper limbs that lasted for 7 months. The supernumerary limbs were only occasionally related to painful sensation, specifically when they were perceived as crossed on his trunk. Although the painful sensations were responsive to pain medication, the presence of the illusory limb sensations were persistent. During neurological recovery, the supernumerary limbs gradually disappeared. A rubber hand illusion paradigm was used twice during recovery to monitor the patient's ability to integrate visual, tactile and proprioceptive stimuli. CONCLUSION Overall, the clinical relevance of supernumerary phantom limbs is not clear, specific treatment protocols have not yet been developed, and the underlying neural mechanisms are not fully understood. Supernumerary phantom limbs have been previously reported in patients with (sub)cortical lesions, but might be rather undocumented in patients suffering from traumatic SCI. For the appropriate diagnosis and treatment after SCI, supernumerary phantoms should be distinguished from other phantom sensations and pain syndromes after SCI.
Collapse
|
36
|
Aravena P, Hurtado E, Riveros R, Cardona JF, Manes F, Ibáñez A. Applauding with closed hands: neural signature of action-sentence compatibility effects. PLoS One 2010; 5:e11751. [PMID: 20676367 PMCID: PMC2911376 DOI: 10.1371/journal.pone.0011751] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Accepted: 06/25/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Behavioral studies have provided evidence for an action-sentence compatibility effect (ACE) that suggests a coupling of motor mechanisms and action-sentence comprehension. When both processes are concurrent, the action sentence primes the actual movement, and simultaneously, the action affects comprehension. The aim of the present study was to investigate brain markers of bidirectional impact of language comprehension and motor processes. METHODOLOGY/PRINCIPAL FINDINGS Participants listened to sentences describing an action that involved an open hand, a closed hand, or no manual action. Each participant was asked to press a button to indicate his/her understanding of the sentence. Each participant was assigned a hand-shape, either closed or open, which had to be used to activate the button. There were two groups (depending on the assigned hand-shape) and three categories (compatible, incompatible and neutral) defined according to the compatibility between the response and the sentence. ACEs were found in both groups. Brain markers of semantic processing exhibited an N400-like component around the Cz electrode position. This component distinguishes between compatible and incompatible, with a greater negative deflection for incompatible. Motor response elicited a motor potential (MP) and a re-afferent potential (RAP), which are both enhanced in the compatible condition. CONCLUSIONS/SIGNIFICANCE The present findings provide the first ACE cortical measurements of semantic processing and the motor response. N400-like effects suggest that incompatibility with motor processes interferes in sentence comprehension in a semantic fashion. Modulation of motor potentials (MP and RAP) revealed a multimodal semantic facilitation of the motor response. Both results provide neural evidence of an action-sentence bidirectional relationship. Our results suggest that ACE is not an epiphenomenal post-sentence comprehension process. In contrast, motor-language integration occurring during the verb onset supports a genuine and ongoing brain motor-language interaction.
Collapse
Affiliation(s)
- Pia Aravena
- Laboratory of Experimental Psychology & Neuroscience, Institute of Cognitive Neurology (INECO), Buenos Aires, Capital Federal, Argentina
- Laboratory of Cognitive Neuroscience, Universidad Diego Portales, Santiago, Chile
| | - Esteban Hurtado
- Doctoral Program, Psychology School, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Riveros
- Laboratory of Cognitive Neuroscience, Universidad Diego Portales, Santiago, Chile
| | - Juan Felipe Cardona
- Laboratory of Experimental Psychology & Neuroscience, Institute of Cognitive Neurology (INECO), Buenos Aires, Capital Federal, Argentina
| | - Facundo Manes
- Laboratory of Experimental Psychology & Neuroscience, Institute of Cognitive Neurology (INECO), Buenos Aires, Capital Federal, Argentina
- Institute of Neuroscience, Favaloro University, Buenos Aires, Capital Federal, Argentina
| | - Agustín Ibáñez
- Laboratory of Experimental Psychology & Neuroscience, Institute of Cognitive Neurology (INECO), Buenos Aires, Capital Federal, Argentina
- Laboratory of Cognitive Neuroscience, Universidad Diego Portales, Santiago, Chile
- Institute of Neuroscience, Favaloro University, Buenos Aires, Capital Federal, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Capital Federal, Argentina
- * E-mail:
| |
Collapse
|
37
|
Vartiainen N, Kirveskari E, Kallio-Laine K, Kalso E, Forss N. Cortical reorganization in primary somatosensory cortex in patients with unilateral chronic pain. THE JOURNAL OF PAIN 2009; 10:854-9. [PMID: 19638329 DOI: 10.1016/j.jpain.2009.02.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 01/02/2009] [Accepted: 02/26/2009] [Indexed: 11/15/2022]
Abstract
UNLABELLED Bodily representations of the primary somatosensory (SI) cortex are constantly modified according to sensory input. Increased input due to training as well as loss of input due to deafferentation are reflected as changes in the extent of cortical representations. Recent studies in complex regional pain syndrome (CRPS) patients have indicated that the chronic pain itself is associated with cortical reorganization. However, it is unclear whether the observed reorganization is specific for CRPS or if it can be detected also in other types of chronic pain. We therefore searched for signs of cortical reorganization in a group of 8 patients who suffered from chronic pain associated with herpes simplex virus infections. The pain was widespread but restricted to unilateral side of the body and included the upper limb. We recorded neuromagnetic responses to tactile stimulation of fingers of both hands in patients and in a group of healthy, matched control subjects. In the patients, the distance between the thumb (D1) and little finger (D5) representations in SI cortex was statistically significantly smaller in the hemisphere contralateral to painful side than in the hemisphere contralateral to healthy side. In the control subjects, the D1-D5 distance was the same in both hemispheres. PERSPECTIVE The present results indicate that cortical reorganization occurs in chronic neuropathic pain patients even without peripheral nerve damage. It is possible that cortical reorganization is related to chronic pain, regardless of its etiology. Causality between reorganization and chronic pain should be examined further to develop therapeutic approaches for chronic pain.
Collapse
Affiliation(s)
- Nuutti Vartiainen
- Brain Research Unit, Low Temperature Laboratory, Helsinki University of Technology, Espoo, Finland.
| | | | | | | | | |
Collapse
|
38
|
Schneider J, Hofmann A, Rost C, Shapiro F. EMDR in the Treatment of Chronic Phantom Limb Pain. PAIN MEDICINE 2008; 9:76-82. [DOI: 10.1111/j.1526-4637.2007.00299.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Abstract
Limb amputation results in plasticity of connections between the brain and muscles; the cortical motor representation of the missing limb seemingly disappears. The disappearance of the hand's motor representation is, however, difficult to reconcile with evidence that a perceptual representation of the missing limb persists in the form of a phantom limb endowed with sensory and motor qualities. Here, we argue that despite considerable reorganization within the motor cortex of upper-limb amputees, the representation of the amputated hand does not disappear. We hypothesize that two levels of hand-movement representation coexist within the primary motor cortex; at one level, limb movements are specified in terms of arm and hand motor commands, and at another level, limb movements are specified as muscles synergies. We propose that primary motor cortex reorganization after amputation concerns primarily the upper limb's muscular map but not its motor command map and that the integrity of the motor command map underlies the existence of the phantom limb.
Collapse
|
40
|
|
41
|
Flor H, Nikolajsen L, Staehelin Jensen T. Phantom limb pain: a case of maladaptive CNS plasticity? Nat Rev Neurosci 2006; 7:873-81. [PMID: 17053811 DOI: 10.1038/nrn1991] [Citation(s) in RCA: 572] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phantom pain refers to pain in a body part that has been amputated or deafferented. It has often been viewed as a type of mental disorder or has been assumed to stem from pathological alterations in the region of the amputation stump. In the past decade, evidence has accumulated that phantom pain might be a phenomenon of the CNS that is related to plastic changes at several levels of the neuraxis and especially the cortex. Here, we discuss the evidence for putative pathophysiological mechanisms with an emphasis on central, and in particular cortical, changes. We cite both animal and human studies and derive suggestions for innovative interventions aimed at alleviating phantom pain.
Collapse
Affiliation(s)
- Herta Flor
- Department of Clinical and Cognitive Neuroscience, University of Heidelberg, Central Institute of Mental Health, D-68159 Mannheim, Germany.
| | | | | |
Collapse
|
42
|
Wu MF, Pang ZP, Zhuo M, Xu ZC. Prolonged membrane potential depolarization in cingulate pyramidal cells after digit amputation in adult rats. Mol Pain 2005; 1:23. [PMID: 16111486 PMCID: PMC1198253 DOI: 10.1186/1744-8069-1-23] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Accepted: 08/19/2005] [Indexed: 11/25/2022] Open
Abstract
The anterior cingulate cortex (ACC) plays an important role in higher brain functions including learning, memory, and persistent pain. Long-term potentiation of excitatory synaptic transmission has been observed in the ACC after digit amputation, which might contribute to plastic changes associated with the phantom pain. Here we report a long-lasting membrane potential depolarization in ACC neurons of adult rats after digit amputation in vivo. Shortly after digit amputation of the hind paw, the membrane potential of intracellularly recorded ACC neurons quickly depolarized from approximately -70 mV to approximately -15 mV and then slowly repolarized. The duration of this amputation-induced depolarization was about 40 min. Intracellular staining revealed that these neurons were pyramidal neurons in the ACC. The depolarization is activity-dependent, since peripheral application of lidocaine significantly reduced it. Furthermore, the depolarization was significantly reduced by a NMDA receptor antagonist MK-801. Our results provide direct in vivo electrophysiological evidence that ACC pyramidal cells undergo rapid and prolonged depolarization after digit amputation, and the amputation-induced depolarization in ACC neurons might be associated with the synaptic mechanisms for phantom pain.
Collapse
Affiliation(s)
- MF Wu
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - ZP Pang
- University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - M Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, University of Toronto Centre for the Study of Pain, Toronto, M5S 1A8, Canada
| | - ZC Xu
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|