1
|
Kim W, Angulo MC. Unraveling the role of oligodendrocytes and myelin in pain. J Neurochem 2025; 169:e16206. [PMID: 39162089 PMCID: PMC11657919 DOI: 10.1111/jnc.16206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/21/2024]
Abstract
Oligodendrocytes, the myelin-producing cells in the central nervous system (CNS), are crucial for rapid action potential conduction and neuronal communication. While extensively studied for their roles in neuronal support and axonal insulation, their involvement in pain modulation is an emerging research area. This review explores the interplay between oligodendrocytes, myelination, and pain, focusing on neuropathic pain following peripheral nerve injury, spinal cord injury (SCI), chemotherapy, and HIV infection. Studies indicate that a decrease in oligodendrocytes and increased cytokine production by oligodendroglia in response to injury can induce or exacerbate pain. An increase in endogenous oligodendrocyte precursor cells (OPCs) may be a compensatory response to repair damaged oligodendrocytes. Exogenous OPC transplantation shows promise in alleviating SCI-induced neuropathic pain and enhancing remyelination. Additionally, oligodendrocyte apoptosis in brain regions such as the medial prefrontal cortex is linked to opioid-induced hyperalgesia, highlighting their role in central pain mechanisms. Chemotherapeutic agents disrupt oligodendrocyte differentiation, leading to persistent pain, while HIV-associated neuropathy involves up-regulation of oligodendrocyte lineage cell markers. These findings underscore the multifaceted roles of oligodendrocytes in pain pathways, suggesting that targeting myelination processes could offer new therapeutic strategies for chronic pain management. Further research should elucidate the underlying molecular mechanisms to develop effective pain treatments.
Collapse
Affiliation(s)
- Woojin Kim
- Department of Physiology, College of Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
- Korean Medicine‐Based Drug Repositioning Cancer Research Center, College of Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
| | - María Cecilia Angulo
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, “Team: Interactions between Neurons and Oligodendroglia in Myelination and Myelin Repair”ParisFrance
- GHU PARIS Psychiatrie & NeurosciencesParisFrance
| |
Collapse
|
2
|
Buzoianu AD, Sharma A, Muresanu DF, Feng L, Huang H, Chen L, Tian ZR, Nozari A, Lafuente JV, Sjöqvist PO, Wiklund L, Sharma HS. Nanodelivery of histamine H3 receptor inverse agonist BF-2649 with H3 receptor antagonist and H4 receptor agonist clobenpropit induced neuroprotection is potentiated by antioxidant compound H-290/51 in spinal cord injury. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 172:37-77. [PMID: 37833018 DOI: 10.1016/bs.irn.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Military personnel are often victims of spinal cord injury resulting in lifetime disability and decrease in quality of life. However, no suitable therapeutic measures are still available to restore functional disability or arresting the pathophysiological progression of disease in victims for leading a better quality of life. Thus, further research in spinal cord injury using novel strategies or combination of available neuroprotective drugs is urgently needed for superior neuroprotection. In this regard, our laboratory is engaged in developing TiO2 nanowired delivery of drugs, antibodies and enzymes in combination to attenuate spinal cord injury induced pathophysiology and functional disability in experimental rodent model. Previous observations show that histamine antagonists or antioxidant compounds when given alone in spinal cord injury are able to induce neuroprotection for short periods after trauma. In this investigation we used a combination of histaminergic drugs with antioxidant compound H-290/51 using their nanowired delivery for neuroprotection in spinal cord injury of longer duration. Our observations show that a combination of H3 receptor inverse agonist BF-2549 with H3 receptor antagonist and H4 receptor agonist clobenpropit induced neuroprotection is potentiated by antioxidant compound H-290/51 in spinal cord injury. These observations suggests that histamine receptors are involved in the pathophysiology of spinal cord injury and induce superior neuroprotection in combination with an inhibitor of lipid peroxidation H-290/51, not reported earlier. The possible mechanisms and significance of our findings in relation to future clinical approaches in spinal cord injury is discussed.
Collapse
Affiliation(s)
- Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; ''RoNeuro'' Institute for Neurological Research and Diagnostic, Mircea Eliade Street, Cluj-Napoca, Romania
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, P.R. China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, P.R. China
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston MA, United States
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Per-Ove Sjöqvist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden; LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.
| |
Collapse
|
3
|
Sharma HS, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma A. Stress induced exacerbation of Alzheimer's disease brain pathology is thwarted by co-administration of nanowired cerebrolysin and monoclonal amyloid beta peptide antibodies with serotonin 5-HT6 receptor antagonist SB-399885. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 171:3-46. [PMID: 37783559 DOI: 10.1016/bs.irn.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Alzheimer's disease is one of the devastating neurodegenerative diseases affecting mankind worldwide with advancing age mainly above 65 years and above causing great misery of life. About more than 7 millions are affected with Alzheimer's disease in America in 2023 resulting in huge burden on health care system and care givers and support for the family. However, no suitable therapeutic measures are available at the moment to enhance quality of life to these patients. Development of Alzheimer's disease may reflect the stress burden of whole life inculcating the disease processes of these neurodegenerative disorders of the central nervous system. Thus, new strategies using nanodelivery of suitable drug therapy including antibodies are needed in exploring neuroprotection in Alzheimer's disease brain pathology. In this chapter role of stress in exacerbating Alzheimer's disease brain pathology is explored and treatment strategies are examined using nanotechnology based on our own investigation. Our observations clearly show that restraint stress significantly exacerbate Alzheimer's disease brain pathology and nanodelivery of a multimodal drug cerebrolysin together with monoclonal antibodies (mAb) to amyloid beta peptide (AβP) together with a serotonin 5-HT6 receptor antagonist SB399885 significantly thwarted Alzheimer's disease brain pathology exacerbated by restraint stress, not reported earlier. The possible mechanisms and future clinical significance is discussed.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; ''RoNeuro'' Institute for Neurological Research and Diagnostic, Mircea Eliade Street, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston, MA, United States
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Zhu J, Huang F, Hu Y, Qiao W, Guan Y, Zhang ZJ, Liu S, Liu Y. Non-Coding RNAs Regulate Spinal Cord Injury-Related Neuropathic Pain via Neuroinflammation. J Inflamm Res 2023; 16:2477-2489. [PMID: 37334347 PMCID: PMC10276590 DOI: 10.2147/jir.s413264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023] Open
Abstract
Secondary chronic neuropathic pain (NP) in addition to sensory, motor, or autonomic dysfunction can significantly reduce quality of life after spinal cord injury (SCI). The mechanisms of SCI-related NP have been studied in clinical trials and with the use of experimental models. However, in developing new treatment strategies for SCI patients, NP poses new challenges. The inflammatory response following SCI promotes the development of NP. Previous studies suggest that reducing neuroinflammation following SCI can improve NP-related behaviors. Intensive studies of the roles of non-coding RNAs in SCI have discovered that ncRNAs bind target mRNA, act between activated glia, neuronal cells, or other immunocytes, regulate gene expression, inhibit inflammation, and influence the prognosis of NP.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
| | - Fei Huang
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
- Department of Rehabilitation Medicine, Nantong Health College of Jiangsu Province, Nantong, JiangSu Province, 226010, People’s Republic of China
| | - Yonglin Hu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
- Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
| | - Wei Qiao
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
| | - Yingchao Guan
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
| | - Zhi-Jun Zhang
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
| | - Su Liu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
| | - Ying Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
| |
Collapse
|
5
|
Sharma HS, Feng L, Chen L, Huang H, Ryan Tian Z, Nozari A, Muresanu DF, Lafuente JV, Castellani RJ, Wiklund L, Sharma A. Cerebrolysin Attenuates Exacerbation of Neuropathic Pain, Blood-spinal Cord Barrier Breakdown and Cord Pathology Following Chronic Intoxication of Engineered Ag, Cu or Al (50-60 nm) Nanoparticles. Neurochem Res 2023; 48:1864-1888. [PMID: 36719560 PMCID: PMC10119268 DOI: 10.1007/s11064-023-03861-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 02/01/2023]
Abstract
Neuropathic pain is associated with abnormal sensations and/or pain induced by non-painful stimuli, i.e., allodynia causing burning or cold sensation, pinching of pins and needles like feeling, numbness, aching or itching. However, no suitable therapy exists to treat these pain syndromes. Our laboratory explored novel potential therapeutic strategies using a suitable composition of neurotrophic factors and active peptide fragments-Cerebrolysin (Ever Neuro Pharma, Austria) in alleviating neuropathic pain induced spinal cord pathology in a rat model. Neuropathic pain was produced by constrictions of L-5 spinal sensory nerves for 2-10 weeks period. In one group of rats cerebrolysin (2.5 or 5 ml/kg, i.v.) was administered once daily after 2 weeks until sacrifice (4, 8 and 10 weeks). Ag, Cu and Al NPs (50 mg/kg, i.p.) were delivered once daily for 1 week. Pain assessment using mechanical (Von Frey) or thermal (Hot-Plate) nociceptive showed hyperalgesia from 2 weeks until 10 weeks progressively that was exacerbated following Ag, Cu and Al NPs intoxication in nerve lesioned groups. Leakage of Evans blue and radioiodine across the blood-spinal cord barrier (BSCB) is seen from 4 to 10 weeks in the rostral and caudal cord segments associated with edema formation and cell injury. Immunohistochemistry of albumin and GFAP exhibited a close parallelism with BSCB leakage that was aggravated by NPs following nerve lesion. Light microscopy using Nissl stain exhibited profound neuronal damages in the cord. Transmission electron microcopy (TEM) show myelin vesiculation and synaptic damages in the cord that were exacerbated following NPs intoxication. Using ELISA spinal tissue exhibited increased albumin, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP) and heat shock protein (HSP 72kD) upregulation together with cytokines TNF-α, IL-4, IL-6, IL-10 levels in nerve lesion that was exacerbated following NPs intoxication. Cerebrolysin treatment significantly reduced hyperalgesia and attenuated BSCB disruption, edema formation and cellular changes in nerve lesioned group. The levels of cytokines were also restored near normal levels with cerebrolysin treatment. Albumin, GFAP, MABP and HSP were also reduced in cerebrolysin treated group and thwarted neuronal damages, myelin vesiculation and cell injuries. These neuroprotective effects of cerebrolysin with higher doses were also effective in nerve lesioned rats with NPs intoxication. These observations suggest that cerebrolysin actively protects spinal cord pathology and hyperalgesia following nerve lesion and its exacerbation with metal NPs, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Frödingsgatan 12, LGH 1103, 75185, Uppsala, Sweden.
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei, China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, 100700, China
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, 100143, China
| | - Z Ryan Tian
- Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, 37 Mircea Eliade Street, 400364, Cluj-Napoca-Napoca, Romania
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, 21201, USA
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, 75185, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Frödingsgatan 12, LGH 1103, 75185, Uppsala, Sweden.
| |
Collapse
|
6
|
Lobo MEDV, Bates DO, Arkill KP, Hulse RP. Measurement of solute permeability in the mouse spinal cord. J Neurosci Methods 2023; 393:109880. [PMID: 37178727 DOI: 10.1016/j.jneumeth.2023.109880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Sensory perception and motor dexterity is coordinated by the spinal cord, which remains effective due to maintenance of neuronal homeostasis. This is stringently controlled by the blood spinal cord barrier. Therefore, the function of the spinal cord is susceptible to alterations in the microvessel integrity (e.g. vascular leakage) and/or perfusion (e.g. changes in blood flow). NEW METHOD Spinal cord solute permeability was measured in anaesthetised mice. The lumbar spinal cord vertebra were stabilised and a coverslip secured to allow fluorescent tracers of vascular function and anatomy to be visualised in the vascular network. Fluorescence microscopy allowed real time measurements of vascular leakage and capillary perfusion within the spinal cord. RESULTS Capillaries were identified through fluorescent labelling of the endothelial luminal glycocalyx (wheat germ agglutin 555). Real time estimation of vascular permeability through visualisation of sodium fluorescein transport was recorded from identified microvessels in the lumbar dorsal horn of the spinal cord. COMPARISON WITH EXISTING METHOD(S) Current approaches have used histological and/or tracer based in-vivo assays alongside cell culture to determine endothelium integrity and/or function. These only provide a snapshot of the developing vasculopathy, restricting the understanding of physiological function or disease progression over time. CONCLUSIONS These techniques allow for direct visualisation of cellular and/or mechanistic influences upon vascular function and integrity, which can be applied to rodent models including disease, transgenic and/or viral approaches. This combination of attributes allows for real time understanding of the function of the vascular network within the spinal cord.
Collapse
Affiliation(s)
- Marlene Elisa Da Vitoria Lobo
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2UH
| | - David O Bates
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2UH; Centre of Membrane and Protein and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Kenton P Arkill
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2UH
| | - Richard Philip Hulse
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS.
| |
Collapse
|
7
|
Younis A, Hardowar L, Barker S, Hulse RP. The consequence of endothelial remodelling on the blood spinal cord barrier and nociception. Curr Res Physiol 2022; 5:184-192. [PMID: 35434652 PMCID: PMC9010889 DOI: 10.1016/j.crphys.2022.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/09/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022] Open
Abstract
Nociception is a fundamental acute protective mechanism that prevents harm to an organism. Understanding the integral processes that control nociceptive processing are fundamental to our appreciation of which cellular and molecular features underlie this process. There is an extensive understanding of how sensory neurons interpret differing sensory modalities and intensities. However, it is widely appreciated that the sensory neurons do not act alone. These work in harmony with inflammatory and vascular systems to modulate pain perception. The spinal cord has an extensive interaction with the capillary network in the form of a blood spinal cord barrier to ensure homeostatic control of the spinal cord neuron milieu. However, there is an extensive appreciation that disturbances in the blood spinal cord barrier contribute to the onset of chronic pain. Enhanced vascular permeability and impaired blood perfusion have both been highlighted as contributors to chronic pain manifestation. Here, we discuss the evidence that demonstrates alterations in the blood spinal cord barrier influences nociceptive processing and perception of pain.
Collapse
Affiliation(s)
- Awais Younis
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Lydia Hardowar
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Sarah Barker
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Richard Philip Hulse
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| |
Collapse
|
8
|
Luo D, Li X, Hou Y, Hou Y, Luan J, Weng J, Zhan J, Lin D. Sodium tanshinone IIA sulfonate promotes spinal cord injury repair by inhibiting blood spinal cord barrier disruption in vitro and in vivo. Drug Dev Res 2021; 83:669-679. [PMID: 34842291 DOI: 10.1002/ddr.21898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/09/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022]
Abstract
Spinal cord injury (SCI) leads to microvascular damage and the destruction of the blood spinal cord barrier (BSCB), which can progress into secondary injuries, such as apoptosis and necrosis of neurons and glia, culminating in permanent neurological deficits. BSCB restoration is the primary goal of SCI therapy, although very few drugs can repair damaged barrier structure and permeability. Sodium tanshinone IIA sulfonate (STS) is commonly used to treat cardiovascular disease. However, the therapeutic effects of STS on damaged BSCB during the early stage of SCI remain uncertain. Therefore, we exposed spinal cord microvascular endothelial cells to H2 O2 and treated them with different doses of STS. In addition to protecting the cells from H2 O2 -induced apoptosis, STS also reduced cellular permeability. In the in vivo model of SCI, STS reduced BSCB permeability, relieved tissue edema and hemorrhage, suppressed MMP activation and prevented the loss of tight junction and adherens junction proteins. Our findings indicate that STS treatment promotes SCI recovery, and should be investigated further as a drug candidate against traumatic SCI.
Collapse
Affiliation(s)
- Dan Luo
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xing Li
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yonghui Hou
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Hou
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiyao Luan
- Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Second College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaxian Weng
- Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiheng Zhan
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dingkun Lin
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Role of neuroglia in neuropathic pain and depression. Pharmacol Res 2021; 174:105957. [PMID: 34688904 DOI: 10.1016/j.phrs.2021.105957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/06/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022]
Abstract
Patients with neuropathic pain induced by nerve injury usually present with co-morbid affective changes, such as depression. Neuroglia was reported to play an important role in the development and maintenance of neuropathic pain both centrally and peripherally. Meanwhile, there have been studies showing that neuroglia participated in the development of depression. However, the specific role of neuroglia in neuropathic pain and depression has not been reviewed comprehensively. Therefore, we summarized the recent findings on the role of neuroglia in neuropathic pain and depression. Based on this review, we found a bridge-like role of neuroglia in neuropathic pain co-morbid with depression. This review may provide therapeutic implications in the treatment of neuropathic pain and offer potential help in the studies of mechanisms in the future.
Collapse
|
10
|
Bendinger AL, Welzel T, Huang L, Babushkina I, Peschke P, Debus J, Glowa C, Karger CP, Saager M. DCE-MRI detected vascular permeability changes in the rat spinal cord do not explain shorter latency times for paresis after carbon ions relative to photons. Radiother Oncol 2021; 165:126-134. [PMID: 34634380 DOI: 10.1016/j.radonc.2021.09.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Radiation-induced myelopathy, an irreversible complication occurring after a long symptom-free latency time, is preceded by a fixed sequence of magnetic resonance- (MR-) visible morphological alterations. Vascular degradation is assumed the main reason for radiation-induced myelopathy. We used dynamic contrast-enhanced (DCE-) MRI to identify different vascular changes after photon and carbon ion irradiation, which precede or coincide with morphological changes. MATERIALS AND METHODS The cervical spinal cord of rats was irradiated with iso-effective photon or carbon (12C-)ion doses. Afterwards, animals underwent frequent DCE-MR imaging until they developed symptomatic radiation-induced myelopathy (paresis II). Measurements were performed at certain time points: 1 month, 2 months, 3 months, 4 months, and 6 months after irradiation, and when animals showed morphological (such as edema/syrinx/contrast agent (CA) accumulation) or neurological alterations (such as, paresis I, and paresis II). DCE-MRI data was analyzed using the extended Toft's model. RESULTS Fit quality improved with gradual disintegration of the blood spinal cord barrier (BSCB) towards paresis II. Vascular permeability increased three months after photon irradiation, and rapidly escalated after animals showed MR-visible morphological changes until paresis II. After 12C-ion irradiation, vascular permeability increased when animals showed morphological alterations and increased further until animals had paresis II. The volume transfer constant and the plasma volume showed no significant changes. CONCLUSION Only after photon irradiation, DCE-MRI provides a temporal advantage in detecting early physiological signs in radiation-induced myelopathy compared to morphological MRI. As a generally lower level of vascular permeability after 12C-ions led to an earlier development of paresis as compared to photons, we conclude that other mechanisms dominate the development of paresis II.
Collapse
Affiliation(s)
- Alina L Bendinger
- Dept. of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.
| | - Thomas Welzel
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; Dept. of Radiation Oncology and Radiotherapy, University Hospital of Heidelberg, Heidelberg, Germany
| | - Lifi Huang
- Dept. of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Inna Babushkina
- Core Facility Small Animal Imaging Center, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Peschke
- Dept. of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Dept. of Radiation Oncology and Radiotherapy, University Hospital of Heidelberg, Heidelberg, Germany
| | - Jürgen Debus
- Dept. of Radiation Oncology and Radiotherapy, University Hospital of Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Radiation Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christin Glowa
- Dept. of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; Dept. of Radiation Oncology and Radiotherapy, University Hospital of Heidelberg, Heidelberg, Germany
| | - Christian P Karger
- Dept. of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Maria Saager
- Dept. of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| |
Collapse
|
11
|
Sharma A, Muresanu DF, Patnaik R, Menon PK, Tian ZR, Sahib S, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Skaper SD, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma HS. Histamine H3 and H4 receptors modulate Parkinson's disease induced brain pathology. Neuroprotective effects of nanowired BF-2649 and clobenpropit with anti-histamine-antibody therapy. PROGRESS IN BRAIN RESEARCH 2021; 266:1-73. [PMID: 34689857 DOI: 10.1016/bs.pbr.2021.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Military personnel deployed in combat operations are highly prone to develop Parkinson's disease (PD) in later lives. PD largely involves dopaminergic pathways with hallmarks of increased alpha synuclein (ASNC), and phosphorylated tau (p-tau) in the cerebrospinal fluid (CSF) precipitating brain pathology. However, increased histaminergic nerve fibers in substantia nigra pars Compacta (SNpc), striatum (STr) and caudate putamen (CP) associated with upregulation of Histamine H3 receptors and downregulation of H4 receptors in human cases of PD is observed in postmortem cases. These findings indicate that modulation of histamine H3 and H4 receptors and/or histaminergic transmission may induce neuroprotection in PD induced brain pathology. In this review effects of a potent histaminergic H3 receptor inverse agonist BF-2549 or clobenpropit (CLBPT) partial histamine H4 agonist with H3 receptor antagonist, in association with monoclonal anti-histamine antibodies (AHmAb) in PD brain pathology is discussed based on our own observations. Our investigation shows that chronic administration of conventional or TiO2 nanowired BF 2649 (1mg/kg, i.p.) or CLBPT (1mg/kg, i.p.) once daily for 1 week together with nanowired delivery of HAmAb (25μL) significantly thwarted ASNC and p-tau levels in the SNpC and STr and reduced PD induced brain pathology. These observations are the first to show the involvement of histamine receptors in PD and opens new avenues for the development of novel drug strategies in clinical strategies for PD, not reported earlier.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Stephen D Skaper
- Anesthesiology & Intensive Care, Department of Pharmacology, University of Padua, Padova, Italy
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
12
|
Montague-Cardoso K, Malcangio M. Changes in blood-spinal cord barrier permeability and neuroimmune interactions in the underlying mechanisms of chronic pain. Pain Rep 2021; 6:e879. [PMID: 33981925 PMCID: PMC8108584 DOI: 10.1097/pr9.0000000000000879] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/16/2020] [Accepted: 11/05/2020] [Indexed: 01/07/2023] Open
Abstract
Advancing our understanding of the underlying mechanisms of chronic pain is instrumental to the identification of new potential therapeutic targets. Neuroimmune communication throughout the pain pathway is of crucial mechanistic importance and has been a major focus of preclinical chronic pain research over the last 2 decades. In the spinal cord, not only do dorsal horn neurons partake in mechanistically important bidirectional communication with resident immune cells such as microglia, but in some cases, they can also partake in bidirectional crosstalk with immune cells, such as monocytes/macrophages, which have infiltrated into the spinal cord from the circulation. The infiltration of immune cells into the spinal cord can be partly regulated by changes in permeability of the blood-spinal cord barrier (BSCB). Here, we discuss evidence for and against a mechanistic role for BSCB disruption and associated changes in neuroimmune crosstalk in preclinical chronic pain. We also consider recent evidence for its potential involvement in the vincristine model of chemotherapy-induced painful neuropathy. We conclude that current knowledge warrants further investigation to establish whether preventing BSCB disruption, or targeting the changes associated with this disruption, could be used for the development of novel approaches to treating chronic pain.
Collapse
Affiliation(s)
- Karli Montague-Cardoso
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
13
|
Kiyatkin EA. Brain temperature and its role in physiology and pathophysiology: Lessons from 20 years of thermorecording. Temperature (Austin) 2019; 6:271-333. [PMID: 31934603 PMCID: PMC6949027 DOI: 10.1080/23328940.2019.1691896] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022] Open
Abstract
It is well known that temperature affects the dynamics of all physicochemical processes governing neural activity. It is also known that the brain has high levels of metabolic activity, and all energy used for brain metabolism is finally transformed into heat. However, the issue of brain temperature as a factor reflecting neural activity and affecting various neural functions remains in the shadow and is usually ignored by most physiologists and neuroscientists. Data presented in this review demonstrate that brain temperature is not stable, showing relatively large fluctuations (2-4°C) within the normal physiological and behavioral continuum. I consider the mechanisms underlying these fluctuations and discuss brain thermorecording as an important tool to assess basic changes in neural activity associated with different natural (sexual, drinking, eating) and drug-induced motivated behaviors. I also consider how naturally occurring changes in brain temperature affect neural activity, various homeostatic parameters, and the structural integrity of brain cells as well as the results of neurochemical evaluations conducted in awake animals. While physiological hyperthermia appears to be adaptive, enhancing the efficiency of neural functions, under specific environmental conditions and following exposure to certain psychoactive drugs, brain temperature could exceed its upper limits, resulting in multiple brain abnormalities and life-threatening health complications.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
14
|
Lind AL, Just D, Mikus M, Fredolini C, Ioannou M, Gerdle B, Ghafouri B, Bäckryd E, Tanum L, Gordh T, Månberg A. CSF levels of apolipoprotein C1 and autotaxin found to associate with neuropathic pain and fibromyalgia. J Pain Res 2019; 12:2875-2889. [PMID: 31686904 PMCID: PMC6800548 DOI: 10.2147/jpr.s215348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
Objective Neuropathic pain and fibromyalgia are two common and poorly understood chronic pain conditions that lack satisfactory treatments, cause substantial suffering and societal costs. Today, there are no biological markers on which to base chronic pain diagnoses, treatment choices or to understand the pathophysiology of pain for the individual patient. This study aimed to investigate cerebrospinal fluid (CSF) protein profiles potentially associated with fibromyalgia and neuropathic pain. Methods CSF samples were collected from 25 patients with neuropathic pain (two independent sets, n=14 patients for discovery, and n=11 for verification), 40 patients with fibromyalgia and 134 controls without neurological disease from two different populations. CSF protein profiling of 55 proteins was performed using antibody suspension bead array technology. Results We found increased levels of apolipoprotein C1 (APOC1) in CSF of neuropathic pain patients compared to controls and there was a trend for increased levels also in fibromyalgia patients. In addition, levels of ectonucleotide pyrophosphatase family member 2 (ENPP2, also referred to as autotaxin) were increased in the CSF of fibromyalgia patients compared to all other groups including patients with neuropathic pain. Conclusion The increased levels of APOC1 and ENPP2 found in neuropathic pain and fibromyalgia patients may shed light on the underlying mechanisms of these conditions. Further investigation is required to elucidate their role in maintaining pain and other main symptoms of these disorders.
Collapse
Affiliation(s)
- Anne-Li Lind
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - David Just
- Division of Affinity Proteomics, SciLifeLab, Deptartment of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Maria Mikus
- Division of Affinity Proteomics, SciLifeLab, Deptartment of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Claudia Fredolini
- Division of Affinity Proteomics, SciLifeLab, Deptartment of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Marina Ioannou
- Division of Affinity Proteomics, SciLifeLab, Deptartment of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Björn Gerdle
- Pain and Rehabilitation Center, and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Center, and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Emmanuel Bäckryd
- Pain and Rehabilitation Center, and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Lars Tanum
- Department of R&D in Mental Health, Akershus University Hospital, Lørenskog, Norway
| | - Torsten Gordh
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Anna Månberg
- Division of Affinity Proteomics, SciLifeLab, Deptartment of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
15
|
Chen F, Li X, Li Z, Zhou Y, Qiang Z, Ma H. The roles of chemokine (C-X-C motif) ligand 13 in spinal cord ischemia-reperfusion injury in rats. Brain Res 2019; 1727:146489. [PMID: 31589828 DOI: 10.1016/j.brainres.2019.146489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022]
Abstract
Spinal cord ischemia-reperfusion injury (SCII) remains an unresolved complication and its underlying mechanism has not been fully elucidated. In this study, we studied the role of chemokine (C-X-C motif) ligand 13 (CXCL13) in a rat model of SCII. We examined the time course and cellular distribution of CXCL13 protein in rats after SCII. The effects of siRNA targeting CXCL13 or C-X-C chemokine receptor type 5 (CXCR5) in SCII were also investigated. Neurological function, histological assessment, and disruption of the blood-spinal cord barrier (BSCB) were evaluated. The expression levels of CXCL13, CXCR5, phosphorylated extracellular signal-regulated kinase (p-ERK), caspase-3, interleukin 6 (IL-6), TNF-α, and IL-1β were determined. We found that SCII resulted in impaired hind limb function and increased the expression of CXCL13. In addition, CXCL13 expression demonstrated the most pronounced effect at 24 h after SCII. We reveal that CXCL13 protein was co-expressed with the mature neuron marker NeuN and the microglial marker IBA-1 in spinal cord tissues of model rats. SCII also increased the expression of CXCR5, p-ERK, caspase-3, IL-6, TNF-α, and IL-1β at 24 h after SCII. Pre-treatment with CXCL13 siRNA protected the rats against SCII and decreased the expression of signalling pathway proteins and proinflammatory cytokines mentioned above. CXCR5 siRNA also showed similar protective effects. These findings indicate that CXCL13 is involved in SCII. The CXCL13/CXCR5 axis promotes the development of SCII, possibly via ERK-mediated pathways. Targeting the mechanism of CXCL13 involved in the development of SCII might be a potential approach for the treatment of this condition.
Collapse
Affiliation(s)
- Fengshou Chen
- Department of Anesthesiology, The First Hospital of China Medical University, No. 155 Nangjing North Street, Shenyang, Liaoning Province, China
| | - Xiaoqian Li
- Department of Anesthesiology, The First Hospital of China Medical University, No. 155 Nangjing North Street, Shenyang, Liaoning Province, China
| | - Zhe Li
- Department of Anesthesiology, The First Hospital of China Medical University, No. 155 Nangjing North Street, Shenyang, Liaoning Province, China
| | - Yongjian Zhou
- Department of Anesthesiology, The First Hospital of China Medical University, No. 155 Nangjing North Street, Shenyang, Liaoning Province, China
| | - Ziyun Qiang
- Department of Anesthesiology, The First Hospital of China Medical University, No. 155 Nangjing North Street, Shenyang, Liaoning Province, China
| | - Hong Ma
- Department of Anesthesiology, The First Hospital of China Medical University, No. 155 Nangjing North Street, Shenyang, Liaoning Province, China.
| |
Collapse
|
16
|
Sharma A, Castellani RJ, Smith MA, Muresanu DF, Dey PK, Sharma HS. 5-Hydroxytryptophan: A precursor of serotonin influences regional blood-brain barrier breakdown, cerebral blood flow, brain edema formation, and neuropathology. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 146:1-44. [DOI: 10.1016/bs.irn.2019.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Ozkunt O, Sariyilmaz K, Gemalmaz HC, Gürgen SG, Yener U, Dikici F. Investigation of efficacy of treatment in spinal cord injury: Erythropoietin versus methylprednisolone. J Orthop Surg (Hong Kong) 2018; 25:2309499017739481. [PMID: 29121822 DOI: 10.1177/2309499017739481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Investigation of the expression of platelet-derived growth factor (PDGF)-β and glial fibrillary acidic protein (GFAP) in rats with spinal cord injury as a marker of neurologic recovery between groups treated with erythropoietin (EPO) and methylprednisolone (MP). METHODS Thirty adult female rats were randomly divided into three even groups. A laminectomy was applied to thoracic ninth vertebra and contusion injury was induced by extradural application of an aneurysm clip. Group 1 rats received one-time intrathecal administration of normal saline, group 2 rats received MP, and group 3 rats received EPO. Motor neurological function was evaluated by the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale. Thirty days after the surgery, T8-10 segments of the spinal cords were extracted and the immunohistochemical assay revealed the number of PDGF-β- and GFAP-positive cells. RESULTS Evaluation of the last control animal showed that BBB score in the EPO group showed an increase from 1 to 12 ( p < 0.05). The immunohistochemical assay revealed that the number of PDGF-β- and GFAP-positive cells was significantly higher in EPO group ( p = 0.000) when compared to MP and control groups. After studying the effect of PDGF-β expression on the locomotor function, we determined that PDGF-β expression and locomotor function after a spinal injury has a strong relationship ( p < 0.05). CONCLUSION EPO seems to better increase the expression of PDGF-β, thus produce better results in locomotor functions when compared to MP.
Collapse
Affiliation(s)
- Okan Ozkunt
- 1 Department of Orthopedics and Traumatology, Acibadem University Atakent Hospital, Halkali/Kucukcekmece, Istanbul, Turkey
| | - Kerim Sariyilmaz
- 1 Department of Orthopedics and Traumatology, Acibadem University Atakent Hospital, Halkali/Kucukcekmece, Istanbul, Turkey
| | - Halil Can Gemalmaz
- 1 Department of Orthopedics and Traumatology, Acibadem University Atakent Hospital, Halkali/Kucukcekmece, Istanbul, Turkey
| | - Seren Gülsen Gürgen
- 2 Department of Histology and Embryology, Celal Bayar University School of Vocational Health Service, Yunusemre, Manisa, Turkey
| | - Ulaş Yener
- 3 Department of Neurosurgery, Acibadem University Atakent Hospital, Halkali/Kucukcekmece, Istanbul, Turkey
| | - Fatih Dikici
- 1 Department of Orthopedics and Traumatology, Acibadem University Atakent Hospital, Halkali/Kucukcekmece, Istanbul, Turkey
| |
Collapse
|
18
|
Wang Y, Lin YH, Wu Y, Yao ZF, Tang J, Shen L, Wang R, Ding SQ, Hu JG, Lü HZ. Expression and Cellular Localization of IFITM1 in Normal and Injured Rat Spinal Cords. J Histochem Cytochem 2018; 66:175-187. [PMID: 29300519 PMCID: PMC5833178 DOI: 10.1369/0022155417749491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/17/2017] [Indexed: 12/13/2022] Open
Abstract
Interferon-induced transmembrane protein 1 (IFITM1) is a member of the IFITM family that is associated with some acute-phase cytokine-stimulated response. Recently, we demonstrated that IFITM1 was significantly upregulated in the injured spinal cords at the mRNA level. However, its expression and cellular localization at the protein level is still unclear. Here, a rat model of spinal cord injury (SCI) was performed to investigate the spatio-temporal expression of IFITM1 after SCI. IFITM1 mRNA and protein were assessed by quantitative reverse transcription-PCR and western blot, respectively. IHC was used to identify its cellular localization. We revealed that IFITM1 could be found in sham-opened spinal cords and gradually increased after SCI. It reached peak at 7 and 14 days postinjury (dpi) and still maintained at a relatively higher level at 28 dpi. IHC showed that IFITM1 expressed in GFAP+ and APC+ cells in sham-opened spinal cords. After SCI, in addition to the above-mentioned cells, it could also be found in CD45+ and CD68+ cells, and its expression in CD45+, CD68+, and GFAP+ cells was increased significantly. These results demonstrate that IFITM1 is mainly expressed in astrocytes and oligodendroglia in normal spinal cords, and could rapidly increase in infiltrated leukocytes, activated microglia, and astrocytes after SCI.
Collapse
Affiliation(s)
- Ying Wang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Yu-Hong Lin
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
- Department of Immunology, Bengbu Medical College, Bengbu, P.R. China
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, P.R. China
| | - Yan Wu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
- Department of Immunology, Bengbu Medical College, Bengbu, P.R. China
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, P.R. China
| | - Zong-Feng Yao
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Jie Tang
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
- Department of Immunology, Bengbu Medical College, Bengbu, P.R. China
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, P.R. China
| | - Lin Shen
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Shu-Qin Ding
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Jian-Guo Hu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - He-Zuo Lü
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
- Department of Immunology, Bengbu Medical College, Bengbu, P.R. China
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, P.R. China
| |
Collapse
|
19
|
Wu Y, Shen L, Wang R, Tang J, Ding SQ, Wang SN, Guo XY, Hu JG, Lü HZ. Increased ceruloplasmin expression caused by infiltrated leukocytes, activated microglia, and astrocytes in injured female rat spinal cords. J Neurosci Res 2018; 96:1265-1276. [PMID: 29377294 DOI: 10.1002/jnr.24221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/21/2017] [Accepted: 01/11/2018] [Indexed: 12/17/2022]
Abstract
Ceruloplasmin (Cp), an enzyme containing six copper atoms, has important roles in iron homeostasis and antioxidant defense. After spinal cord injury (SCI), the cellular components in the local microenvironment are very complex and include functional changes of resident cells and the infiltration of leukocytes. It has been confirmed that Cp is elevated primarily in astrocytes and to a lesser extent in macrophages following SCI in mice. However, its expression in other cell types is still not very clear. In this manuscript, we provide a sensible extension of these findings by examining this system within a female Sprague-Dawley rat model and expanding the scope of inquiry to include additional cell types. Quantitative reverse transcription polymerase chain reaction and Western blot analysis revealed that the Cp mRNA and protein in SCI tissue homogenates were quite consistent with prior publications. However, we observed that Cp was expressed not only in GFAP+ astrocytes (consistent with prior reports) but also in CD11b+ microglia, CNPase+ oligodendrocytes, NeuN+ neurons, CD45+ leukocytes, and CD68+ activated microglia/macrophages. Quantitative analysis proved that infiltrated leukocytes, activated microglia/macrophages, and astrocytes should be the major sources of increased Cp.
Collapse
Affiliation(s)
- Yan Wu
- Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China.,Anhui Key Laboratory of Tissue Transplantation, First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China.,Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, People's Republic of China
| | - Lin Shen
- Anhui Key Laboratory of Tissue Transplantation, First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - Jie Tang
- Anhui Key Laboratory of Tissue Transplantation, First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China.,Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, People's Republic of China
| | - Shu-Qin Ding
- Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - Sai-Nan Wang
- Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China.,Anhui Key Laboratory of Tissue Transplantation, First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China.,Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, People's Republic of China
| | - Xue-Yan Guo
- Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China.,Anhui Key Laboratory of Tissue Transplantation, First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China.,Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, People's Republic of China
| | - Jian-Guo Hu
- Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China.,Anhui Key Laboratory of Tissue Transplantation, First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - He-Zuo Lü
- Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China.,Anhui Key Laboratory of Tissue Transplantation, First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China.,Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, People's Republic of China
| |
Collapse
|
20
|
Spatio-temporal expression of Hexokinase-3 in the injured female rat spinal cords. Neurochem Int 2017; 113:23-33. [PMID: 29196144 DOI: 10.1016/j.neuint.2017.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 11/20/2022]
Abstract
Hexokinase-3 (HK3) is a member of hexokinase family, which can catalyze the first step of glucose metabolism. It can increase ATP levels, reduce the production of reactive oxygen species, increase mitochondrial biogenesis, protect mitochondrial membrane potential and play an antioxidant role. However, the change of its expression in spinal cord after injury is still unknown. In this study, we investigated the spatio-temporal expression of HK3 in the spinal cords by using a spinal cord injury (SCI) model in adult female Sprague-Dawley rats. Quantitative reverse transcription-PCR and western blot analysis revealed that HK3 could be detected in sham-opened spinal cords. After SCI, it gradually increased, reached a peak at 7 days post-injury (dpi), and then gradually decreased with the prolonging of injury time, but still maintained at a higher level for up to 28 dpi (the longest time evaluated in this study). Immunofluorescence staining showed that HK3 was found in GFAP+, β-tubulin III+ and IBA-1+ cells in sham-opened spinal cords. After SCI, in addition to the above-mentioned cells, it could also be found in CD45+ and CD68+ cells. These results demonstrate that HK3 is mainly expressed in astrocytes, neurons and microglia in normal spinal cords, and could rapidly increase in infiltrated leukocytes, activated microglia/macrophages and astrocytes after SCI. These data suggest that HK3 may be involved in the pathologic process of SCI by promoting glucose metabolism.
Collapse
|
21
|
Sauer RS, Kirchner J, Yang S, Hu L, Leinders M, Sommer C, Brack A, Rittner HL. Blood-spinal cord barrier breakdown and pericyte deficiency in peripheral neuropathy. Ann N Y Acad Sci 2017; 1405:71-88. [DOI: 10.1111/nyas.13436] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 06/07/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Reine-Solange Sauer
- Department of Anesthesiology and Critical Care; University Hospital of Würzburg; Würzburg Germany
| | - Juliane Kirchner
- Department of Anesthesiology and Critical Care; University Hospital of Würzburg; Würzburg Germany
| | - Shaobing Yang
- Department of Anesthesiology and Critical Care; University Hospital of Würzburg; Würzburg Germany
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Liu Hu
- Department of Anesthesiology and Critical Care; University Hospital of Würzburg; Würzburg Germany
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Mathias Leinders
- Department of Neurology; University Hospital of Würzburg; Würzburg Germany
| | - Claudia Sommer
- Department of Neurology; University Hospital of Würzburg; Würzburg Germany
| | - Alexander Brack
- Department of Anesthesiology and Critical Care; University Hospital of Würzburg; Würzburg Germany
| | - Heike L. Rittner
- Department of Anesthesiology and Critical Care; University Hospital of Würzburg; Würzburg Germany
| |
Collapse
|
22
|
Russo A, Tessitore A, Bruno A, Siciliano M, Marcuccio L, Silvestro M, Tedeschi G. Migraine Does Not Affect Pain Intensity Perception: A Cross-Sectional Study. PAIN MEDICINE 2017; 19:1657-1666. [DOI: 10.1093/pm/pnx174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Antonio Russo
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences
- MRI Research Center SUN-FISM, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Alessandro Tessitore
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences
- MRI Research Center SUN-FISM, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Antonio Bruno
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences
| | - Mattia Siciliano
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences
| | - Laura Marcuccio
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences
- MRI Research Center SUN-FISM, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Marcello Silvestro
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences
| | - Gioacchino Tedeschi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences
- MRI Research Center SUN-FISM, University of Campania “Luigi Vanvitelli,” Naples, Italy
- Institute for Diagnosis and Care “Hermitage Capodimonte,” Naples, Italy
| |
Collapse
|
23
|
Mao Y, Nguyen T, Tonkin RS, Lees JG, Warren C, O'Carroll SJ, Nicholson LFB, Green CR, Moalem-Taylor G, Gorrie CA. Characterisation of Peptide5 systemic administration for treating traumatic spinal cord injured rats. Exp Brain Res 2017; 235:3033-3048. [PMID: 28725925 DOI: 10.1007/s00221-017-5023-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/03/2017] [Indexed: 11/27/2022]
Abstract
Systemic administration of a Connexin43 mimetic peptide, Peptide5, has been shown to reduce secondary tissue damage and improve functional recovery after spinal cord injury (SCI). This study investigated safety measures and potential off-target effects of Peptide5 systemic administration. Rats were subjected to a mild contusion SCI using the New York University impactor. One cohort was injected intraperitoneally with a single dose of fluorescently labelled Peptide5 and euthanised at 2 or 4 h post-injury for peptide distribution analysis. A second cohort received intraperitoneal injections of Peptide5 or a scrambled peptide and was culled at 8 or 24 h post-injury for the analysis of connexin proteins and systemic cytokine profile. We found that Peptide5 did not cross the blood-spinal cord barrier in control animals, but reached the lesion area in the spinal cord-injured animals without entering non-injured tissue. There was no evidence that the systemic administration of Peptide5 modulates Connexin43 protein expression or hemichannel closure in the heart and lung tissue of SCI animals. The expression levels of other major connexin proteins including Connexin30 in astrocytes, Connexin36 in neurons and Connexin47 in oligodendrocytes were also unaltered by systemic delivery of Peptide5 in either the injured or non-injured spinal cords. In addition, systemic delivery of Peptide5 had no significant effect on the plasma levels of cytokines, chemokines or growth factors. These data indicate that the systemic delivery of Peptide5 is unlikely to cause any off-target or adverse effects and may thus be a safe treatment option for traumatic SCI.
Collapse
Affiliation(s)
- Yilin Mao
- Neural Injury Research Unit, School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia
| | - Tara Nguyen
- Neural Injury Research Unit, School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia
| | - Ryan S Tonkin
- Neuropathic Pain Research Group, Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Justin G Lees
- Neuropathic Pain Research Group, Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Caitlyn Warren
- Neural Injury Research Unit, School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging and The Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Louise F B Nicholson
- Department of Anatomy and Medical Imaging and The Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Colin R Green
- Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Gila Moalem-Taylor
- Neuropathic Pain Research Group, Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Catherine A Gorrie
- Neural Injury Research Unit, School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
24
|
Smith JR, Winkelstein BA. The role of spinal thrombin through protease-activated receptor 1 in hyperalgesia after neural injury. J Neurosurg Spine 2017; 26:532-541. [PMID: 28059686 DOI: 10.3171/2016.9.spine16501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Painful neuropathic injuries induce blood-spinal cord barrier (BSCB) breakdown, allowing pro-inflammatory serum molecules to cross the BSCB, which contributes to nociception. The goal of these studies was to determine whether the blood-borne serine protease thrombin also crosses a permeable BSCB, contributing to nociception through its activation of protease-activated receptor-1 (PAR1). METHODS A 15-minute C-7 nerve root compression, which induces BSCB breakdown and painful behaviors by Day 1, was administered in the rat (n = 10); sham operation (n = 11) and a 3-minute compression (n = 10) that does not induce sensitivity were administered as controls. At Day 1 after root compression, spinal cord tissue was co-immunolabeled for fibrin/fibrinogen, the enzymatic product of thrombin, and IgG, a serum protein, to determine whether thrombin acts in areas of BSCB breakdown. To determine whether spinal thrombin and PAR1 contribute to hyperalgesia after compression, the thrombin inhibitor hirudin and the PAR1 antagonist SCH79797, were separately administered intrathecally before compression injuries (n = 5-7 per group). Rat thrombin was also administered intrathecally with and without SCH79797 (n = 6 per group) to determine whether spinal thrombin induces hypersensitivity in naïve rats through PAR1. RESULTS Spinal fibrin(ogen) was elevated at Day 1 after root compression in regions localized to BSCB breakdown and decreased in those regions by Day 7. Blocking either spinal thrombin or PAR1 completely prevented compression-induced hyperalgesia for 7 days. Intrathecal thrombin induced transient pain that was prevented by blocking spinal PAR1 before its injection. CONCLUSIONS The findings of this study suggest a potent role for spinal thrombin and its activation of PAR1 in pain onset following neuropathic injury.
Collapse
Affiliation(s)
| | - Beth A. Winkelstein
- Departments of 1Bioengineering and
- 2Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
|
26
|
Kiyatkin EA, Sharma HS. Breakdown of Blood-Brain and Blood-Spinal Cord Barriers During Acute Methamphetamine Intoxication: Role of Brain Temperature. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2016; 15:1129-1138. [PMID: 27658516 PMCID: PMC6092929 DOI: 10.2174/1871527315666160920112445] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/15/2016] [Accepted: 08/08/2016] [Indexed: 11/22/2022]
Abstract
Methamphetamine (METH) is a powerful and often-abused stimulant with potent addictive and neurotoxic properties. While it is generally believed that structural brain damage induced by METH results from oxidative stress, in this work we present data suggesting robust disruption of blood-brain and blood-spinal cord barriers during acute METH intoxication in rats. We demonstrate the relationships between METH-induced brain hyperthermia and widespread but structure-specific barrier leakage, acute glial cell activation, changes in brain water and ionic homeostasis, and structural damage of different types of cells in the brain and spinal cord. Therefore, METH-induced leakage of the blood-brain and blood-spinal cord barriers is a significant contributor to different types of functional and structural brain abnormalities that determine acute toxicity of this drug and possibly neurotoxicity during its chronic use.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Behavioral Neuroscience Branch, NIDA-IRP, NIH, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | | |
Collapse
|
27
|
Kiyatkin EA, Sharma HS. Not just the brain: methamphetamine disrupts blood-spinal cord barrier and induces acute glial activation and structural damage of spinal cord cells. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2015; 14:282-94. [PMID: 25687701 DOI: 10.2174/1871527314666150217121354] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 01/04/2023]
Abstract
Acute methamphetamine (METH) intoxication induces metabolic brain activation as well as multiple physiological and behavioral responses that could result in life-threatening health complications. Previously, we showed that METH (9 mg/kg) used in freely moving rats induces robust leakage of blood-brain barrier, acute glial activation, vasogenic edema, and structural abnormalities of brain cells. These changes were tightly correlated with drug-induced brain hyperthermia and were greatly potentiated when METH was used at warm ambient temperatures (29°C), inducing more robust and prolonged hyperthermia. Extending this line of research, here we show that METH also strongly increases the permeability of the blood-spinal cord barrier as evidenced by entry of Evans blue and albumin immunoreactivity in T9-12 segments of the spinal cord. Similar to the blood-brain barrier, leakage of bloodspinal cord barrier was associated with acute glial activation, alterations of ionic homeostasis, water tissue accumulation (edema), and structural abnormalities of spinal cord cells. Similar to that in the brain, all neurochemical alterations correlated tightly with drug-induced elevations in brain temperature and they were enhanced when the drug was used at 29°C and brain hyperthermia reached pathological levels (>40°C). We discuss common features and differences in neural responses between the brain and spinal cord, two inseparable parts of the central nervous system affected by METH exposure.
Collapse
Affiliation(s)
| | - Hari S Sharma
- Uppsala University, University Hospital, Anesthesiology & Intensive Care Medicine, Dept. Surgical Sciences; Frodingsgatan 12:28, SE-75421; Uppsala, Sweden.
| |
Collapse
|
28
|
Sharma HS, Patnaik R, Sharma A, Lafuente JV, Miclescu A, Wiklund L. Cardiac Arrest Alters Regional Ubiquitin Levels in Association with the Blood-Brain Barrier Breakdown and Neuronal Damages in the Porcine Brain. Mol Neurobiol 2015; 52:1043-53. [PMID: 26108181 DOI: 10.1007/s12035-015-9254-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Indexed: 01/06/2023]
Abstract
The possibility that ubiquitin expression is altered in cardiac arrest-associated neuropathology was examined in a porcine model using immunohistochemical and biochemical methods. Our observations show that cardiac arrest induces progressive increase in ubiquitin expression in the cortex and hippocampus in a selective and specific manner as compared to corresponding control brains using enzyme-linked immunoassay technique (enzyme-linked immunosorbent assay (ELISA)). Furthermore, immunohistochemical studies showed ubiquitin expression in the neurons exhibiting immunoreaction in the cytoplasm and karyoplasm of distorted or damaged cells. Separate Nissl and ubiquitin staining showed damaged and distorted neurons and in the same cortical region ubiquitin expression indicating that ubiquitin expression after cardiac arrest represents dying neurons. The finding that methylene blue treatment markedly induced neuroprotection following identical cardiac arrest and reduced ubiquitin expression strengthens this view. Taken together, our observations are the first to show that cardiac arrest enhanced ubiquitin expression in the brain that is related to the magnitude of neuronal injury and the finding that methylene blue reduced ubiquitin expression points to its role in cell damage, not reported earlier.
Collapse
Affiliation(s)
- Hari S Sharma
- Laboratory of Cerebrovascular Research, Department of Surgical Sciences, Anesthesiology and Intensive Care Medicine, Uppsala University, S-75185, Uppsala, Sweden,
| | | | | | | | | | | |
Collapse
|
29
|
Repetitive Treatment with Diluted Bee Venom Attenuates the Induction of Below-Level Neuropathic Pain Behaviors in a Rat Spinal Cord Injury Model. Toxins (Basel) 2015; 7:2571-85. [PMID: 26184310 PMCID: PMC4516929 DOI: 10.3390/toxins7072571] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/24/2015] [Accepted: 07/07/2015] [Indexed: 12/21/2022] Open
Abstract
The administration of diluted bee venom (DBV) into an acupuncture point has been utilized traditionally in Eastern medicine to treat chronic pain. We demonstrated previously that DBV has a potent anti-nociceptive efficacy in several rodent pain models. The present study was designed to examine the potential anti-nociceptive effect of repetitive DBV treatment in the development of below-level neuropathic pain in spinal cord injury (SCI) rats. DBV was applied into the Joksamli acupoint during the induction and maintenance phase following thoracic 13 (T13) spinal hemisection. We examined the effect of repetitive DBV stimulation on SCI-induced bilateral pain behaviors, glia expression and motor function recovery. Repetitive DBV stimulation during the induction period, but not the maintenance, suppressed pain behavior in the ipsilateral hind paw. Moreover, SCI-induced increase in spinal glia expression was also suppressed by repetitive DBV treatment in the ipsilateral dorsal spinal cord. Finally, DBV injection facilitated motor function recovery as indicated by the Basso–Beattie–Bresnahan rating score. These results indicate that the repetitive application of DBV during the induction phase not only decreased neuropathic pain behavior and glia expression, but also enhanced locomotor functional recovery after SCI. This study suggests that DBV acupuncture can be a potential clinical therapy for SCI management.
Collapse
|
30
|
Pottabathini R, Kumar A, Bhatnagar A, Garg S, Ekavali E. Ameliorative potential of pioglitazone and ceftriaxone alone and in combination in rat model of neuropathic pain: Targeting PPARγ and GLT-1 pathways. Pharmacol Rep 2015; 68:85-94. [PMID: 26721358 DOI: 10.1016/j.pharep.2015.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/15/2015] [Accepted: 06/24/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND The relation between glutamate homeostasis and PPAR gamma has got tremendous importance in nerve trauma and pain. Present study has been designed to elucidate the interaction between the GLT-1 activator (ceftriaxone) and PPAR gamma agonist (pioglitazone) in the spinal nerve ligation induced neuropathic pain. METHODS Male SD rats were subjected to spinal nerve ligation to induce neuropathic pain. Pioglitazone, ceftriaxone and their combination treatments were given for 28 days. Various behavioral, biochemical, neuroinflammatory and apoptotic mediators were assessed subsequently. RESULTS In the present study, ligation of L5 and L6 spinal nerves resulted in marked hyperalgesia and allodynia to different mechanical and thermal stimuli. In addition there is marked increase in oxidative-nitrosative stress parameters, inflammatory and apoptotic markers in spinal cord of spinal nerve ligated rats. Treatment with pioglitazone and ceftriaxone significantly prevented these behavioral, biochemical, mitochondrial and cellular alterations in rats. Further, combination of pioglitazone (10mg/kg, ip) with ceftriaxone (100mg/kg, ip) significantly potentiated the protective effects as compared to their effects per se. CONCLUSION Based on these results we propose that possible interplay between the neuroprotective effects of pioglitazone and ceftriaxone exists in suppressing the behavioral, biochemical, mitochondrial, neuroinflammatory and apoptotic cascades in spinal nerve ligation induced neuropathic pain in rats.
Collapse
Affiliation(s)
- Raghavender Pottabathini
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, India
| | - Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, India.
| | | | - Sukant Garg
- Department of Pathology, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - E Ekavali
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, India
| |
Collapse
|
31
|
Linsell O, Brownjohn PW, Nehoff H, Greish K, Ashton JC. Effect of styrene maleic acid WIN55,212-2 micelles on neuropathic pain in a rat model. J Drug Target 2014; 23:353-9. [PMID: 25541465 DOI: 10.3109/1061186x.2014.997737] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cannabinoid receptor agonists are moderately effective at reducing neuropathic pain but are limited by psychoactivity. We developed a styrene maleic acid (SMA) based on the cannabinoid WIN 55,212-2 (WIN) and tested in a rat model of neuropathic pain and in the rotarod test. We hypothesized that miceller preparation can ensure prolonged plasma half-life being above the renal threshold of excretion. Furthermore, SMA-WIN could potentially reduce the central nervous system effects of encapsulated WIN by limiting its transport across the blood-brain barrier. Using the chronic constriction injury model of sciatic neuropathy, the SMA-WIN micelles were efficacious in the treatment of neuropathic pain for a prolonged period compared to control (base WIN). Attenuation of chronic constriction injury-induced mechanical allodynia occurred for up to 8 h at a dose of 11.5 mg/kg of SMA-WIN micelles. To evaluate central effects on motor function, the rotarod assessment was utilized. Results showed initial impairment caused by SMA-WIN micelles to be identical to WIN control for up to 1.5 h. Despite this, the SMA-WIN micelle formulation was able to produce prolonged analgesia over a time when there was decreased impairment in the rotarod test compared with base WIN.
Collapse
Affiliation(s)
- Oliver Linsell
- Department of Pharmacology and Toxicology, Otago School of Medical Sciences, University of Otago , Dunedin , New Zealand
| | | | | | | | | |
Collapse
|
32
|
Walters ET. Neuroinflammatory contributions to pain after SCI: roles for central glial mechanisms and nociceptor-mediated host defense. Exp Neurol 2014; 258:48-61. [PMID: 25017887 DOI: 10.1016/j.expneurol.2014.02.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/23/2014] [Accepted: 02/02/2014] [Indexed: 12/30/2022]
Abstract
Neuropathic pain after spinal cord injury (SCI) is common, often intractable, and can be severely debilitating. A number of mechanisms have been proposed for this pain, which are discussed briefly, along with methods for revealing SCI pain in animal models, such as the recently applied conditioned place preference test. During the last decade, studies of animal models have shown that both central neuroinflammation and behavioral hypersensitivity (indirect reflex measures of pain) persist chronically after SCI. Interventions that reduce neuroinflammation have been found to ameliorate pain-related behavior, such as treatment with agents that inhibit the activation states of microglia and/or astroglia (including IL-10, minocycline, etanercept, propentofylline, ibudilast, licofelone, SP600125, carbenoxolone). Reversal of pain-related behavior has also been shown with disruption by an inhibitor (CR8) and/or genetic deletion of cell cycle-related proteins, deletion of a truncated receptor (trkB.T1) for brain-derived neurotrophic factor (BDNF), or reduction by antisense knockdown or an inhibitor (AMG9810) of the activity of channels (TRPV1 or Nav1.8) important for electrical activity in primary nociceptors. Nociceptor activity is known to drive central neuroinflammation in peripheral injury models, and nociceptors appear to be an integral component of host defense. Thus, emerging results suggest that spinal and systemic effects of SCI can activate nociceptor-mediated host defense responses that interact via neuroinflammatory signaling with complex central consequences of SCI to drive chronic pain. This broader view of SCI-induced neuroinflammation suggests new targets, and additional complications, for efforts to develop effective treatments for neuropathic SCI pain.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, TX, USA.
| |
Collapse
|
33
|
Linnman C, Borsook D. Completing the Pain Circuit: Recent Advances in Imaging Pain and Inflammation beyond the Central Nervous System. Rambam Maimonides Med J 2013; 4:e0026. [PMID: 24228169 PMCID: PMC3820299 DOI: 10.5041/rmmj.10133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This review describes some of the recent developments in imaging aspects of pain in the periphery. It is now possible to image nerves in the cornea non-invasively, to image receptor level expression and inflammatory processes in injured tissue, to image nerves and alterations in nerve properties, to image astrocyte and glial roles in neuroinflammatory processes, and to image pain conduction functionally in the trigeminal ganglion. These advances will ultimately allow us to describe the pain pathway, from injury site to behavioral consequence, in a quantitative manner. Such a development could lead to diagnostics determining the source of pain (peripheral or central), objective monitoring of treatment progression, and, hopefully, objective biomarkers of pain.
Collapse
Affiliation(s)
- Clas Linnman
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, United States of America
| | | |
Collapse
|
34
|
He SQ, Yang F, Perez FM, Xu Q, Shechter R, Cheong YK, Carteret AF, Dong X, Sweitzer SM, Raja SN, Guan Y. Tolerance develops to the antiallodynic effects of the peripherally acting opioid loperamide hydrochloride in nerve-injured rats. Pain 2013; 154:2477-2486. [PMID: 23880055 DOI: 10.1016/j.pain.2013.07.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 06/28/2013] [Accepted: 07/17/2013] [Indexed: 11/26/2022]
Abstract
Peripherally acting opioids are potentially attractive drugs for the clinical management of certain chronic pain states due to the lack of centrally mediated adverse effects. However, it remains unclear whether tolerance develops to peripheral opioid analgesic effects under neuropathic pain conditions. We subjected rats to L5 spinal nerve ligation (SNL) and examined the analgesic effects of repetitive systemic and local administration of loperamide hydrochloride, a peripherally acting opioid agonist. We found that the inhibition of mechanical hypersensitivity, an important manifestation of neuropathic pain, by systemic loperamide (1.5mg/kg subcutaneously) decreased after repetitive drug treatment (tolerance-inducing dose: 0.75 to 6.0mg/kg subcutaneously). Similarly, repeated intraplantar injection of loperamide (150 μg/50 μL intraplantarly) and D-Ala(2)-MePhe(4)-Glyol(5) enkephalin (300 μg/50 μL), a highly selective mu-opioid receptor (MOR) agonist, also resulted in decreased inhibition of mechanical hypersensitivity. Pretreatment with naltrexone hydrochloride (5mg/kg intraperitoneally) and MK-801 (0.2mg/kg intraperitoneally) attenuated systemic loperamide tolerance. Western blot analysis showed that repetitive systemic administration of morphine (3mg/kg subcutaneously), but not loperamide (3mg/kg subcutaneously) or saline, significantly increased MOR phosphorylation in the spinal cord of SNL rats. In cultured rat dorsal root ganglion neurons, loperamide dose-dependently inhibited KCl-induced increases in [Ca(2+)]i. However, this drug effect significantly decreased in cells pretreated with loperamide (3 μM, 72 hours). Intriguingly, in loperamide-tolerant cells, the delta-opioid receptor antagonist naltrindole restored loperamide's inhibition of KCl-elicited [Ca(2+)]i increase. Our findings indicate that animals with neuropathic pain may develop acute tolerance to the antiallodynic effects of peripherally acting opioids after repetitive systemic and local drug administration.
Collapse
Affiliation(s)
- Shao-Qiu He
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, SC, USA Department of Clinical Pharmacology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China Department of Anesthesiology and Pain Medicine, School of Medicine, Wonkwang University, Ikscan, South Korea Department of Neuroscience, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yoon SY, Robinson CR, Zhang H, Dougherty PM. Spinal astrocyte gap junctions contribute to oxaliplatin-induced mechanical hypersensitivity. THE JOURNAL OF PAIN 2013; 14:205-14. [PMID: 23374942 DOI: 10.1016/j.jpain.2012.11.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/29/2012] [Accepted: 11/07/2012] [Indexed: 01/07/2023]
Abstract
UNLABELLED Spinal glial cells contribute to the development of many types of inflammatory and neuropathic pain. Here the contribution of spinal astrocytes and astrocyte gap junctions to oxaliplatin-induced mechanical hypersensitivity was explored. The expression of glial fibrillary acidic protein (GFAP) in spinal dorsal horn was significantly increased at day 7 but recovered at day 14 after oxaliplatin treatment, suggesting a transient activation of spinal astrocytes by chemotherapy. Astrocyte-specific gap junction protein connexin 43 (Cx43) was significantly increased in dorsal horn at both day 7 and day 14 following chemotherapy, but neuronal (connexin 36 [Cx36]) and oligodendrocyte (connexin 32 [Cx32]) gap junction proteins did not show any change. Blockade of astrocyte gap junction with carbenoxolone (CBX) prevented oxaliplatin-induced mechanical hypersensitivity in a dose-dependent manner and the increase of spinal GFAP expression, but had no effect once the mechanical hypersensitivity induced by oxaliplatin had fully developed. These results suggest that oxaliplatin chemotherapy induces the activation of spinal astrocytes and this is accompanied by increased expression of astrocyte-astrocyte gap junction connections via Cx43. These alterations in spinal astrocytes appear to contribute to the induction but not the maintenance of oxaliplatin-induced mechanical hypersensitivity. Combined, these results suggest that targeting spinal astrocyte/astrocyte-specific gap junction could be a new therapeutic strategy to prevent oxaliplatin-induced neuropathy. PERSPECTIVE Spinal astrocytes but not microglia were recently shown to be recruited in paclitaxel-related chemoneuropathy. Here, spinal astrocyte gap junctions are shown to play an important role in the induction of oxaliplatin neuropathy.
Collapse
Affiliation(s)
- Seo-Yeon Yoon
- Laboratory of Molecular Signal Transduction, Center for Neural Science, Korea Institute of Science and Technology, Seoul, South Korea
| | | | | | | |
Collapse
|
36
|
Radu BM, Bramanti P, Osculati F, Flonta ML, Radu M, Bertini G, Fabene PF. Neurovascular unit in chronic pain. Mediators Inflamm 2013; 2013:648268. [PMID: 23840097 PMCID: PMC3687484 DOI: 10.1155/2013/648268] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/08/2013] [Indexed: 12/27/2022] Open
Abstract
Chronic pain is a debilitating condition with major socioeconomic impact, whose neurobiological basis is still not clear. An involvement of the neurovascular unit (NVU) has been recently proposed. In particular, the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB), two NVU key players, may be affected during the development of chronic pain; in particular, transient permeabilization of the barrier is suggested by several inflammatory- and nerve-injury-based pain models, and we argue that the clarification of molecular BBB/BSCB permeabilization events will shed new light in understanding chronic pain mechanisms. Possible biases in experiments supporting this theory and its translational potentials are discussed. Moving beyond an exclusive focus on the role of the endothelium, we propose that our understanding of the mechanisms subserving chronic pain will benefit from the extension of research efforts to the NVU as a whole. In this view, the available evidence on the interaction between analgesic drugs and the NVU is here reviewed. Chronic pain comorbidities, such as neuroinflammatory and neurodegenerative diseases, are also discussed in view of NVU changes, together with innovative pharmacological solutions targeting NVU components in chronic pain treatment.
Collapse
Affiliation(s)
- Beatrice Mihaela Radu
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | | | | | - Maria-Luisa Flonta
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Mihai Radu
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
- Department of Life and Environmental Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, 077125 Bucharest-Magurele, Romania
| | - Giuseppe Bertini
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Paolo Francesco Fabene
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| |
Collapse
|
37
|
Kwon A, Jeon SM, Hwang SH, Kim JH, Cho HJ. Expression and functional role of metallothioneins I and II in the spinal cord in inflammatory and neuropathic pain models. Brain Res 2013; 1523:37-48. [PMID: 23726995 DOI: 10.1016/j.brainres.2013.05.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 04/19/2013] [Accepted: 05/21/2013] [Indexed: 11/19/2022]
Abstract
In this study, the expression and functional role of metallothioneins I and II (MT-I/II) were evaluated in the spinal cord in rat models of inflammatory and neuropathic pain. Complete Freund's adjuvant (CFA) injection into the hindpaw induced an increase in MT-I/II protein expression in bilateral dorsal and ventral horns throughout the spinal cord, while chronic constriction injury (CCI) of the sciatic nerve induced an increase in MT-I/II expression in the ipsilateral dorsal and ventral horns of the lower lumbar spinal cord. Increased MT-I/II immunoreactivity was predominantly localized to vascular endothelial cells. CFA injection- and CCI-induced MT-I/II expression was inhibited by intrathecal administration of MT-I siRNA. Treatment with MT-I siRNA before CFA injection or at early time points after CCI resulted in a significant attenuation of mechanical allodynia and thermal hyperalgesia, while treatment at later time points had no effect on established pain behaviors. Our results suggest that endogenous MT-I/II might play an important role in the pathogenesis of pain behaviors, participating in the initiation of inflammatory and neuropathic pain rather than in their maintenance.
Collapse
Affiliation(s)
- Aram Kwon
- Department of Anatomy, School of Medicine, Kyungpook National University, 2-101, Dongin Dong, Daegu 702-422, South Korea
| | | | | | | | | |
Collapse
|
38
|
Kiyatkin EA. The hidden side of drug action: brain temperature changes induced by neuroactive drugs. Psychopharmacology (Berl) 2013; 225:765-80. [PMID: 23274506 PMCID: PMC3558565 DOI: 10.1007/s00213-012-2957-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/07/2012] [Indexed: 12/11/2022]
Abstract
RATIONALE Most neuroactive drugs affect brain metabolism as well as systemic and cerebral blood flow, thus altering brain temperature. Although this aspect of drug action usually remains in the shadows, drug-induced alterations in brain temperature reflect their metabolic neural effects and affect neural activity and neural functions. OBJECTIVES Here, I review brain temperature changes induced by neuroactive drugs, which are used therapeutically (general anesthetics), as a research tool (dopamine agonists and antagonists), and self-administered to induce desired psychic effects (cocaine, methamphetamine, ecstasy). I consider the mechanisms underlying these temperature fluctuations and their influence on neural, physiological, and behavioral effects of these drugs. RESULTS By interacting with neural mechanisms regulating metabolic activity and heat exchange between the brain and the rest of the body, neuroactive drugs either increase or decrease brain temperatures both within (35-39 °C) and exceeding the range of physiological fluctuations. These temperature effects differ drastically depending upon the environmental conditions and activity state during drug administration. This state-dependence is especially important for drugs of abuse that are usually taken by humans during psycho-physiological activation and in environments that prevent proper heat dissipation from the brain. Under these conditions, amphetamine-like stimulants induce pathological brain hyperthermia (>40 °C) associated with leakage of the blood-brain barrier and structural abnormalities of brain cells. CONCLUSIONS The knowledge on brain temperature fluctuations induced by neuroactive drugs provides new information to understand how they influence metabolic neural activity, why their effects depend upon the behavioral context of administration, and the mechanisms underlying adverse drug effects including neurotoxicity.
Collapse
Affiliation(s)
- Eugene A. Kiyatkin
- Correspondence should be addressed to Eugene A. Kiyatkin at the above address. Fax: (443) 740-2155; tel.: (443) 740-2844;
| |
Collapse
|
39
|
Cao L, Beaulac H, Eurich A. Differential lumbar spinal cord responses among wild type, CD4 knockout, and CD40 knockout mice in spinal nerve L5 transection-induced neuropathic pain. Mol Pain 2012; 8:88. [PMID: 23249743 PMCID: PMC3545955 DOI: 10.1186/1744-8069-8-88] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/14/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Our previous studies have indicated that both lumbar spinal cord-infiltrating CD4+ T cells and microglial CD40 contribute to the maintenance of mechanical hypersensitivity in a murine model of neuropathic pain spinal nerve L5 transection (L5Tx). To further delineate the CD4 and CD40-mediated mechanisms involved in the development of L5Tx-induced neuropathic pain behaviors, we examined the lumbar spinal cord mononuclear cells of wild type (WT) BALB/c, BALB/c-CD4 knockout (KO), and BALB/c-CD40 KO mice via flow cytometry. RESULTS In WT mice, L5Tx induced significant but transient (at day 3 and/or day 7) increases of the total numbers of mononuclear cells, microglial cells (CD45loCD11b+), and infiltrating leukocytes (CD45hi) in the ipsilateral side of the spinal cord. In CD4 KO mice, significant elevation of microglia was detected only on day 7 post-L5Tx, while no significant increase in infiltrating leukocytes post-L5Tx was observed. CD40 KO mice did not exhibit any of the changes observed in WT mice. Furthermore, neutralizing CD40 antibody treatment indicated an early involvement of CD40 signaling in the development of L5Tx-induced mechanical hypersensitivity. CONCLUSIONS Altogether, data indicate that both CD4 and CD40 play a role in L5Tx-induced leukocyte infiltration into the lumbar spinal cord but have differential contributions to spinal cord microglial activation following peripheral nerve injury.
Collapse
Affiliation(s)
- Ling Cao
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA.
| | | | | |
Collapse
|
40
|
Inflaming the brain: CRPS a model disease to understand neuroimmune interactions in chronic pain. J Neuroimmune Pharmacol 2012. [PMID: 23188523 DOI: 10.1007/s11481-012-9422-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We review current concepts in CRPS from a neuroimaging perspective and point out topics and potential mechanisms that are suitable to be investigated in the next step towards understanding the pathophysiology of CRPS. We have outlined functional aspects of the syndrome, from initiating lesion via inflammatory mechanisms to CNS change and associated sickness behavior, with current evidence for up-regulation of immunological factors in CRPS, neuroimaging of systemic inflammation, and neuroimaging findings in CRPS. The initiation, maintenances and CNS targets implicated in CRPS and in the neuro-inflammatory reflex are discussed in terms of CRPS symptoms and recent preclinical studies. Potential avenues for investigating CRPS with PET and fMRI are described, along with roles of inflammation, treatment and behavior in CRPS. It is our hope that this outline will provoke discussion and promote further empirical studies on the interactions between central and peripheral inflammatory pathways manifest in CRPS.
Collapse
|
41
|
Xanthos DN, Püngel I, Wunderbaldinger G, Sandkühler J. Effects of peripheral inflammation on the blood-spinal cord barrier. Mol Pain 2012; 8:44. [PMID: 22713725 PMCID: PMC3407004 DOI: 10.1186/1744-8069-8-44] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 06/18/2012] [Indexed: 11/10/2022] Open
Abstract
Background Changes in the blood-central nervous system barriers occur under pathological conditions including inflammation and contribute to central manifestations of various diseases. After short-lasting peripheral and neurogenic inflammation, the evidence is mixed whether there are consistent blood-spinal cord changes. In the current study, we examine changes in the blood-spinal cord barrier after intraplantar capsaicin and λ-carrageenan using several methods: changes in occludin protein, immunoglobulin G accumulation, and fluorescent dye penetration. We also examine potential sex differences in male and female adult rats. Results After peripheral carrageenan inflammation, but not capsaicin inflammation, immunohistochemistry shows occludin protein in lumbar spinal cord to be significantly altered at 72 hours post-injection. In addition, there is also significant immunoglobulin G detected in lumbar and thoracic spinal cord at this timepoint in both male and female rats. However, acute administration of sodium fluorescein or Evans Blue dyes is not detected in the parenchyma at this timepoint. Conclusions Our results show that carrageenan inflammation induces changes in tight junction protein and immunoglobulin G accumulation, but these may not be indicative of a blood-spinal cord barrier breakdown. These changes appear transiently after peak nociception and may be indicative of reversible pathology that resolves together with inflammation.
Collapse
Affiliation(s)
- Dimitris N Xanthos
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | | | | | | |
Collapse
|
42
|
Chung C, Carteret AF, McKelvy AD, Ringkamp M, Yang F, Hartke TV, Dong X, Raja SN, Guan Y. Analgesic properties of loperamide differ following systemic and local administration to rats after spinal nerve injury. Eur J Pain 2012; 16:1021-32. [PMID: 22508374 DOI: 10.1002/j.1532-2149.2012.00148.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2012] [Indexed: 01/24/2023]
Abstract
BACKGROUND The analgesic properties and mechanisms of loperamide hydrochloride, a peripherally acting opioid receptor agonist, in neuropathic pain warrant further investigation. METHODS We examined the effects of systemic or local administration of loperamide on heat and mechanical hyperalgesia in rats after an L5 spinal nerve ligation (SNL). RESULTS (1) Systemic loperamide (0.3-10 mg/kg, subcutaneous in the back) dose dependently reversed heat hyperalgesia in SNL rats, but did not produce thermal analgesia. Systemic loperamide (3 mg/kg) did not induce thermal antinociception in naïve rats; (2) systemic loperamide-induced anti-heat hyperalgesia was blocked by pretreatment with intraperitoneal naloxone methiodide (5 mg/kg), but not by intraperitoneal naltrindole (5 mg/kg) or intrathecal naltrexone (20 μg/10 μL); (3) local administration of loperamide (150 μg), but not vehicle, into plantar or dorsal hind paw tissue induced thermal analgesia in SNL rats and thermal antinociception in naïve rats; (4) the analgesic effect of intraplantar loperamide (150 μg/15 μL) in SNL rats at 45 min, but not 10 min, post-injection was blocked by pretreatment with an intraplantar injection of naltrexone (75 μg/10 μL); (5) systemic (3.0 mg/kg) and local (150 μg) loperamide reduced the exaggerated duration of hind paw elevation to noxious pinprick stimuli in SNL rats. Intraplantar injection of loperamide also decreased the frequency of pinprick-evoked response in naïve rats. CONCLUSIONS These findings suggest that both systemic and local administration of loperamide induce an opioid receptor-dependent inhibition of heat and mechanical hyperalgesia in nerve-injured rats, but that local paw administration of loperamide also induces thermal and mechanical antinociception.
Collapse
Affiliation(s)
- C Chung
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Costa R, Motta EM, Dutra RC, Manjavachi MN, Bento AF, Malinsky FR, Pesquero JB, Calixto JB. Anti-nociceptive effect of kinin B₁ and B₂ receptor antagonists on peripheral neuropathy induced by paclitaxel in mice. Br J Pharmacol 2012; 164:681-93. [PMID: 21470206 DOI: 10.1111/j.1476-5381.2011.01408.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE In the current study, we investigated the role of both kinin B₁ and B₂ receptors in peripheral neuropathy induced by the chronic treatment of mice with paclitaxel a widely used chemotherapeutic agent. EXPERIMENTAL APPROACH Chemotherapy-evoked hyperalgesia was induced by i.p. injections of paclitaxel (2 mg·kg⁻¹) over 5 consecutive days. Mechanical and thermal hyperalgesia were evaluated between 7 and 21 days after the first paclitaxel treatment. KEY RESULTS Treatment with paclitaxel increased both mechanical and thermal hyperalgesia in mice (C57BL/6 and CD1 strains). Kinin receptor deficient mice (B₁, or B₂ receptor knock-out and B₁B₂ receptor, double knock-out) presented a significant reduction in paclitaxel-induced hypernociceptive responses in comparison to wild-type animals. Treatment of CD1 mice with kinin receptor antagonists (DALBK for B₁ or Hoe 140 for B₂ receptors) significantly inhibited both mechanical and thermal hyperalgesia when tested at 7 and 14 days after the first paclitaxel injection. DALBK and Hoe 140 were also effective against paclitaxel-induced peripheral neuropathy when given intrathecally or i.c.v. A marked increase in B₁ receptor mRNA was observed in the mouse thalamus, parietal and pre-frontal cortex from 7 days after the first paclitaxel treatment. CONCLUSIONS AND IMPLICATIONS Kinins acting on both B₁ and B₂ receptors, expressed in spinal and supra-spinal sites, played a crucial role in controlling the hypernociceptive state caused by chronic treatment with paclitaxel.
Collapse
Affiliation(s)
- Robson Costa
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Environmental conditions modulate neurotoxic effects of psychomotor stimulant drugs of abuse. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 102:147-71. [PMID: 22748829 DOI: 10.1016/b978-0-12-386986-9.00006-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Psychomotor stimulants such as methamphetamine (METH), amphetamine, and 3,4-metylenedioxymethamphetamine (MDMA or ecstasy) are potent addictive drugs. While it is known that their abuse could result in adverse health complications, including neurotoxicity, both the environmental conditions and activity states associated with their intake could strongly enhance drug toxicity, often resulting in life-threatening health complications. In this review, we analyze results of animal experiments that suggest that even moderate increases in environmental temperatures and physiological activation, the conditions typical of human raves parties, dramatically potentiate brain hyperthermic effects of METH and MDMA. We demonstrate that METH also induces breakdown of the blood-brain barrier, acute glial activation, brain edema, and structural abnormalities of various subtypes of brain cells; these effects are also strongly enhanced when the drug is used at moderately warm environmental conditions. We consider the mechanisms underlying environmental modulation of acute drug neurotoxicity and focus on the role of brain temperature, a critical homeostatic parameter that could be affected by metabolism-enhancing drugs and environmental conditions and affect neural activity and functions.
Collapse
|
45
|
Sharma HS, Ali SF, Patnaik R, Zimmermann-Meinzingen S, Sharma A, Muresanu DF. Cerebrolysin Attenuates Heat Shock Protein (HSP 72 KD) Expression in the Rat Spinal Cord Following Morphine Dependence and Withdrawal: Possible New Therapy for Pain Management. Curr Neuropharmacol 2011; 9:223-35. [PMID: 21886595 PMCID: PMC3137188 DOI: 10.2174/157015911795017100] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/17/2010] [Accepted: 05/26/2010] [Indexed: 12/20/2022] Open
Abstract
The possibility that pain perception and processing in the CNS results in cellular stress and may influence heat shock protein (HSP) expression was examined in a rat model of morphine dependence and withdrawal. Since activation of pain pathways result in exhaustion of growth factors, we examined the influence of cerebrolysin, a mixture of potent growth factors (BDNF, GDNF, NGF, CNTF etc,) on morphine induced HSP expression. Rats were administered morphine (10 mg/kg, s.c. /day) for 12 days and the spontaneous withdrawal symptoms were developed by cessation of the drug administration on day 13th that were prominent on day 14th and continued up to day 15th (24 to 72 h periods). In a separate group of rats, cerebrolysin was infused intravenously (5 ml/kg) once daily from day one until day 15th. In these animals, morphine dependence and withdrawal along with HSP immunoreactivity was examined using standard protocol. In untreated group mild HSP immunoreaction was observed during morphine tolerance, whereas massive upregulation of HSP was seen in CNS during withdrawal phase that correlated well with the withdrawal symptoms and neuronal damage. Pretreatment with cerebrolysin did not affect morphine tolerance but reduced the HSP expression during this phase. Furthermore, cerebrolysin reduced the withdrawal symptoms on day 14th to 15th. Taken together these observations suggest that cellular stress plays an important role in morphine induced pain pathology and exogenous supplement of growth factors, i.e. cerebrolysin attenuates HSP expression in the CNS and induce neuroprotection. This indicates a new therapeutic role of cerebrolysin in the pathophysiology of drugs of abuse, not reported earlier.
Collapse
Affiliation(s)
- Hari S Sharma
- Laboratory of Cerebrovascular Research, Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, SE-75185 Uppsala Sweden
| | | | | | | | | | | |
Collapse
|
46
|
Peripheral nerve injury alters blood-spinal cord barrier functional and molecular integrity through a selective inflammatory pathway. J Neurosci 2011; 31:10819-28. [PMID: 21795534 DOI: 10.1523/jneurosci.1642-11.2011] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Peripheral nerve lesion triggers alterations in the spinal microenvironment that contribute to the pathogenesis of neuropathic pain. While neurons and glia have been implicated in these functional changes, it remains largely underexplored whether the blood-spinal cord barrier (BSCB) is also involved. The BSCB is an important component in the CNS homeostasis, and compromised BSCB has been associated with different pathologies affecting the spinal cord. Here, we demonstrated that a remote injury on the peripheral nerve in rats triggered a leakage of the BSCB, which was independent of spinal microglial activation. The increase of BSCB permeability to different size tracers, such as Evans Blue and sodium fluorescein, was restricted to the lumbar spinal cord and prominent for at least 4 weeks after injury. The spinal inflammatory reaction triggered by nerve injury was a key player in modulating BSCB permeability. We identified MCP-1 as an endogenous trigger for the BSCB leakage. BSCB permeability can also be impaired by circulating IL-1β. In contrast, antiinflammatory cytokines TGF-β1 and IL-10 were able to shut down the openings of the BSCB following nerve injury. Peripheral nerve injury caused a decrease in tight junction and caveolae-associated proteins. Interestingly, ZO-1 and occludin, but not caveolin-1, were rescued by TGF-β1. Furthermore, our data provide direct evidence that disrupted BSCB following nerve injury contributed to the influx of inflammatory mediators and the recruitment of spinal blood borne monocytes/macrophages, which played a major role in the development of neuropathic pain. These findings highlight the importance of inflammation in BSCB integrity and in spinal cord homeostasis.
Collapse
|
47
|
Grace PM, Rolan PE, Hutchinson MR. Peripheral immune contributions to the maintenance of central glial activation underlying neuropathic pain. Brain Behav Immun 2011; 25:1322-32. [PMID: 21496480 DOI: 10.1016/j.bbi.2011.04.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/04/2011] [Accepted: 04/04/2011] [Indexed: 10/18/2022] Open
Abstract
Recent evidence implicates an adaptive immune response in the central nervous system (CNS) mechanisms of neuropathic pain. This review identifies how neuropathic pain alters CNS immune privilege to facilitate T cell infiltration. Once in the CNS, T cells may interact with the local antigen presenting cells, microglia, via the major histocompatibility complex and the costimulatory molecules CD40 and B7. In this way, T cells may contribute to the maintenance of neuropathic pain through pro-inflammatory interactions with microglia and by facilitating the activation of astrocytes in the spinal dorsal horn. Based on the evidence presented in this review, we suggest that this bidirectional, pro-inflammatory system of neurons, glia and T cells in neuropathic pain should be renamed the pentapartite synapse, and identifies the latest member as a potential disease-modifying therapeutic target.
Collapse
Affiliation(s)
- Peter M Grace
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia.
| | | | | |
Collapse
|
48
|
Kang SY, Kim CY, Roh DH, Yoon SY, Park JH, Lee HJ, Beitz AJ, Lee JH. Chemical stimulation of the ST36 acupoint reduces both formalin-induced nociceptive behaviors and spinal astrocyte activation via spinal alpha-2 adrenoceptors. Brain Res Bull 2011; 86:412-21. [PMID: 21889580 DOI: 10.1016/j.brainresbull.2011.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 07/27/2011] [Accepted: 08/19/2011] [Indexed: 11/27/2022]
Abstract
Spinal astrocytes have emerged as important mechanistic contributors to pathological and chronic pain. Recently, we have demonstrated that injection of diluted bee venom (DBV) into the Zusanli (ST36) acupoint produces a potent anti-nociceptive effect via the activation of spinal alpha-2 adrenoceptors. However, it is unclear if this anti-nociceptive effect is associated with alterations in spinal astrocytes. Thus, the present study was designed to determine: (1) whether DBV's anti-nociceptive effect in the formalin test involves suppression of spinal astrocyte activation; (2) whether DBV-induced astrocyte inhibition is mediated by spinal alpha-2 adrenoceptors; and (3) whether this glial modulation is potentiated by intrathecal administration of the glial metabolic inhibitor, fluorocitrate (FC) in combination with DBV injection. DBV was injected directly into the ST36 acupoint, and spinal expression of the astrocytic marker, glial fibrillary acidic protein (GFAP), was assessed together with effects on formalin-induced nociception. DBV treatment reduced pain responses in the late phase of the formalin test and significantly blocked the formalin-evoked increase in spinal GFAP expression. These effects of DBV were prevented by intrathecal pretreatment with selective alpha-2A and alpha-2C adrenoceptor antagonists. Moreover, low dose intrathecal injection of FC in conjunction with low dose DBV injection into the ST36 acupoint synergistically suppressed pain responses and GFAP expression. These results demonstrate that DBV stimulation of the ST36 acupoint inhibits the formalin-induced activation of spinal astrocytes and nociceptive behaviors in this inflammatory pain model and this inhibition is associated with the activation of spinal alpha-2 adrenoceptors.
Collapse
Affiliation(s)
- Suk-Yun Kang
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Hutchinson MR, Shavit Y, Grace PM, Rice KC, Maier SF, Watkins LR. Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol Rev 2011; 63:772-810. [PMID: 21752874 DOI: 10.1124/pr.110.004135] [Citation(s) in RCA: 291] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vastly stimulated by the discovery of opioid receptors in the early 1970s, preclinical and clinical research was directed at the study of stereoselective neuronal actions of opioids, especially those played in their crucial analgesic role. However, during the past decade, a new appreciation of the non-neuronal actions of opioids has emerged from preclinical research, with specific appreciation for the nonclassic and nonstereoselective sites of action. Opioid activity at Toll-like receptors, newly recognized innate immune pattern recognition receptors, adds substantially to this unfolding story. It is now apparent from molecular and rodent data that these newly identified signaling events significantly modify the pharmacodynamics of opioids by eliciting proinflammatory reactivity from glia, the immunocompetent cells of the central nervous system. These central immune signaling events, including the release of cytokines and chemokines and the associated disruption of glutamate homeostasis, cause elevated neuronal excitability, which subsequently decreases opioid analgesic efficacy and leads to heightened pain states. This review will examine the current preclinical literature of opioid-induced central immune signaling mediated by classic and nonclassic opioid receptors. A unification of the preclinical pharmacology, neuroscience, and immunology of opioids now provides new insights into common mechanisms of chronic pain, naive tolerance, analgesic tolerance, opioid-induced hyperalgesia, and allodynia. Novel pharmacological targets for future drug development are discussed in the hope that disease-modifying chronic pain treatments arising from the appreciation of opioid-induced central immune signaling may become practical.
Collapse
Affiliation(s)
- Mark R Hutchinson
- Discipline of Pharmacology, School of Medical Science, University of Adelaide, South Australia, Australia, 5005.
| | | | | | | | | | | |
Collapse
|
50
|
Shi XQ, Lim TK, Lee S, Zhao YQ, Zhang J. Statins alleviate experimental nerve injury-induced neuropathic pain. Pain 2011; 152:1033-1043. [DOI: 10.1016/j.pain.2011.01.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 01/05/2011] [Accepted: 01/05/2011] [Indexed: 01/06/2023]
|