1
|
Merighi A. Brain-Derived Neurotrophic Factor, Nociception, and Pain. Biomolecules 2024; 14:539. [PMID: 38785946 PMCID: PMC11118093 DOI: 10.3390/biom14050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
This article examines the involvement of the brain-derived neurotrophic factor (BDNF) in the control of nociception and pain. BDNF, a neurotrophin known for its essential role in neuronal survival and plasticity, has garnered significant attention for its potential implications as a modulator of synaptic transmission. This comprehensive review aims to provide insights into the multifaceted interactions between BDNF and pain pathways, encompassing both physiological and pathological pain conditions. I delve into the molecular mechanisms underlying BDNF's involvement in pain processing and discuss potential therapeutic applications of BDNF and its mimetics in managing pain. Furthermore, I highlight recent advancements and challenges in translating BDNF-related research into clinical practice.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, 10095 Turin, Italy
| |
Collapse
|
2
|
Staud R, Godfrey MM, Stroman PW. Fibromyalgia is associated with hypersensitivity but not with abnormal pain modulation: evidence from QST trials and spinal fMRI. FRONTIERS IN PAIN RESEARCH 2023; 4:1284103. [PMID: 38116188 PMCID: PMC10728773 DOI: 10.3389/fpain.2023.1284103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Widespread pain and hyperalgesia are characteristics of chronic musculoskeletal pain conditions, including fibromyalgia syndrome (FM). Despite mixed evidence, there is increasing consensus that these characteristics depend on abnormal pain augmentation and dysfunctional pain inhibition. Our recent investigations of pain modulation with individually adjusted nociceptive stimuli have confirmed the mechanical and thermal hyperalgesia of FM patients but failed to detect abnormalities of pain summation or descending pain inhibition. Furthermore, our functional magnetic resonance imaging evaluations of spinal and brainstem pain processing during application of sensitivity-adjusted heat stimuli demonstrated similar temporal patterns of spinal cord activation in FM and HC participants. However, detailed modeling of brainstem activation showed that BOLD activity during "pain summation" was increased in FM subjects, suggesting differences in brain stem modulation of nociceptive stimuli compared to HC. Whereas these differences in brain stem activation are likely related to the hypersensitivity of FM patients, the overall central pain modulation of FM showed no significant abnormalities. These findings suggest that FM patients are hyperalgesic but modulate nociceptive input as effectively as HC.
Collapse
Affiliation(s)
- Roland Staud
- Division of Rheumatology and Clinical Immunology, University of Florida, Gainesville, FL, United States
| | - Melyssa M. Godfrey
- Division of Rheumatology and Clinical Immunology, University of Florida, Gainesville, FL, United States
| | - Patrick W. Stroman
- Center for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
3
|
Liu XG. Normalization of Neuroinflammation: A New Strategy for Treatment of Persistent Pain and Memory/Emotional Deficits in Chronic Pain. J Inflamm Res 2022; 15:5201-5233. [PMID: 36110505 PMCID: PMC9469940 DOI: 10.2147/jir.s379093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/18/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic pain, which affects around 1/3 of the world population and is often comorbid with memory deficit and mood depression, is a leading source of suffering and disability. Studies in past decades have shown that hyperexcitability of primary sensory neurons resulting from abnormal expression of ion channels and central sensitization mediated pathological synaptic plasticity, such as long-term potentiation in spinal dorsal horn, underlie the persistent pain. The memory/emotional deficits are associated with impaired synaptic connectivity in hippocampus. Dysregulation of numerous endogenous proteins including receptors and intracellular signaling molecules is involved in the pathological processes. However, increasing knowledge contributes little to clinical treatment. Emerging evidence has demonstrated that the neuroinflammation, characterized by overproduction of pro-inflammatory cytokines and glial activation, is reliably detected in humans and animals with chronic pain, and is sufficient to induce persistent pain and memory/emotional deficits. The abnormal expression of ion channels and pathological synaptic plasticity in spinal dorsal horn and in hippocampus are resulting from neuroinflammation. The neuroinflammation is initiated and maintained by the interactions of circulating monocytes, glial cells and neurons. Obviously, unlike infectious diseases and cancer, which are caused by pathogens or malignant cells, chronic pain is resulting from alterations of cells and molecules which have numerous physiological functions. Therefore, normalization (counterbalance) but not simple inhibition of the neuroinflammation is the right strategy for treating neuronal disorders. Currently, no such agent is available in clinic. While experimental studies have demonstrated that intracellular Mg2+ deficiency is a common feature of chronic pain in animal models and supplement Mg2+ are capable of normalizing the neuroinflammation, activation of upregulated proteins that promote recovery, such as translocator protein (18k Da) or liver X receptors, has a similar effect. In this article, relevant experimental and clinical evidence is reviewed and discussed.
Collapse
Affiliation(s)
- Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
4
|
Bouali-Benazzouz R, Landry M, Benazzouz A, Fossat P. Neuropathic pain modeling: Focus on synaptic and ion channel mechanisms. Prog Neurobiol 2021; 201:102030. [PMID: 33711402 DOI: 10.1016/j.pneurobio.2021.102030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/22/2021] [Indexed: 12/28/2022]
Abstract
Animal models of pain consist of modeling a pain-like state and measuring the consequent behavior. The first animal models of neuropathic pain (NP) were developed in rodents with a total lesion of the sciatic nerve. Later, other models targeting central or peripheral branches of nerves were developed to identify novel mechanisms that contribute to persistent pain conditions in NP. Objective assessment of pain in these different animal models represents a significant challenge for pre-clinical research. Multiple behavioral approaches are used to investigate and to validate pain phenotypes including withdrawal reflex to evoked stimuli, vocalizations, spontaneous pain, but also emotional and affective behaviors. Furthermore, animal models were very useful in investigating the mechanisms of NP. This review will focus on a detailed description of rodent models of NP and provide an overview of the assessment of the sensory and emotional components of pain. A detailed inventory will be made to examine spinal mechanisms involved in NP-induced hyperexcitability and underlying the current pharmacological approaches used in clinics with the possibility to present new avenues for future treatment. The success of pre-clinical studies in this area of research depends on the choice of the relevant model and the appropriate test based on the objectives of the study.
Collapse
Affiliation(s)
- Rabia Bouali-Benazzouz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
| | - Marc Landry
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Abdelhamid Benazzouz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Pascal Fossat
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| |
Collapse
|
5
|
Vincent K, Dona CPG, Albert TJ, Dahia CL. Age-related molecular changes in the lumbar dorsal root ganglia of mice: Signs of sensitization, and inflammatory response. JOR Spine 2020; 3:e1124. [PMID: 33392459 PMCID: PMC7770202 DOI: 10.1002/jsp2.1124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/18/2020] [Accepted: 08/23/2020] [Indexed: 11/06/2022] Open
Abstract
Aging is a major risk factor for numerous painful, inflammatory, and degenerative diseases including disc degeneration. A better understanding of how the somatosensory nervous system adapts to the changing physiology of the aging body will be of great significance for our expanding aging population. Previously, we reported that chronological aging of mouse lumbar discs is pathological and associated with behavioral changes related to pain. It is established that with age and degeneration the lumbar discs become inflammatory and innervated. Here we analyze the aging lumbar dorsal root ganglia (DRGs) and spinal cord dorsal horn (SCDH) in mice between 3 and 24 months of age for age-related somatosensory adaptations. We observe that as mice age there are signs of peripheral sensitization, and response to inflammation at the molecular and cellular level in the DRGs. From 12 months onwards the mRNA expression of vasodilator and neurotransmitter, Calca (CGRP); stress (and survival) marker, Atf3; and neurotrophic factor, Bdnf, increases linearly with age in the DRGs. Further, while the mRNA expression of neuropeptide, Tac1, precursor of Substance P, did not change at the transcriptional level, TAC1 protein expression increased in 24-month-old DRGs. Additionally, elevated expression of NFκB subunits, Nfkb1 and Rela, but not inflammatory mediators, Tnf, Il6, Il1b, or Cox2, in the DRGs suggest peripheral nerves are responding to inflammation, but do not increase the expression of inflammatory mediators at the transcriptional level. These results identify a progressive, age-related shift in the molecular profile of the mouse somatosensory nervous system and implicates nociceptive sensitization and inflammatory response.
Collapse
Affiliation(s)
- Kathleen Vincent
- Orthopedic Soft Tissue Research ProgramHospital for Special SurgeryNew YorkNew YorkUSA
- Department of Cell and Developmental Biology, Weill Cornell MedicineGraduate School of Medical ScienceNew YorkNew YorkUSA
| | - Chethana Prabodhanie Gallage Dona
- Orthopedic Soft Tissue Research ProgramHospital for Special SurgeryNew YorkNew YorkUSA
- Department of MedicineWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Todd J Albert
- Department of MedicineWeill Cornell Medical CollegeNew YorkNew YorkUSA
- Orthopaedic SurgeryHospital for Special SurgeryNew YorkNew YorkUSA
| | - Chitra Lekha Dahia
- Orthopedic Soft Tissue Research ProgramHospital for Special SurgeryNew YorkNew YorkUSA
- Department of Cell and Developmental Biology, Weill Cornell MedicineGraduate School of Medical ScienceNew YorkNew YorkUSA
| |
Collapse
|
6
|
Fang Y, Zhu J, Duan W, Xie Y, Ma C. Inhibition of Muscular Nociceptive Afferents via the Activation of Cutaneous Nociceptors in a Rat Model of Inflammatory Muscle Pain. Neurosci Bull 2019; 36:1-10. [PMID: 31230211 DOI: 10.1007/s12264-019-00406-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/13/2019] [Indexed: 10/26/2022] Open
Abstract
Topical irritants such as capsaicin (CAP), peppermint oil (PO), and mustard oil (MO) are effective in relieving inflammatory muscle pain. We investigated the effects of topical irritants in a rat model of inflammatory muscle pain produced by injecting complete Freund's adjuvant (CFA) into the tibialis anterior muscle. CFA-induced mechanical hypersensitivity and the spontaneous activity of muscular nociceptive afferents, and decreased weight-bearing of the hindlimb were relieved by topical application of CAP, PO, or MO on the skin overlying the inflamed muscle. The effects of topical irritants were abolished when applied to the skin on the ipsilateral plantar region or on the contralateral leg, or when the relevant cutaneous nerve or dorsal root was transected. Our results demonstrated that topical irritants may alleviate inflammatory muscle pain via activating cutaneous nociceptors and subsequently inhibiting the abnormal activity of muscular nociceptive neurons.
Collapse
Affiliation(s)
- Yehong Fang
- Institute of Basic Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.,Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China
| | - Jie Zhu
- Institute of Basic Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.,Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Wanru Duan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yikuan Xie
- Institute of Basic Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Chao Ma
- Institute of Basic Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
7
|
Mai CL, Wei X, Gui WS, Xu YN, Zhang J, Lin ZJ, Tan Z, Meng YT, Li YY, Zhou LJ, Liu XG. Differential regulation of GSK-3β in spinal dorsal horn and in hippocampus mediated by interleukin-1beta contributes to pain hypersensitivity and memory deficits following peripheral nerve injury. Mol Pain 2019; 15:1744806919826789. [PMID: 30632435 PMCID: PMC6378430 DOI: 10.1177/1744806919826789] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Accumulating evidence shows that inhibition of glycogen synthase kinase-3beta (GSK-3β) ameliorates cognitive impairments caused by a diverse array of diseases. Our previous work showed that spared nerve injury (SNI) that induces neuropathic pain causes short-term memory deficits. Here, we reported that GSK-3β activity was enhanced in hippocampus and reduced in spinal dorsal horn following SNI, and the changes persisted for at least 45 days. Repetitive applications of selective GSK-3β inhibitors (SB216763, 5 mg/kg, intraperitoneally, three times or AR-A014418, 400 ng/kg, intrathecally, seven times) prevented short-term memory deficits but did not affect neuropathic pain induced by SNI. Surprisingly, we found that the repetitive SB216763 or AR-A014418 induced a persistent pain hypersensitivity in sham animals. Mechanistically, both β-catenin and brain-derived neurotrophic factor (BDNF) were upregulated in spinal dorsal horn but downregulated in hippocampus following SNI. Injections of SB216763 prevented the BDNF downregulation in hippocampus but enhanced its upregulation in spinal dorsal horn in SNI rats. In sham rats, SB216763 upregulated both β-catenin and BDNF in spinal dorsal horn but affect neither of them in hippocampus. Finally, intravenous injection of interleukin-1beta that induces pain hypersensitivity and memory deficits mimicked the SNI-induced the differential regulation of GSK-3β/β-catenin/BDNF in spinal dorsal horn and in hippocampus. Accordingly, the prolonged opposite changes of GSK-3β activity in hippocampus and in spinal dorsal horn induced by SNI may contribute to memory deficits and neuropathic pain by differential regulation of BDNF in the two regions. GSK-3β inhibitors that treat cognitive disorders may result in a long-lasting pain hypersensitivity.
Collapse
Affiliation(s)
- Chun-Lin Mai
- 1 Pain Research Center and Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiao Wei
- 1 Pain Research Center and Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wen-Shan Gui
- 1 Pain Research Center and Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ya-Nan Xu
- 1 Pain Research Center and Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun Zhang
- 1 Pain Research Center and Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhen-Jia Lin
- 1 Pain Research Center and Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhi Tan
- 1 Pain Research Center and Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ying-Tong Meng
- 1 Pain Research Center and Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yong-Yong Li
- 1 Pain Research Center and Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Li-Jun Zhou
- 1 Pain Research Center and Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,2 Guangzhou Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Xian-Guo Liu
- 1 Pain Research Center and Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,2 Guangzhou Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
8
|
Lewis SS, Grace PM, Hutchinson MR, Maier SF, Watkins LR. Constriction of the buccal branch of the facial nerve produces unilateral craniofacial allodynia. Brain Behav Immun 2017; 64:59-64. [PMID: 27993689 PMCID: PMC5474358 DOI: 10.1016/j.bbi.2016.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 01/23/2023] Open
Abstract
Despite pain being a sensory experience, studies of spinal cord ventral root damage have demonstrated that motor neuron injury can induce neuropathic pain. Whether injury of cranial motor nerves can also produce nociceptive hypersensitivity has not been addressed. Herein, we demonstrate that chronic constriction injury (CCI) of the buccal branch of the facial nerve results in long-lasting, unilateral allodynia in the rat. An anterograde and retrograde tracer (3000MW tetramethylrhodamine-conjugated dextran) was not transported to the trigeminal ganglion when applied to the injury site, but was transported to the facial nucleus, indicating that this nerve branch is not composed of trigeminal sensory neurons. Finally, intracisterna magna injection of interleukin-1 (IL-1) receptor antagonist reversed allodynia, implicating the pro-inflammatory cytokine IL-1 in the maintenance of neuropathic pain induced by facial nerve CCI. These data extend the prior evidence that selective injury to motor axons can enhance pain to supraspinal circuits by demonstrating that injury of a facial nerve with predominantly motor axons is sufficient for neuropathic pain, and that the resultant pain has a neuroimmune component.
Collapse
Affiliation(s)
- Susannah S. Lewis
- Department of Psychology & Neuroscience, University of Colorado, Boulder, USA
| | - Peter M. Grace
- Department of Psychology & Neuroscience, University of Colorado, Boulder, USA,School of Medicine, University of Adelaide, Adelaide, Australia
| | - Mark R. Hutchinson
- School of Medicine, University of Adelaide, Adelaide, Australia,Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, Australia
| | - Steven F. Maier
- Department of Psychology & Neuroscience, University of Colorado, Boulder, USA
| | - Linda R. Watkins
- Department of Psychology & Neuroscience, University of Colorado, Boulder, USA,Corresponding author: Department of Psychology, Campus Box 345, University of Colorado at Boulder, Boulder, Colorado, USA 80309-0345, , Fax: (303) 492-2967, Phone: (303) 492-7034
| |
Collapse
|
9
|
Liu Y, Zhou LJ, Wang J, Li D, Ren WJ, Peng J, Wei X, Xu T, Xin WJ, Pang RP, Li YY, Qin ZH, Murugan M, Mattson MP, Wu LJ, Liu XG. TNF-α Differentially Regulates Synaptic Plasticity in the Hippocampus and Spinal Cord by Microglia-Dependent Mechanisms after Peripheral Nerve Injury. J Neurosci 2017; 37:871-881. [PMID: 28123022 PMCID: PMC5296781 DOI: 10.1523/jneurosci.2235-16.2016] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/18/2016] [Accepted: 12/02/2016] [Indexed: 12/30/2022] Open
Abstract
Clinical studies show that chronic pain is accompanied by memory deficits and reduction in hippocampal volume. Experimental studies show that spared nerve injury (SNI) of the sciatic nerve induces long-term potentiation (LTP) at C-fiber synapses in spinal dorsal horn, but impairs LTP in the hippocampus. The opposite changes may contribute to neuropathic pain and memory deficits, respectively. However, the cellular and molecular mechanisms underlying the functional synaptic changes are unclear. Here, we show that the dendrite lengths and spine densities are reduced significantly in hippocampal CA1 pyramidal neurons, but increased in spinal neurokinin-1-positive neurons in mice after SNI, indicating that the excitatory synaptic connectivity is reduced in hippocampus but enhanced in spinal dorsal horn in this neuropathic pain model. Mechanistically, tumor necrosis factor-alpha (TNF-α) is upregulated in bilateral hippocampus and in ipsilateral spinal dorsal horn, whereas brain-derived neurotrophic factor (BDNF) is decreased in the hippocampus but increased in the ipsilateral spinal dorsal horn after SNI. Importantly, the SNI-induced opposite changes in synaptic connectivity and BDNF expression are prevented by genetic deletion of TNF receptor 1 in vivo and are mimicked by TNF-α in cultured slices. Furthermore, SNI activated microglia in both spinal dorsal horn and hippocampus; pharmacological inhibition or genetic ablation of microglia prevented the region-dependent synaptic changes, neuropathic pain, and memory deficits induced by SNI. The data suggest that neuropathic pain involves different structural synaptic alterations in spinal and hippocampal neurons that are mediated by overproduction of TNF-α and microglial activation and may underlie chronic pain and memory deficits. SIGNIFICANCE STATEMENT Chronic pain is often accompanied by memory deficits. Previous studies have shown that peripheral nerve injury produces both neuropathic pain and memory deficits and induces long-term potentiation (LTP) at C-fiber synapses in spinal dorsal horn (SDH) but inhibits LTP in hippocampus. The opposite changes in synaptic plasticity may contribute to chronic pain and memory deficits, respectively. However, the structural and molecular bases of these alterations of synaptic plasticity are unclear. Here, we show that the complexity of excitatory synaptic connectivity and brain-derived neurotrophic factor (BDNF) expression are enhanced in SDH but reduced in the hippocampus in neuropathic pain and the opposite changes depend on tumor necrosis factor-alpha/tumor necrosis factor receptor 1 signaling and microglial activation. The region-dependent synaptic alterations may underlie chronic neuropathic pain and memory deficits induced by peripheral nerve injury.
Collapse
Affiliation(s)
- Yong Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou 510080, China
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Li-Jun Zhou
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou 510080, China
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Jun Wang
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou 510080, China
| | - Dai Li
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou 510080, China
| | - Wen-Jie Ren
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou 510080, China
| | - Jiyun Peng
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905, and
| | - Xiao Wei
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou 510080, China
| | - Ting Xu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou 510080, China
| | - Wen-Jun Xin
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, 510080 China
| | - Rui-Ping Pang
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou 510080, China
| | - Yong-Yong Li
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhi-Hai Qin
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Beijing, 100101 China
| | - Madhuvika Murugan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905, and
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Long-Jun Wu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854,
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905, and
| | - Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou 510080, China,
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, 510080 China
| |
Collapse
|
10
|
Functional Organization of Cutaneous and Muscle Afferent Synapses onto Immature Spinal Lamina I Projection Neurons. J Neurosci 2017; 37:1505-1517. [PMID: 28069928 DOI: 10.1523/jneurosci.3164-16.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/13/2016] [Accepted: 12/24/2016] [Indexed: 11/21/2022] Open
Abstract
It is well established that sensory afferents innervating muscle are more effective at inducing hyperexcitability within spinal cord circuits compared with skin afferents, which likely contributes to the higher prevalence of chronic musculoskeletal pain compared with pain of cutaneous origin. However, the mechanisms underlying these differences in central nociceptive signaling remain incompletely understood, as nothing is known about how superficial dorsal horn neurons process sensory input from muscle versus skin at the synaptic level. Using a novel ex vivo spinal cord preparation, here we identify the functional organization of muscle and cutaneous afferent synapses onto immature rat lamina I spino-parabrachial neurons, which serve as a major source of nociceptive transmission to the brain. Stimulation of the gastrocnemius nerve and sural nerve revealed significant convergence of muscle and cutaneous afferent synaptic input onto individual projection neurons. Muscle afferents displayed a higher probability of glutamate release, although short-term synaptic plasticity was similar between the groups. Importantly, muscle afferent synapses exhibited greater relative expression of Ca2+-permeable AMPARs compared with cutaneous inputs. In addition, the prevalence and magnitude of spike timing-dependent long-term potentiation were significantly higher at muscle afferent synapses, where it required Ca2+-permeable AMPAR activation. Collectively, these results provide the first evidence for afferent-specific properties of glutamatergic transmission within the superficial dorsal horn. A larger propensity for activity-dependent strengthening at muscle afferent synapses onto developing spinal projection neurons could contribute to the enhanced ability of these sensory inputs to sensitize central nociceptive networks and thereby evoke persistent pain in children following injury.SIGNIFICANCE STATEMENT The neurobiological mechanisms underlying the high prevalence of chronic musculoskeletal pain remain poorly understood, in part because little is known about why sensory neurons innervating muscle appear more capable of sensitizing nociceptive pathways in the CNS compared with skin afferents. The present study identifies, for the first time, the functional properties of muscle and cutaneous afferent synapses onto immature lamina I projection neurons, which convey nociceptive information to the brain. Despite many similarities, an enhanced relative expression of Ca2+-permeable AMPA receptors at muscle afferent synapses drives greater LTP following repetitive stimulation. A preferential ability of the dorsal horn synaptic network to amplify nociceptive input arising from muscle is predicted to favor the generation of musculoskeletal pain following injury.
Collapse
|
11
|
Huang Y, Li Y, Zhong X, Hu Y, Liu P, Zhao Y, Deng Z, Liu X, Liu S, Zhong Y. Src-family kinases activation in spinal microglia contributes to central sensitization and chronic pain after lumbar disc herniation. Mol Pain 2017; 13:1744806917733637. [PMID: 28952414 PMCID: PMC5624351 DOI: 10.1177/1744806917733637] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 08/06/2017] [Accepted: 08/10/2017] [Indexed: 11/22/2022] Open
Abstract
Background Lumbar disc herniation is a major cause of radicular pain, but the underlying mechanisms remain largely unknown. Spinal activation of src-family kinases are involved in the development of chronic pain from nerve injury, inflammation, and cancer. In the present study, the role of src-family kinases activation in lumbar disc herniation-induced radicular pain was investigated. Results Lumbar disc herniation was induced by implantation of autologous nucleus pulposus, harvest from tail, in lumbar 4/5 spinal nerve roots of rat. Behavior test and electrophysiologic data showed that nucleus pulposus implantation induced persistent mechanical allodynia and thermal hyperalgesia and increased efficiency of synaptic transmission in spinal dorsal horn which underlies central sensitization of pain sensation. Western blotting and immunohistochemistry staining revealed that the expression of phosphorylated src-family kinases was upregulated mainly in spinal microglia of rats with nucleus pulposus. Intrathecal delivery of src-family kinases inhibitor PP2 alleviated pain behaviors, decreased efficiency of spinal synaptic transmission, and reduced phosphorylated src-family kinases expression. Furthermore, we found that the expression of ionized calcium-binding adapter molecule 1 (marker of microglia), tumor necrosis factor-α, interleukin 1 -β in spinal dorsal horn was increased in rats with nucleus pulposus. Therapeutic effect of PP2 may be related to its capacity in reducing the expression of these factors. Conclusions These findings suggested that central sensitization was involved in radicular pain from lumbar disc herniation; src-family kinases-mediated inflammatory response may be responsible for central sensitization and chronic pain after lumbar disc herniation.
Collapse
Affiliation(s)
- Yangliang Huang
- Department of Spine Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yongyong Li
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiongxiong Zhong
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yuming Hu
- Department of Physiology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Pan Liu
- Department of Physiology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yuanshu Zhao
- Department of Physiology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Zhen Deng
- Department of Physiology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Xianguo Liu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Shaoyu Liu
- Department of Spine Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yi Zhong
- Department of Physiology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| |
Collapse
|
12
|
Zhou LJ, Liu XG. Glial Activation, A Common Mechanism Underlying Spinal Synaptic Plasticity? Neurosci Bull 2016; 33:121-123. [PMID: 27995566 DOI: 10.1007/s12264-016-0091-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 02/07/2023] Open
Affiliation(s)
- Li-Jun Zhou
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xian-Guo Liu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
13
|
Baccei ML. Rewiring of Developing Spinal Nociceptive Circuits by Neonatal Injury and Its Implications for Pediatric Chronic Pain. CHILDREN-BASEL 2016; 3:children3030016. [PMID: 27657152 PMCID: PMC5039476 DOI: 10.3390/children3030016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/09/2016] [Accepted: 09/16/2016] [Indexed: 11/16/2022]
Abstract
Significant evidence now suggests that neonatal tissue damage can evoke long-lasting changes in pain sensitivity, but the underlying cellular and molecular mechanisms remain unclear. This review highlights recent advances in our understanding of how injuries during a critical period of early life modulate the functional organization of synaptic networks in the superficial dorsal horn (SDH) of the spinal cord in a manner that favors the excessive amplification of ascending nociceptive signaling to the brain, which likely contributes to the generation and/or maintenance of pediatric chronic pain. These persistent alterations in synaptic function within the SDH may also contribute to the well-documented "priming" of developing pain pathways by neonatal tissue injury.
Collapse
Affiliation(s)
- Mark L Baccei
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA.
| |
Collapse
|
14
|
JNK in spinal cord facilitates bone cancer pain in rats through modulation of CXCL1. ACTA ACUST UNITED AC 2016; 36:88-94. [DOI: 10.1007/s11596-016-1547-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/08/2016] [Indexed: 10/22/2022]
|
15
|
Neuropathic Pain: Sensory Nerve Injury or Motor Nerve Injury? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 904:59-75. [DOI: 10.1007/978-94-017-7537-3_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Medici T, Shortland PJ. Effects of peripheral nerve injury on parvalbumin expression in adult rat dorsal root ganglion neurons. BMC Neurosci 2015; 16:93. [PMID: 26674138 PMCID: PMC4681077 DOI: 10.1186/s12868-015-0232-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/07/2015] [Indexed: 12/24/2022] Open
Abstract
Background Parvalbumin (PV) is a calcium binding protein that identifies a subpopulation of proprioceptive dorsal root ganglion (DRG) neurons. Calcitonin gene-related peptide (CGRP) is also expressed in a high proportion of muscle afferents but its relationship to PV is unclear. Little is known of the phenotypic responses of muscle afferents to nerve injury. Sciatic nerve axotomy or L5 spinal nerve ligation and section (SNL) lesions were used to explore these issues in adult rats using immunocytochemistry. Results In naive animals, the mean PV expression was 25 % of L4 or L5 dorsal root ganglion (DRG) neurons, and this was unchanged 2 weeks after sciatic nerve axotomy. Colocalization studies with the injury marker activating transcription factor 3 (ATF3) showed that approximately 24 % of PV neurons expressed ATF3 after sciatic nerve axotomy suggesting that PV may show a phenotypic switch from injured to uninjured neurons. This possibility was further assessed using the spinal nerve ligation (SNL) injury model where injured and uninjured neurons are located in different DRGs. Two weeks after L5 SNL there was no change in total PV staining and essentially all L5 PV neurons expressed ATF3. Additionally, there was no increase in PV-ir in the adjacent uninjured L4 DRG cells. Co-labelling of DRG neurons revealed that less than 2 % of PV neurons normally expressed CGRP and no colocalization was seen after injury. Conclusion These experiments clearly show that axotomy does not produce down regulation of PV protein in the DRG. Moreover, this lack of change is not due to a phenotypic switch in PV immunoreactive (ir) neurons, or de novo expression of PV-ir in uninjured neurons after nerve injury. These results further illustrate differences that occur when muscle afferents are injured as compared to cutaneous afferents.
Collapse
Affiliation(s)
- Tom Medici
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E1 2AT, UK. .,Queens Hospital, Romford, Essex, RM7 0AG, UK.
| | - Peter J Shortland
- School of Science and Health, Western Sydney University, Narellen Road, Campbelltown, NSW, 2560, Australia. .,Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E1 2AT, UK.
| |
Collapse
|
17
|
Shi W, Ding Y, Yu A, Wang Q, Zhang Z, Zhang LC. BDNF/TRK/KCC2 pathway in nicotine withdrawal-induced hyperalgesia. Transl Neurosci 2015; 6:208-213. [PMID: 28123805 PMCID: PMC4936630 DOI: 10.1515/tnsci-2015-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/09/2015] [Indexed: 01/19/2023] Open
Abstract
Purpose To investigate the effect of brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase (Trk) on potassium chloride cotransporter 2 (KCC2) in rats following nicotine withdrawal and the roles played by BDNF/Trk/KCC2 pathway in nicotine withdrawal-induced hyperalgesia. Methods Seventy-eight rats were randomly assigned to five groups: control group (n = 12) without any treatment, normal saline group (NS group, n = 12) and nicotine withdrawal group (NW group, n = 30) receiving a subcutaneous injection of saline or nicotine for 7 days, respectively. The NW + dimethyl sulfoxide (DMSO) (n = 12) and NW+ Trk antagonist K252a groups (n = 12) received an intrathecal injection of DMSO (10 μl) and K252a (10 μg/10 μl) for 3 days after nicotine withdrawal, respectively. Nicotine withdrawal was precipitated by subcutaneous injection of nonselective and noncompetitive antagonist of nicotinic acetylcholine receptors mecamylamine. Pain was tested using thermal withdrawal latency (TWL). A Western blot was used to examine the expression of BDNF and KCC2. Results The TWL was significantly decreased in NW group relative to control and NS groups (P < 0.01). Compared with the NW group, the NW+K252a group manifested a significantly higher latency (P < 0.01). The BDNF expression was increased and KCC2 was decreased in NW group compared with the control group (P < 0.01). K252a reduced KCC2 downregulation. Conclusion BDNF/Trk signaling may contribute to nicotine withdrawal-induced hyperalgesia via downregulation of KCC2.
Collapse
Affiliation(s)
- Wenhui Shi
- Jiangsu Province Key Laboratory of Anesthesiology & Jiangsu Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, Jiangsu 221000, P. R. China
| | - Yonghong Ding
- Jiangsu Province Key Laboratory of Anesthesiology & Jiangsu Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, Jiangsu 221000, P. R. China
| | - Ailan Yu
- Department of Anesthesiology, Laocheng People’s Hospital, Liaocheng, Shandong 252000, P. R. China
| | - Qinghe Wang
- Jiangsu Province Key Laboratory of Anesthesiology & Jiangsu Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, Jiangsu 221000, P. R. China
| | - Zongwang Zhang
- Jiangsu Province Key Laboratory of Anesthesiology & Jiangsu Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, Jiangsu 221000, P. R. China
- Department of Anesthesiology, Laocheng People’s Hospital, Liaocheng, Shandong 252000, P. R. China
- E-mail:
| | - Li-Cai Zhang
- Jiangsu Province Key Laboratory of Anesthesiology & Jiangsu Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, Jiangsu 221000, P. R. China
| |
Collapse
|
18
|
Nijs J, Meeus M, Versijpt J, Moens M, Bos I, Knaepen K, Meeusen R. Brain-derived neurotrophic factor as a driving force behind neuroplasticity in neuropathic and central sensitization pain: a new therapeutic target? Expert Opin Ther Targets 2014; 19:565-76. [PMID: 25519921 DOI: 10.1517/14728222.2014.994506] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Central sensitization is a form of maladaptive neuroplasticity underlying many chronic pain disorders, including neuropathic pain, fibromyalgia, whiplash, headache, chronic pelvic pain syndrome and some forms of osteoarthritis, low back pain, epicondylitis, shoulder pain and cancer pain. Brain-derived neurotrophic factor (BDNF) is a driving force behind neuroplasticity, and it is therefore crucial for neural maintenance and repair. However, BDNF also contributes to sensitization of pain pathways, making it an interesting novel therapeutic target. AREAS COVERED An overview of BDNF's sensitizing capacity at every level of the pain pathways is presented, including the peripheral nociceptors, dorsal root ganglia, spinal dorsal horn neurons, and brain descending inhibitory and facilitatory pathways. This is followed by the presentation of several potential therapeutic options, ranging from indirect influencing of BDNF levels (using exercise therapy, anti-inflammatory drugs, melatonin, repetitive transcranial magnetic stimulation) to more specific targeting of BDNF's receptors and signaling pathways (blocking the proteinase-activated receptors 2-NK-κβ signaling pathway, administration of phencyclidine for antagonizing NMDA receptors, or blockade of the adenosine A2A receptor). EXPERT OPINION This section focuses on combining pharmacotherapy with multimodal rehabilitation for balancing the deleterious and therapeutic effects of BNDF treatment in chronic pain patients, as well as accounting for the complex and biopsychosocial nature of chronic pain.
Collapse
Affiliation(s)
- Jo Nijs
- Pain in Motion international research group
| | | | | | | | | | | | | |
Collapse
|
19
|
Smith PA. BDNF: No gain without pain? Neuroscience 2014; 283:107-23. [DOI: 10.1016/j.neuroscience.2014.05.044] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/16/2014] [Accepted: 05/21/2014] [Indexed: 12/22/2022]
|
20
|
Fukuoka T, Miyoshi K, Noguchi K. De novo expression of Nav1.7 in injured putative proprioceptive afferents: Multiple tetrodotoxin-sensitive sodium channels are retained in the rat dorsal root after spinal nerve ligation. Neuroscience 2014; 284:693-706. [PMID: 25453779 DOI: 10.1016/j.neuroscience.2014.10.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/11/2014] [Accepted: 10/14/2014] [Indexed: 12/23/2022]
Abstract
Tetrodotoxin-sensitive (TTX-s) spontaneous activity is recorded from the dorsal roots after peripheral nerve injury. Primary sensory neurons in the dorsal root ganglion (DRG) express multiple TTX-s voltage-gated sodium channel α-subunits (Navs). Since Nav1.3 increases, whereas all other Navs decrease, in the DRG neurons after peripheral nerve lesion, Nav1.3 is proposed to be critical for the generation of these spontaneous discharges and the contributions of other Navs have been ignored. Here, we re-evaluate the changes in expression of three other TTX-s Navs, Nav1.1, Nav1.6 and Nav1.7, in the injured 5th lumbar (L5) primary afferent components following L5 spinal nerve ligation (SNL) using in situ hybridization histochemistry and immunohistochemistry. While the overall signal intensities for these Nav mRNAs decreased, many injured DRG neurons still expressed these transcripts at clearly detectable levels. All these Nav proteins accumulated at the proximal stump of the ligated L5 spinal nerve. The immunostaining patterns of Nav1.6 and Nav1.7 associated with the nodes of Ranvier were maintained in the ipsilateral L5 dorsal root. Interestingly, putative proprioceptive neurons characterized by α3 Na+/K+ ATPase-immunostaining specifically lacked Nav1.7 mRNA in naïve DRG but displayed de novo expression of this transcript following SNL. Nav1.7-immunoreactive fibers were significantly increased in the ipsilateral gracile nucleus where central axonal branches of the injured A-fiber afferents terminated. These data indicate that multiple TTX-s channel subunits could contribute to the generation and propagation of the spontaneous discharges in the injured primary afferents. Specifically, Nav1.7 may cause some functional changes in sensory processing in the gracile nucleus after peripheral nerve injury.
Collapse
Affiliation(s)
- T Fukuoka
- Department of Anatomy & Neuroscience, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.
| | - K Miyoshi
- Department of Anatomy & Neuroscience, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - K Noguchi
- Department of Anatomy & Neuroscience, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
21
|
Steketee MB, Oboudiyat C, Daneman R, Trakhtenberg E, Lamoureux P, Weinstein JE, Heidemann S, Barres BA, Goldberg JL. Regulation of intrinsic axon growth ability at retinal ganglion cell growth cones. Invest Ophthalmol Vis Sci 2014; 55:4369-77. [PMID: 24906860 DOI: 10.1167/iovs.14-13882] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Mammalian central nervous system neurons fail to regenerate after injury or disease, in part due to a progressive loss in intrinsic axon growth ability after birth. Whether lost axon growth ability is due to limited growth resources or to changes in the axonal growth cone is unknown. METHODS Static and time-lapse images of purified retinal ganglion cells (RGCs) were analyzed for axon growth rate and growth cone morphology and dynamics without treatment and after manipulating Kruppel-like transcription factor (KLF) expression or applying mechanical tension. RESULTS Retinal ganglion cells undergo a developmental switch in growth cone dynamics that mirrors the decline in postnatal axon growth rates, with increased filopodial adhesion and decreased lamellar protrusion area in postnatal axonal growth cones. Moreover, expressing growth-suppressive KLF4 or growth-enhancing KLF6 transcription factors elicits similar changes in postnatal growth cones that correlate with axon growth rates. Postnatal RGC axon growth rate is not limited by an inability to achieve axon growth rates similar to embryonic RGCs; indeed, postnatal axons support elongation rates up to 100-fold faster than postnatal axonal growth rates. Rather, the intrinsic capacity for rapid axon growth is due to both growth cone pausing and retraction, as well as to a slightly decreased ability to achieve rapid instantaneous rates of forward progression. Finally, we observed that RGC axon and dendrite growth are regulated independently in vitro. CONCLUSIONS Together, these data support the hypothesis that intrinsic axon growth rate is regulated by an axon-specific growth program that differentially regulates growth cone motility.
Collapse
Affiliation(s)
- Michael B Steketee
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States Department of Ophthalmology and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Carly Oboudiyat
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Richard Daneman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California, United States
| | - Ephraim Trakhtenberg
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Philip Lamoureux
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States
| | - Jessica E Weinstein
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Steve Heidemann
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States
| | - Ben A Barres
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California, United States
| | - Jeffrey L Goldberg
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States Department of Ophthalmology, Shiley Eye Center, University of California San Diego, San Diego, California, United States
| |
Collapse
|
22
|
Di Cesare Mannelli L, Pacini A, Bonaccini L, Zanardelli M, Mello T, Ghelardini C. Morphologic features and glial activation in rat oxaliplatin-dependent neuropathic pain. THE JOURNAL OF PAIN 2013; 14:1585-600. [PMID: 24135431 DOI: 10.1016/j.jpain.2013.08.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/12/2013] [Accepted: 08/03/2013] [Indexed: 12/16/2022]
Abstract
UNLABELLED Neurotoxicity is the limiting side effect of the anticancer agent oxaliplatin. A tangled panel of symptoms, sensory loss, paresthesia, dysesthesia, and pain may be disabling for patients and adversely affect their quality of life. To elucidate the morphologic and molecular alterations that occur in the nervous system during neuropathy, rats were daily injected with 2.4 mg kg(-1) oxaliplatin intraperitoneally. A progressive decrease in the pain threshold and hypersensitivity to noxious and nonnoxious stimuli were evidenced during the treatment (7, 14, 21 days). On day 21, morphometric alterations were detectable exclusively in the dorsal root ganglia, whereas the activating transcription factor 3 and neurofilament (heavy-chain) expression changed dramatically in both the nerves and ganglia. Inflammatory features were not highlighted. Interestingly, satellite cells exhibited signs of activation. Glial modulation was characterized in the spinal cord and brain areas involved in pain signaling. On the 21st day, spinal astrocytes increased numerically whereas the microglial population was unaltered. The number of glial cells in the brain differed according to the zone and treatment time points. In particular, on day 21, a significant astrocyte increase was measured in the anterior cingulate cortex, somatosensory area 1, neostriatum, ventrolateral periaqueductal gray, and nucleus raphe magnus. PERSPECTIVES These data highlight the relevance of glial cells in chemotherapy-induced neurotoxicity as part of the investigation of the role that specific brain areas play in neuropathy.
Collapse
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Department of Neurosciences, Psychology, Drug Research and Child Health (Neurofarba), Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Sandkühler J, Lee J. How to erase memory traces of pain and fear. Trends Neurosci 2013; 36:343-52. [PMID: 23602194 PMCID: PMC3679540 DOI: 10.1016/j.tins.2013.03.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 11/30/2022]
Abstract
Currently emerging concepts of maladaptive pain and fear suggest that they share basic neuronal circuits and cellular mechanisms of memory formation. Recent studies have revealed processes of erasing memory traces of pain and fear that may be promising targets for future therapies.
Pain and fear are both aversive experiences that strongly impact on behaviour and well being. They are considered protective when they lead to meaningful, adaptive behaviour such as the avoidance of situations that are potentially dangerous to the integrity of tissue (pain) or the individual (fear). Pain and fear may, however, become maladaptive if expressed under inappropriate conditions or at excessive intensities for extended durations. Currently emerging concepts of maladaptive pain and fear suggest that basic neuronal mechanisms of memory formation are relevant for the development of pathological forms of pain and fear. Thus, the processes of erasing memory traces of pain and fear may constitute promising targets for future therapies.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/therapeutic use
- Animals
- Anxiety/etiology
- Anxiety/psychology
- Conditioning, Classical/physiology
- Cycloserine/pharmacology
- Cycloserine/therapeutic use
- Extinction, Psychological/physiology
- Fear/drug effects
- Fear/psychology
- Humans
- Hyperalgesia/etiology
- Hyperalgesia/prevention & control
- Hyperalgesia/psychology
- Hyperalgesia/therapy
- Isoenzymes/drug effects
- Isoenzymes/physiology
- Long-Term Potentiation/drug effects
- Long-Term Potentiation/physiology
- Memory, Long-Term/drug effects
- Memory, Long-Term/physiology
- Mental Recall/drug effects
- Mental Recall/physiology
- Models, Neurological
- Models, Psychological
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/physiology
- Neuroglia/physiology
- Nociception/physiology
- Pain/psychology
- Pain Management/methods
- Protein Kinase C/drug effects
- Protein Kinase C/physiology
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinases/physiology
- Rats
- Receptors, Ionotropic Glutamate/drug effects
- Receptors, Ionotropic Glutamate/physiology
Collapse
Affiliation(s)
- Jürgen Sandkühler
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Jonathan Lee
- University of Birmingham, School of Psychology, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
24
|
Steketee MB, Moysidis SN, Weinstein JE, Kreymerman A, Silva JP, Iqbal S, Goldberg JL. Mitochondrial dynamics regulate growth cone motility, guidance, and neurite growth rate in perinatal retinal ganglion cells in vitro. Invest Ophthalmol Vis Sci 2012; 53:7402-11. [PMID: 23049086 DOI: 10.1167/iovs.12-10298] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Retinal ganglion cell (RGC) death and failed axonal regeneration after trauma or disease, including glaucomatous and mitochondrial optic neuropathies, are linked increasingly to dysfunctional mitochondrial dynamics. However, how mitochondrial dynamics influence axon growth largely is unstudied. We examined intrinsic mitochondrial organization in embryonic and postnatal RGCs and the roles that mitochondrial dynamics have in regulating neurite growth and guidance. METHODS RGCs were isolated from embryonic day 20 (E20) or postnatal days 5 to 7 (P5-7) Sprague-Dawley rats by anti-Thy1 immunopanning. After JC-1 loading, mitochondria were analyzed in acutely purified RGCs by flow cytometry and in RGC neurites by fluorescence microscopy. Intrinsic axon growth was modulated by overexpressing Krüppel-like family (KLF) transcription factors, or mitochondrial dynamics were altered by inhibiting dynamin related protein-1 (DRP-1) pharmacologically or by overexpressing mitofusin-2 (Mfn-2). Mitochondrial organization, neurite growth, and growth cone motility and guidance were analyzed. RESULTS Mitochondrial dynamics and function are regulated developmentally in acutely purified RGCs and in nascent RGC neurites. Mitochondrial dynamics are modulated differentially by KLFs that promote or suppress growth. Acutely inhibiting mitochondrial fission reversibly suppressed axon growth and lamellar extension. Inhibiting DRP-1 or overexpressing Mfn-2 altered growth cone responses to chondroitin sulfate proteoglycan, netrin-1, and fibronectin. CONCLUSIONS These results support the hypothesis that mitochondria locally modulate signaling in the distal neurite and growth cone to affect the direction and the rate of neurite growth.
Collapse
|
25
|
Cruz Duarte P, St-Jacques B, Ma W. Prostaglandin E2 contributes to the synthesis of brain-derived neurotrophic factor in primary sensory neuron in ganglion explant cultures and in a neuropathic pain model. Exp Neurol 2012; 234:466-81. [PMID: 22309829 DOI: 10.1016/j.expneurol.2012.01.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 01/13/2012] [Accepted: 01/19/2012] [Indexed: 01/31/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) exists in small to medium size neurons in adult rat dorsal root ganglion (DRG) and serves as a modulator at the first synapse of the pain transmission pathway in the spinal dorsal horn. Peripheral nerve injury increases BDNF expression in DRG neurons, an event involved in the genesis of neuropathic pain. In the present study, we tested the hypothesis that prostaglandin E2 (PGE2) over-produced in injured nerves contributes to the up-regulation of BDNF in DRG neurons. Two weeks after partial sciatic nerve ligation (PSNL), BDNF levels in the ipsilateral L4-L6 DRG of injured rats were significantly increased compared to the contralateral side. Perineural injection of a selective cyclooxygenase (COX2) inhibitor or a PGE2 EP4 receptor antagonist not only dose-dependently relieved PSNL elicited mechanical hypersensitivity, but also suppressed the increased BDNF levels in DRG neurons. PSNL shifted BDNF expression in the ipsilateral DRG from small to medium and larger size injured neurons. BDNF is mainly co-expressed with the EP1 and EP4 while moderately with the EP2 and EP3 receptor subtypes in naïve and PSNL rats. PSNL also shifted the expression of EP1-4 receptors to a larger size population of DRG neurons. In DRG explant cultures, a stabilized PGE2 analog 16,16 dimethyl PGE2 (dmPGE2) or the agonists of EP1 and EP4 receptors significantly increased BDNF levels and the phosphorylated protein kinase A (PKA), extracellular signal-regulated kinase (ERK)/mitogen activated protein kinase (MAPK) and cAMP response element binding protein (CREB). The EP1 and EP4 antagonists, a sequester of nerve growth factor (NGF), the inhibitors of PKA and MEK as well as CREB small interfering RNA suppressed dmPGE2-induced BDNF. Taken together, EP1 and EP4 receptor subtypes, PKA, ERK/MAPK and CREB signaling pathways as well as NGF are involved in PGE2-induced BDNF synthesis in DRG neurons. Injured nerve derived-PGE2 contributes to BDNF up-regulation in DRG neurons following nerve injury. Facilitating the synthesis of BDNF in primary sensory neurons is a novel mechanism underlying the role of PGE2 in the genesis of neuropathic pain.
Collapse
|
26
|
Sandkühler J, Gruber-Schoffnegger D. Hyperalgesia by synaptic long-term potentiation (LTP): an update. Curr Opin Pharmacol 2011; 12:18-27. [PMID: 22078436 PMCID: PMC3315008 DOI: 10.1016/j.coph.2011.10.018] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 10/17/2011] [Indexed: 11/17/2022]
Abstract
Long-term potentiation of synaptic strength (LTP) in nociceptive pathways shares principle features with hyperalgesia including induction protocols, pharmacological profile, neuronal and glial cell types involved and means for prevention. LTP at synapses of nociceptive nerve fibres constitutes a contemporary cellular model for pain amplification following trauma, inflammation, nerve injury or withdrawal from opioids. It provides a novel target for pain therapy. This review summarizes recent progress which has been made in unravelling the properties and functions of LTP in the nociceptive system and in identifying means for its prevention and reversal.
Collapse
Affiliation(s)
- Jürgen Sandkühler
- Medical University of Vienna, Center for Brain Research, Department of Neurophysiology, Spitalgasse 4, A-1090 Vienna, Austria.
| | | |
Collapse
|
27
|
Nanoparticle-mediated signaling endosome localization regulates growth cone motility and neurite growth. Proc Natl Acad Sci U S A 2011; 108:19042-7. [PMID: 22065745 DOI: 10.1073/pnas.1019624108] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding neurite growth regulation remains a seminal problem in neurobiology. During development and regeneration, neurite growth is modulated by neurotrophin-activated signaling endosomes that transmit regulatory signals between soma and growth cones. After injury, delivering neurotrophic therapeutics to injured neurons is limited by our understanding of how signaling endosome localization in the growth cone affects neurite growth. Nanobiotechnology is providing new tools to answer previously inaccessible questions. Here, we show superparamagnetic nanoparticles (MNPs) functionalized with TrkB agonist antibodies are endocytosed into signaling endosomes by primary neurons that activate TrkB-dependent signaling, gene expression and promote neurite growth. These MNP signaling endosomes are trafficked into nascent and existing neurites and transported between somas and growth cones in vitro and in vivo. Manipulating MNP-signaling endosomes by a focal magnetic field alters growth cone motility and halts neurite growth in both peripheral and central nervous system neurons, demonstrating signaling endosome localization in the growth cone regulates motility and neurite growth. These data suggest functionalized MNPs may be used as a platform to study subcellular organelle localization and to deliver nanotherapeutics to treat injury or disease in the central nervous system.
Collapse
|
28
|
Wang LN, Yang JP, Zhan Y, Ji FH, Wang XY, Zuo JL, Xu QN. Minocycline-induced reduction of brain-derived neurotrophic factor expression in relation to cancer-induced bone pain in rats. J Neurosci Res 2011; 90:672-81. [DOI: 10.1002/jnr.22788] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/06/2011] [Accepted: 08/16/2011] [Indexed: 12/16/2022]
|
29
|
Matrix metalloproteinase-9 contributes to kindled seizure development in pentylenetetrazole-treated mice by converting pro-BDNF to mature BDNF in the hippocampus. J Neurosci 2011; 31:12963-71. [PMID: 21900575 DOI: 10.1523/jneurosci.3118-11.2011] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recurrent seizure activity has been shown to induce a variety of permanent structural changes in the brain. Matrix metalloproteinases (MMPs) function to promote neuronal plasticity, primarily through cleavage of extracellular matrix proteins. Here, we investigated the role of MMP-9 in the development of pentylenetetrazole (PTZ)-induced kindled seizure in mice. Repeated treatment with PTZ (40 mg/kg) produced kindled seizure, which was accompanied by enhanced MMP-9 activity and expression in the hippocampus. No change in MMP-9 activity was observed in the hippocampi of mice with generalized tonic seizure following single administration of PTZ (60 mg/kg). MMP-9 colocalized with the neuronal marker NeuN and the glial marker GFAP in the dentate gyrus of the kindled mouse hippocampus. Coadministration of diazepam or MK-801 with PTZ inhibited the development of kindling and the increased MMP-9 levels in the hippocampus. Marked suppression of kindled seizure progression in response to repeated PTZ treatment was observed in MMP-9((-/-)) mice compared with wild-type mice, an observation that was accompanied by decreased hippocampal levels of mature brain-derived neurotrophic factor. Microinjecting the BDNF scavenger TrkB-Fc into the right ventricle before each PTZ treatment significantly suppressed the development of kindling in wild-type mice, whereas no effect was observed in MMP-9((-/-)) mice. On the other hand, bilateral injections of pro-BDNF into the hippocampal dentate gyrus significantly enhanced kindling in wild-type mice but not MMP-9((-/-)) mice. These findings suggest that MMP-9 is involved in the progression of behavioral phenotypes in kindled mice because of conversion of pro-BDNF to mature BDNF in the hippocampus.
Collapse
|
30
|
Zhang X, Wang J, Zhou Q, Xu Y, Pu S, Wu J, Xue Y, Tian Y, Lu J, Jiang W, Du D. Brain-derived neurotrophic factor-activated astrocytes produce mechanical allodynia in neuropathic pain. Neuroscience 2011; 199:452-60. [PMID: 22044922 DOI: 10.1016/j.neuroscience.2011.10.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/10/2011] [Accepted: 10/11/2011] [Indexed: 01/22/2023]
Abstract
Neuropathic pain management is challenging for physicians and a vexing problem for basic researchers. Recent studies reveal that activated spinal astrocytes may play a vital role in nerve injury-induced neuropathic pain, although the mechanisms are not fully understood. We have found increased glial fibrillary acidic protein (GFAP) expression, a hallmark of reactive gliosis, and elevated brain-derived neurotrophic factor (BDNF) expression in the dorsal horn in a rat model of allodynia induced by spinal nerve ligation (SNL). The high GFAP expression and mechanical allodynia that SNL induces were prevented by the intrathecal injection of the BDNF-sequestering fusion protein TrkB/Fc. Additionally, mechanical allodynia and GFAP overexpression was induced by the spinal administration of exogenous BDNF to naive rats, and exogenous BDNF given together with fluorocitrate, an astrocytic metabolism inhibitor, inhibited allodynia and GFAP upregulation. Exogenous BDNF also activated the astrocytes directly when tested in vitro. Furthermore, intrathecal administration of BDNF-stimulated astrocytes also induced mechanical allodynia in naive rats. All of these results indicate that astrocytes activated by BDNF might contribute to mechanical allodynia development in neuropathic pain in rats.
Collapse
Affiliation(s)
- X Zhang
- Pain Management Center, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ruscheweyh R, Wilder-Smith O, Drdla R, Liu XG, Sandkühler J. Long-term potentiation in spinal nociceptive pathways as a novel target for pain therapy. Mol Pain 2011; 7:20. [PMID: 21443797 PMCID: PMC3078873 DOI: 10.1186/1744-8069-7-20] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 03/28/2011] [Indexed: 01/19/2023] Open
Abstract
Long-term potentiation (LTP) in nociceptive spinal pathways shares several features with hyperalgesia and has been proposed to be a cellular mechanism of pain amplification in acute and chronic pain states. Spinal LTP is typically induced by noxious input and has therefore been hypothesized to contribute to acute postoperative pain and to forms of chronic pain that develop from an initial painful event, peripheral inflammation or neuropathy. Under this assumption, preventing LTP induction may help to prevent the development of exaggerated postoperative pain and reversing established LTP may help to treat patients who have an LTP component to their chronic pain. Spinal LTP is also induced by abrupt opioid withdrawal, making it a possible mechanism of some forms of opioid-induced hyperalgesia. Here, we give an overview of targets for preventing LTP induction and modifying established LTP as identified in animal studies. We discuss which of the various symptoms of human experimental and clinical pain may be manifestations of spinal LTP, review the pharmacology of these possible human LTP manifestations and compare it to the pharmacology of spinal LTP in rodents.
Collapse
Affiliation(s)
- Ruth Ruscheweyh
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
32
|
Nociceptors, Pain, and Spinal Manipulation. Pain Manag 2011. [DOI: 10.1016/b978-1-4377-0721-2.00137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
33
|
Sandkühler J. Central Sensitization Versus Synaptic Long-Term Potentiation (LTP): A Critical Comment. THE JOURNAL OF PAIN 2010; 11:798-800. [DOI: 10.1016/j.jpain.2010.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/01/2010] [Indexed: 11/16/2022]
|