1
|
Bonet IJM, Staurengo-Ferrari L, Araldi D, Green PG, Levine JD. Second messengers mediating high-molecular-weight hyaluronan-induced antihyperalgesia in rats with chemotherapy-induced peripheral neuropathy. Pain 2022; 163:1728-1739. [PMID: 34913881 PMCID: PMC9167889 DOI: 10.1097/j.pain.0000000000002558] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/26/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT High-molecular-weight hyaluronan (HMWH) is an agonist at cluster of differentiation (CD)44, the cognate hyaluronan receptor, on nociceptors, where it acts to induce antihyperalgesia in preclinical models of inflammatory and neuropathic pain. In the present experiments, we studied the CD44 second messengers that mediate HMWH-induced attenuation of pain associated with oxaliplatin and paclitaxel chemotherapy-induced peripheral neuropathy (CIPN). While HMWH attenuated CIPN only in male rats, after ovariectomy or intrathecal administration of an oligodeoxynucleotide (ODN) antisense to G protein-coupled estrogen receptor (GPR30) mRNA, female rats were also sensitive to HMWH. Intrathecal administration of an ODN antisense to CD44 mRNA markedly attenuated HMWH-induced antihyperalgesia in male rats with CIPN induced by oxaliplatin or paclitaxel. Intradermal administration of inhibitors of CD44 second messengers, RhoA (member of the Rho family of GTPases), phospholipase C, and phosphatidylinositol (PI) 3-kinase gamma (PI3Kγ), attenuated HMWH-induced antihyperalgesia as does intrathecal administration of an ODN antisense to PI3Kγ. Our results demonstrated that HMWH induced antihyperalgesia in CIPN, mediated by its action at CD44 and downstream signaling by RhoA, phospholipase C, and PI3Kγ.
Collapse
Affiliation(s)
- Ivan J. M. Bonet
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Larissa Staurengo-Ferrari
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Dionéia Araldi
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Paul G. Green
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Departments of Preventative & Restorative Dental Sciences and Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jon D. Levine
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
2
|
Liu B, Chen R, Wang J, Li Y, Yin C, Tai Y, Nie H, Zeng D, Fang J, Du J, Liang Y, Shao X, Fang J, Liu B. Exploring neuronal mechanisms involved in the scratching behavior of a mouse model of allergic contact dermatitis by transcriptomics. Cell Mol Biol Lett 2022; 27:16. [PMID: 35183104 PMCID: PMC8903649 DOI: 10.1186/s11658-022-00316-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/26/2022] [Indexed: 12/14/2022] Open
Abstract
Background Allergic contact dermatitis (ACD) is a common skin condition characterized by contact hypersensitivity to allergens, accompanied with skin inflammation and a mixed itch and pain sensation. The itch and pain dramatically affects patients’ quality of life. However, still little is known about the mechanisms triggering pain and itch sensations in ACD. Methods We established a mouse model of ACD by sensitization and repetitive challenge with the hapten oxazolone. Skin pathological analysis, transcriptome RNA sequencing (RNA-seq), qPCR, Ca2+ imaging, immunostaining, and behavioral assay were used for identifying gene expression changes in dorsal root ganglion innervating the inflamed skin of ACD model mice and for further functional validations. Results The model mice developed typical ACD symptoms, including skin dryness, erythema, excoriation, edema, epidermal hyperplasia, inflammatory cell infiltration, and scratching behavior, accompanied with development of eczematous lesions. Transcriptome RNA-seq revealed a number of differentially expressed genes (DEGs), including 1436-DEG mRNAs and 374-DEG-long noncoding RNAs (lncRNAs). We identified a number of DEGs specifically related to sensory neuron signal transduction, pain, itch, and neuroinflammation. Comparison of our dataset with another published dataset of atopic dermatitis mouse model identified a core set of genes in peripheral sensory neurons that are exclusively affected by local skin inflammation. We further found that the expression of the pain and itch receptor MrgprD was functionally upregulated in dorsal root ganglia (DRG) neurons innervating the inflamed skin of ACD model mice. MrgprD activation induced by its agonist β-alanine resulted in exaggerated scratching responses in ACD model mice compared with naïve mice. Conclusions We identified the molecular changes and cellular pathways in peripheral sensory ganglia during ACD that might participate in neurogenic inflammation, pain, and itch. We further revealed that the pain and itch receptor MrgprD is functionally upregulated in DRG neurons, which might contribute to peripheral pain and itch sensitization during ACD. Thus, targeting MrgprD may be an effective method for alleviating itch and pain in ACD. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00316-w.
Collapse
|
3
|
PI3Kγ/AKT Signaling in High Molecular Weight Hyaluronan (HMWH)-Induced Anti-Hyperalgesia and Reversal of Nociceptor Sensitization. J Neurosci 2021; 41:8414-8426. [PMID: 34417329 DOI: 10.1523/jneurosci.1189-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/30/2022] Open
Abstract
High molecular weight hyaluronan (HMWH), a well-established treatment for osteoarthritis pain, is anti-hyperalgesic in preclinical models of inflammatory and neuropathic pain. HMWH-induced anti-hyperalgesia is mediated by its action at cluster of differentiation 44 (CD44), the cognate hyaluronan receptor, which can signal via phosphoinositide 3-kinase (PI3K), a large family of kinases involved in diverse cell functions. We demonstrate that intrathecal administration of an oligodeoxynucleotide (ODN) antisense to mRNA for PI3Kγ (a Class I PI3K isoform) expressed in dorsal root ganglia (DRGs), and intradermal administration of a PI3Kγ-selective inhibitor (AS605240), markedly attenuates HMWH-induced anti-prostaglandin E2 (PGE2) hyperalgesia, in male and female rats. Intradermal administration of inhibitors of mammalian target of rapamycin (mTOR; rapamycin) and protein kinase B (AKT; AKT Inhibitor IV), signaling molecules downstream of PI3Kγ, also attenuates HMWH-induced anti-hyperalgesia. In vitro patch-clamp electrophysiology experiments on cultured nociceptors from male rats demonstrate that some HMWH-induced changes in generation of action potentials (APs) in nociceptors sensitized by PGE2 are PI3Kγ dependent (reduction in AP firing rate, increase in latency to first AP and increase in slope of current ramp required to induce AP) and some are PI3Kγ independent [reduction in recovery rate of AP afterhyperpolarization (AHP)]. Our demonstration of a role of PI3Kγ in HMWH-induced anti-hyperalgesia and reversal of nociceptor sensitization opens a novel line of research into molecular targets for the treatment of diverse pain syndromes.SIGNIFICANCE STATEMENT We have previously demonstrated that high molecular weight hyaluronan (HMWH) attenuates inflammatory hyperalgesia, an effect mediated by its action at cluster of differentiation 44 (CD44), the cognate hyaluronan receptor, and activation of its downstream signaling pathway, in nociceptors. In the present study, we demonstrate that phosphoinositide 3-kinase (PI3K)γ and downstream signaling pathway, protein kinase B (AKT) and mammalian target of rapamycin (mTOR), are crucial for HMWH to induce anti-hyperalgesia.
Collapse
|
4
|
Wu Z, Meenu M, Xu B. Nutritional value and antioxidant activity of Chinese black truffle (Tuber indicum) grown in different geographical regions in China. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110226] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Tavares LD, Galvão I, Costa VV, Batista NV, Rossi LCR, Brito CB, Reis AC, Queiroz-Junior CM, Braga AD, Coelho FM, Dias AC, Zamboni DS, Pinho V, Teixeira MM, Amaral FA, Souza DG. Phosphoinositide-3 kinase gamma regulates caspase-1 activation and leukocyte recruitment in acute murine gout. J Leukoc Biol 2019; 106:619-629. [PMID: 31392775 DOI: 10.1002/jlb.ma1118-470rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 12/20/2022] Open
Abstract
This study investigates the participation of PI3Kγ in the development of joint inflammation and dysfunction in an experimental model of acute gout in mice. Acute gout was induced by injection of monosodium urate (MSU) crystals into the tibiofemoral joint of mice. The involvement of PI3Kγ was evaluated using a selective inhibitor and mice deficient for PI3Kγ (PI3Kγ-/- ) or with loss of kinase activity. Neutrophils recovered from the inflamed joint were quantified and stained for phosphorylated Akt (pAkt) and production of reactive oxygen species (ROS). The adherence of leukocytes to the joint microvasculature was assessed by intravital microscopy and cleaved caspase-1 by Western blot. Injection of MSU crystals induced massive accumulation of neutrophils expressing phosphorylated Akt. In the absence of PI3Kγ, there was reduction of pAkt expression, chemokine production, and neutrophil recruitment. Genetic or pharmacological inhibition of PI3Kγ reduced the adherence of leukocytes to the joint microvasculature, even in joints with established inflammation. Neutrophils from PI3Kγ-/- mice produced less ROS than wild-type neutrophils. There was decreased joint damage and dysfunction in the absence of PI3Kγ. In addition, in the absence of PI3Kγ activity, there was reduction of cleaved caspase-1 and IL-1β production in synovial tissue after injection of MSU crystals and leukotriene B4 . Our studies suggest that PI3Kγ is crucial for MSU crystal-induced acute joint inflammation. It is necessary for regulating caspase-1 activation and for mediating neutrophil migration and activation. Drugs that impair PI3Kγ function may be useful to control acute gout inflammation.
Collapse
Affiliation(s)
- Lívia D Tavares
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Izabela Galvão
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vivian V Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nathalia V Batista
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lívia C R Rossi
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Camila B Brito
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alesandra C Reis
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso M Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Amanda D Braga
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda M Coelho
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Ana C Dias
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Dario S Zamboni
- Department of Cell Biology, Medical School of Ribeirão Preto, University of São Paulo FMRP/USP, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flávio A Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniele G Souza
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
6
|
Manjavachi MN, Passos GF, Trevisan G, Araújo SB, Pontes JP, Fernandes ES, Costa R, Calixto JB. Spinal blockage of CXCL1 and its receptor CXCR2 inhibits paclitaxel-induced peripheral neuropathy in mice. Neuropharmacology 2019; 151:136-143. [PMID: 30991054 DOI: 10.1016/j.neuropharm.2019.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/27/2019] [Accepted: 04/12/2019] [Indexed: 10/27/2022]
Abstract
Painful peripheral neuropathy is the most dose-limiting side effect of paclitaxel (PTX), a widely used anti-cancer drug to treat solid tumours. The understanding of the mechanisms involved in this side effect is crucial to the development of new therapeutic approaches. CXCL1 chemokine and its receptor CXCR2 have been pointed as promising targets to treat chronic pain. Herein, we sought to evaluate the possible involvement of CXCL1 and CXCR2 in the pathogenesis of PTX-induced neuropathic pain in mice. PTX treatment led to increased levels of CXCL1 in both dorsal root ganglion and spinal cord samples. Systemic treatment with the anti-CXCL1 antibody (10 μg/kg, i.v.) or the selective CXCR2 antagonist (SB225002, 3 mg/kg, i.p.) had minor effect on PTX-induced mechanical hypersensitivity. On the other hand, the intrathecal (i.t.) treatment with anti-CXCL1 (1 ng/site) or SB225002 (10 μg/site) consistently inhibited the nociceptive responses of PTX-treated mice. Similar results were obtained by inhibiting the PI3Kγ enzyme a downstream pathway of CXCL1/CXCR2 signalling with either the selective AS605240 (5 μg/site, i.t.) or the non-selective wortmannin PI3K inhibitor (0.4 μg/site, i.t.). Overall, the data indicates that the up-regulation of CXCL1 is important for the development and maintenance of PTX-induced neuropathic pain in mice. Therefore, the spinal blockage of CXCL1/CXCR2 signalling might be a new innovative therapeutic approach to treat this clinical side effect of PTX.
Collapse
Affiliation(s)
- Marianne N Manjavachi
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Giselle F Passos
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabriela Trevisan
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Suzana B Araújo
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | - Robson Costa
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Joao B Calixto
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Centro de Inovação e Ensaios Pre-Clínicos - CIEnP, Florianópolis, SC, Brazil.
| |
Collapse
|
7
|
Jurga AM, Piotrowska A, Makuch W, Przewlocka B, Mika J. Blockade of P2X4 Receptors Inhibits Neuropathic Pain-Related Behavior by Preventing MMP-9 Activation and, Consequently, Pronociceptive Interleukin Release in a Rat Model. Front Pharmacol 2017; 8:48. [PMID: 28275350 PMCID: PMC5321202 DOI: 10.3389/fphar.2017.00048] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/23/2017] [Indexed: 12/19/2022] Open
Abstract
Neuropathic pain is still an extremely important problem in today's medicine because opioids, which are commonly used to reduce pain, have limited efficacy in this type of pathology. Therefore, complementary therapy is needed. Our experiments were performed in rats to evaluate the contribution of the purinergic system, especially P2X4 receptor (P2X4R), in the modulation of glia activation and, consequently, the levels of nociceptive interleukins after chronic constriction injury (CCI) of the right sciatic nerve, a rat model of neuropathic pain. Moreover, we studied how intrathecal (ith.) injection of a P2X4R antagonist Tricarbonyldichlororuthenium (II) dimer (CORM-2) modulates nociceptive transmission and opioid effectiveness in the CCI model. Our results demonstrate that repeated ith. administration of CORM-2 once daily (20 μg/5 μl, 16 and 1 h before CCI and then daily) for eight consecutive days significantly reduced pain-related behavior and activation of both spinal microglia and/or astroglia induced by CCI. Moreover, even a single administration of CORM-2 on day 7 after CCI attenuated mechanical and thermal hypersensitivity as efficiently as morphine and buprenorphine. In addition, using Western blot, we have shown that repeated ith. administration of CORM-2 lowers the CCI-elevated level of MMP-9 and pronociceptive interleukins (IL-1β, IL-18, IL-6) in the dorsal L4-L6 spinal cord and/or DRG. Furthermore, in parallel, CORM-2 upregulates spinal IL-1Ra; however, it does not influence other antinociceptive factors, IL-10 and IL-18BP. Additionally, based on our biochemical results, we hypothesize that p38MAPK, ERK1/2 and PI3K/Akt but not the NLRP3/Caspase-1 pathway are partly involved in the CORM-2 analgesic effects in rat neuropathic pain. Our data provide new evidence that P2X4R may indeed play a significant role in neuropathic pain development by modulating neuroimmune interactions in the spinal cord and DRG, suggesting that its blockade may have potential therapeutic utility.
Collapse
Affiliation(s)
- Agnieszka M Jurga
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology Krakow, Poland
| | - Anna Piotrowska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology Krakow, Poland
| | - Wioletta Makuch
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology Krakow, Poland
| | - Barbara Przewlocka
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology Krakow, Poland
| | - Joanna Mika
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology Krakow, Poland
| |
Collapse
|
8
|
Abstract
UNLABELLED The gastrin-releasing peptide (GRP) and its receptor (GRPR) are important components of itch transmission. Upstream, but not downstream, aspects of GRPR signaling have been investigated extensively. We hypothesize that GRPR signals in part through the PI3Kγ/Akt pathway. We used pharmacological, electrophysiological, and behavioral approaches to further evaluate GRPR downstream signaling pathways. Our data show that GRP directly activates small-size capsaicin-sensitive DRG neurons, an effect that translates into transient calcium flux and membrane depolarization (∼ 20 mV). GRPR activation also induces Akt phosphorylation, a proxy for PI3Kγ activity, in ex vivo naive mouse spinal cords and in GRPR transiently expressing HEK293 cells. The intrathecal injection of GRP led to intense scratching, an effect largely reduced by either GRPR antagonists or PI3Kγ inhibitor. Scratching behavior was also induced by the intrathecal injection of an Akt activator. In a dry skin model of itch, we show that GRPR blockade or PI3Kγ inhibition reversed the scratching behavior. Altogether, these findings are highly suggestive that GRPR is expressed by the central terminals of DRG nociceptive afferents, which transmit itch via the PI3Kγ/Akt pathway. SIGNIFICANCE STATEMENT Itch is the most common symptom of the skin and is related to noncutaneous diseases. It severely impairs patients' quality of life when it becomes chronic and there is no specific or effective available therapy, mainly because itch pathophysiology is not completely elucidated. Our findings indicate that the enzyme PI3Kγ is a key central mediator of itch transmission. Therefore, we suggest PI3Kγ as an attractive target for the development of new anti-pruritic drugs. With this study, we take a step forward in our understanding of the mechanisms underlying the central transmission of itch sensation.
Collapse
|
9
|
Luo J, Cai W, Wu T, Xu B. Phytochemical distribution in hull and cotyledon of adzuki bean (Vigna angularis L.) and mung bean (Vigna radiate L.), and their contribution to antioxidant, anti-inflammatory and anti-diabetic activities. Food Chem 2016; 201:350-60. [PMID: 26868587 DOI: 10.1016/j.foodchem.2016.01.101] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 01/10/2016] [Accepted: 01/24/2016] [Indexed: 11/28/2022]
Abstract
Total saponin content, total phenolics content, total flavonoids content, condensed tannin content in hull, cotyledon and whole grain of both adzuki bean and mung bean were determined by colorimetric methods. Vitexin and isovitexin contents in mung bean were determined by HPLC. Antioxidant effects were evaluated with DPPH scavenging activity and ferric reducing antioxidant power assay. In vitro anti-inflammatory and anti-diabetic effects of beans were evaluated by protease and aldose reductase inhibitory assays, respectively. The results indicated that the bean hulls were the most abundant in phytochemicals and largely contributed antioxidant activities, anti-inflammatory effects and anti-diabetic effects of whole grains. The result showed that mung bean hull was the most abundant with vitexin at 37.43 mg/g and isovitexin at 47.18 mg/g, respectively. Most of the phytochemicals and bioactivities were most predominantly contributed by the bean hulls with exception for condensed tannin of mung bean; which was more abundant in the cotyledon than its hull.
Collapse
Affiliation(s)
- Jiaqiang Luo
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong 519085, China; Faculty of Veterinary and Agricultural Sciences, University of Melbourne, VIC 3010, Australia
| | - Weixi Cai
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong 519085, China
| | - Tong Wu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong 519085, China; Faculty of Veterinary and Agricultural Sciences, University of Melbourne, VIC 3010, Australia
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong 519085, China.
| |
Collapse
|
10
|
Kiguchi N, Sukhtankar DD, Ding H, Tanaka KI, Kishioka S, Peters CM, Ko MC. Spinal Functions of B-Type Natriuretic Peptide, Gastrin-Releasing Peptide, and Their Cognate Receptors for Regulating Itch in Mice. J Pharmacol Exp Ther 2015; 356:596-603. [PMID: 26669425 DOI: 10.1124/jpet.115.229997] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022] Open
Abstract
B-type natriuretic peptide (BNP)-natriuretic peptide receptor A (NPRA) and gastrin-releasing peptide (GRP)-GRP receptor (GRPR) systems contribute to spinal processing of itch. However, pharmacological and anatomic evidence of these two spinal ligand-receptor systems are still not clear. The aim of this study was to determine the spinal functions of BNP-NPRA and GRP-GRPR systems for regulating scratching activities in mice by using pharmacological and immunohistochemical approaches. Our results showed that intrathecal administration of BNP (0.3-3 nmol) dose dependently elicited scratching responses, which could be blocked by the NPRA antagonist (Arg6,β-cyclohexyl-Ala8,D-Tic16,Arg17,Cys18)-atrial natriuretic factor(6-18) amide (A71915). However, A71915 had no effect on intrathecal GRP-induced scratching. In contrast, pretreatment with a GRPR antagonist (D-Tpi6,Leu13ψ(CH2-NH)-Leu14)bombesin(6-14) (RC-3095) inhibited BNP-induced scratching. Immunostaining revealed that NPRA proteins colocalize with GRP, but not GRPR, in the superficial area of dorsal horn, whereas BNP proteins do not colocalize with either GRP or GRPR in the dorsal horn. Intradermal administration of ligands including endothelin-1, U-46619, bovine adrenal medulla 8-22, and Ser-Leu-Ile-Gly-Arg-Leu-NH2 (SLIGRL) increased scratching bouts at different levels of magnitude. Pretreatment with intrathecal A71915 did not affect scratching responses elicited by all four pruritogens, whereas pretreatment with RC-3095 only inhibited SLIGRL-induced scratching. Interestingly, immunostaining showed that RC-3095, but not A71915, inhibited SLIGRL-elicited c-Fos activation in the spinal dorsal horn, which was in line with behavioral outcomes. These findings demonstrate that: 1) BNP-NPRA system may function upstream of the GRP-GRPR system to regulate itch in the mouse spinal cord, and 2) both NPRA and GRPR antagonists may have antipruritic efficacy against centrally, but not peripherally, elicited itch.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Physiology and Pharmacology (N.K., D.D.S., H.D., M.-C.K.) and Department of Anesthesiology (C.M.P.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Department of Physiology and Pharmacology, Saitama Prefectural University, Saitama, Japan (K.T.); Department of Pharmacology, Wakayama Medical University, Wakayama, Japan (S.K.)
| | - Devki D Sukhtankar
- Department of Physiology and Pharmacology (N.K., D.D.S., H.D., M.-C.K.) and Department of Anesthesiology (C.M.P.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Department of Physiology and Pharmacology, Saitama Prefectural University, Saitama, Japan (K.T.); Department of Pharmacology, Wakayama Medical University, Wakayama, Japan (S.K.)
| | - Huiping Ding
- Department of Physiology and Pharmacology (N.K., D.D.S., H.D., M.-C.K.) and Department of Anesthesiology (C.M.P.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Department of Physiology and Pharmacology, Saitama Prefectural University, Saitama, Japan (K.T.); Department of Pharmacology, Wakayama Medical University, Wakayama, Japan (S.K.)
| | - Ken-ichi Tanaka
- Department of Physiology and Pharmacology (N.K., D.D.S., H.D., M.-C.K.) and Department of Anesthesiology (C.M.P.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Department of Physiology and Pharmacology, Saitama Prefectural University, Saitama, Japan (K.T.); Department of Pharmacology, Wakayama Medical University, Wakayama, Japan (S.K.)
| | - Shiroh Kishioka
- Department of Physiology and Pharmacology (N.K., D.D.S., H.D., M.-C.K.) and Department of Anesthesiology (C.M.P.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Department of Physiology and Pharmacology, Saitama Prefectural University, Saitama, Japan (K.T.); Department of Pharmacology, Wakayama Medical University, Wakayama, Japan (S.K.)
| | - Christopher M Peters
- Department of Physiology and Pharmacology (N.K., D.D.S., H.D., M.-C.K.) and Department of Anesthesiology (C.M.P.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Department of Physiology and Pharmacology, Saitama Prefectural University, Saitama, Japan (K.T.); Department of Pharmacology, Wakayama Medical University, Wakayama, Japan (S.K.)
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology (N.K., D.D.S., H.D., M.-C.K.) and Department of Anesthesiology (C.M.P.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Department of Physiology and Pharmacology, Saitama Prefectural University, Saitama, Japan (K.T.); Department of Pharmacology, Wakayama Medical University, Wakayama, Japan (S.K.)
| |
Collapse
|
11
|
Guan X, Fu Q, Xiong B, Song Z, Shu B, Bu H, Xu B, Manyande A, Cao F, Tian Y. Activation of PI3Kγ/Akt pathway mediates bone cancer pain in rats. J Neurochem 2015; 134:590-600. [PMID: 25919859 DOI: 10.1111/jnc.13139] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 04/10/2015] [Accepted: 04/10/2015] [Indexed: 02/03/2023]
Abstract
Bone cancer pain (BCP) is one of the most common and severe complications in patients suffering from primary bone cancer or metastatic bone cancer such as breast, prostate, or lung, which profoundly compromises their quality of life. Emerging lines of evidence indicate that central sensitization is required for the development and maintenance of BCP. However, the underlying mechanisms are largely unknown. In this study, we investigated the role of PI3Kγ/Akt in the central sensitization in rats with tumor cell implantation in the tibia, a widely used model of BCP. Our results showed that PI3Kγ and its downstream target pAkt were up-regulated in a time-dependent manner and distributed predominately in the superficial layers of the spinal dorsal horn neurons, astrocytes and a minority of microglia, and were colocalized with non-peptidergic, calcitonin gene-related peptide-peptidergic, and A-type neurons in dorsal root ganglion ipsilateral to tumor cell inoculation in rats. Inhibition of spinal PI3Kγ suppressed BCP-associated behaviors and the up-regulation of pAkt in the spinal cord and dorsal root ganglion. This study suggests that PI3Kγ/Akt signal pathway mediates BCP in rats. Central sensitization is required for the development and maintenance of bone cancer pain (BCP). In this study, we reported that PI3Kγ/Akt mediated the function of ephrinBs/EphBs in the central sensitization under BCP condition, and inhibition of spinal PI3Kγ suppressed BCP-associated behaviors. Our results suggest that inhibition of PI3Kγ/Akt may be a new target for the treatment of BCP.
Collapse
Affiliation(s)
- Xuehai Guan
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology, Liuzhou Worker's Hospital, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Qiaochu Fu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingrui Xiong
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenpeng Song
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Shu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huilian Bu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Xu
- Department of Neurology, Liuzhou Traditional Chinese Medical Hospital, the Third Affiliated Hospital of Guangxi University of Chinese Medicine, Liuzhou, China
| | - Anne Manyande
- School of Psychology, Social Work and Human Sciences, University of West London, London, UK
| | - Fei Cao
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Yuke Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Guan XH, Fu QC, Shi D, Bu HL, Song ZP, Xiong BR, Shu B, Xiang HB, Xu B, Manyande A, Cao F, Tian YK. Activation of spinal chemokine receptor CXCR3 mediates bone cancer pain through an Akt-ERK crosstalk pathway in rats. Exp Neurol 2015; 263:39-49. [DOI: 10.1016/j.expneurol.2014.09.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/30/2014] [Accepted: 09/12/2014] [Indexed: 12/29/2022]
|
13
|
Maciel I, Azevedo V, Pereira T, Bogo M, Souza A, Gomez M, Campos M. The spinal inhibition of N-type voltage-gated calcium channels selectively prevents scratching behavior in mice. Neuroscience 2014; 277:794-805. [DOI: 10.1016/j.neuroscience.2014.07.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/02/2014] [Accepted: 07/29/2014] [Indexed: 11/27/2022]
|
14
|
Leinders M, Koehrn FJ, Bartok B, Boyle DL, Shubayev V, Kalcheva I, Yu NK, Park J, Kaang BK, Hefferan MP, Firestein GS, Sorkin LS. Differential distribution of PI3K isoforms in spinal cord and dorsal root ganglia: potential roles in acute inflammatory pain. Pain 2014; 155:1150-1160. [PMID: 24631588 PMCID: PMC4128246 DOI: 10.1016/j.pain.2014.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 03/03/2014] [Accepted: 03/05/2014] [Indexed: 11/30/2022]
Abstract
PI3-kinases (PI3Ks) participate in nociception within spinal cord, dorsal root ganglion (DRG), and peripheral nerves. To extend our knowledge, we immunohistochemically stained for each of the 4 class I PI3K isoforms along with several cell-specific markers within the lumbar spinal cord, DRG, and sciatic nerve of naive rats. Intrathecal and intraplantar isoform specific antagonists were given as pretreatments before intraplantar carrageenan; pain behavior was then assessed over time. The α-isoform was localized to central terminals of primary afferent fibers in spinal cord laminae IIi to IV as well as to neurons in ventral horn and DRG. The PI3Kβ isoform was the only class I isoform seen in dorsal horn neurons; it was also observed in DRG, Schwann cells, and axonal paranodes. The δ-isoform was found in spinal cord white matter oligodendrocytes and radial astrocytes, and the γ-isoform was seen in a subpopulation of IB4-positive DRG neurons. No isoform co-localized with microglial markers or satellite cells in naive tissue. Only the PI3Kβ antagonist, but none of the other antagonists, had anti-allodynic effects when administered intrathecally; coincident with reduced pain behavior, this agent completely blocked paw carrageenan-induced dorsal horn 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid (AMPA) receptor trafficking to plasma membranes. Intraplantar administration of the γ-antagonist prominently reduced pain behavior. These data suggest that each isoform displays specificity with regard to neuronal type as well as to specific tissues. Furthermore, each PI3K isoform has a unique role in development of nociception and tissue inflammation.
Collapse
Affiliation(s)
- Mathias Leinders
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fred J. Koehrn
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Beatrix Bartok
- Deprtment of Medicine, Division of Rheumatology, University of California, San Diego, La Jolla, CA
| | - David L. Boyle
- Deprtment of Medicine, Division of Rheumatology, University of California, San Diego, La Jolla, CA
| | - Veronica Shubayev
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA
- San Diego VA Healthcare System, La Jolla, CA
| | - Iveta Kalcheva
- Deprtment of Medicine, Division of Rheumatology, University of California, San Diego, La Jolla, CA
| | - Nam-Kyung Yu
- Department of Biological Sciences and Brain and Cognitive Sciences, Seoul National University, Seoul 151-747, Korea
| | - Jihye Park
- Department of Biological Sciences and Brain and Cognitive Sciences, Seoul National University, Seoul 151-747, Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences and Brain and Cognitive Sciences, Seoul National University, Seoul 151-747, Korea
| | | | - Gary S. Firestein
- Deprtment of Medicine, Division of Rheumatology, University of California, San Diego, La Jolla, CA
| | - Linda S. Sorkin
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
15
|
Xu B, Guan XH, Yu JX, Lv J, Zhang HX, Fu QC, Xiang HB, Bu HL, Shi D, Shu B, Qin LS, Manyande A, Tian YK. Activation of spinal phosphatidylinositol 3-kinase/protein kinase B mediates pain behavior induced by plantar incision in mice. Exp Neurol 2014; 255:71-82. [PMID: 24594219 DOI: 10.1016/j.expneurol.2014.02.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 01/25/2014] [Accepted: 02/18/2014] [Indexed: 12/30/2022]
Abstract
The etiology of postoperative pain may be different from antigen-induced inflammatory pain and neuropathic pain. However, central neural plasticity plays a key role in incision pain. It is also known that phosphatidylinositol 3-kinase (PI3K) and protein kinase B/Akt (PKB/Akt) are widely expressed in laminae I-IV of the spinal horn and play a critical role in spinal central sensitization. In the present study, we explored the role of PI3K and Akt in incision pain behaviors. Plantar incision induced a time-dependent activation of spinal PI3K-p110γ and Akt, while activated Akt and PI3K-p110γ were localized in spinal neurons or microglias, but not in astrocytes. Pre-treatment with PI3K inhibitors, wortmannin or LY294002 prevented the activation of Akt brought on by plantar incision in a dose-dependent manner. In addition, inhibition of spinal PI3K signaling pathway prevented pain behaviors (dose-dependent) and spinal Fos protein expression caused by plantar incision. These data demonstrated that PI3K signaling mediated pain behaviors caused by plantar incision in mice.
Collapse
Affiliation(s)
- Bing Xu
- Department of Neurology, Liuzhou Traditional Chinese Medical Hospital, the Third Affiliated Hospital of Guangxi University of Chinese Medicine, 32 Jiefang West Road, Liuzhou 545001, PR China
| | - Xue-Hai Guan
- Department of Anesthesiology, Liuzhou Traditional Chinese Medical Hospital, the Third Affiliated Hospital of Guangxi University of Chinese Medicine, 32 Jiefang West Road, Liuzhou 545001, PR China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, PR China.
| | - Jun-Xiong Yu
- Department of Anesthesiology, the Affiliated Hospital of Guilin Medical College, Guilin 543001, PR China
| | - Jing Lv
- Department of Anesthesiology, the Affiliated Hospital of Guilin Medical College, Guilin 543001, PR China
| | - Hong-Xing Zhang
- The First Clinical College, China Medical University, 155 Nanjing Road, Shenyang 11001, PR China
| | - Qiao-Chu Fu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, PR China
| | - Hong-Bing Xiang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, PR China
| | - Hui-Lian Bu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, PR China
| | - Dai Shi
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, PR China
| | - Bin Shu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, PR China
| | - Li-Sheng Qin
- Department of Anesthesiology, Liuzhou Traditional Chinese Medical Hospital, the Third Affiliated Hospital of Guangxi University of Chinese Medicine, 32 Jiefang West Road, Liuzhou 545001, PR China
| | - Anne Manyande
- School of Psychology, Social Work and Human Sciences, University of West London, London, UK
| | - Yu-Ke Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, PR China.
| |
Collapse
|
16
|
Synergistic effects of celecoxib and bupropion in a model of chronic inflammation-related depression in mice. PLoS One 2013; 8:e77227. [PMID: 24086771 PMCID: PMC3785450 DOI: 10.1371/journal.pone.0077227] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 09/01/2013] [Indexed: 11/19/2022] Open
Abstract
This study was aimed to characterize the depression-like behaviour in the classical model of chronic inflammation induced by Complete Freund's Adjuvant (CFA). Male Swiss mice received an intraplantar (i.pl.) injection of CFA (50 µl/paw) or vehicle. Behavioural and inflammatory responses were measured at different time-points (1 to 4 weeks), and different pharmacological tools were tested. The brain levels of IL-1β and BDNF, or COX-2 expression were also determined. CFA elicited a time-dependent edema formation and mechanical allodynia, which was accompanied by a significant increase in the immobility time in the tail suspension (TST) or forced-swimming (FST) depression tests. Repeated administration of the antidepressants imipramine (10 mg/kg), fluoxetine (20 mg/kg) and bupropion (30 mg/kg) significantly reversed depression-like behaviour induced by CFA. Predictably, the anti-inflammatory drugs dexamethasone (0.5 mg/kg), indomethacin (10 mg/kg) and celecoxib (30 mg/kg) markedly reduced CFA-induced edema. The oral treatment with the analgesic drugs dipyrone (30 and 300 mg/kg) or pregabalin (30 mg/kg) significantly reversed the mechanical allodyinia induced by CFA. Otherwise, either dipyrone or pregabalin (both 30 mg/kg) did not significantly affect the paw edema or the depressive-like behaviour induced by CFA, whereas the oral treatment with dipyrone (300 mg/kg) was able to reduce the immobility time in TST. Noteworthy, CFA-induced edema was reduced by bupropion (30 mg/kg), and depression behaviour was prevented by celecoxib (30 mg/kg). The co-treatment with bupropion and celecoxib (3 mg/kg each) significantly inhibited both inflammation and depression elicited by CFA. The same combined treatment reduced the brain levels of IL-1β, as well as COX-2 immunopositivity, whilst it failed to affect the reduction of BDNF levels. We provide novel evidence on the relationship between chronic inflammation and depression, suggesting that combination of antidepressant and anti-inflammatory agents bupropion and celecoxib might represent an attractive therapeutic strategy for depression.
Collapse
|
17
|
da Silva GL, Sperotto NDM, Borges TJ, Bonorino C, Takyia CM, Coutinho-Silva R, Campos MM, Zanin RF, Morrone FB. P2X7 receptor is required for neutrophil accumulation in a mouse model of irritant contact dermatitis. Exp Dermatol 2013; 22:184-8. [DOI: 10.1111/exd.12094] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2013] [Indexed: 01/29/2023]
Affiliation(s)
- Gabriela L. da Silva
- Programa de Pós-Graduação em Biologia Celular e Molecular; Pontificia Universidade Católica do Rio Grande do Sul -PUCRS; Porto Alegre; RS; Brazil
| | - Nathalia D. M. Sperotto
- Faculdade de Farmácia; Pontificia Universidade Católica do Rio Grande do Sul -PUCRS; Porto Alegre; RS; Brazil
| | | | | | - Cristina M. Takyia
- Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro - UFRJ; Rio de Janeiro; RJ; Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro - UFRJ; Rio de Janeiro; RJ; Brazil
| | | | | | | |
Collapse
|
18
|
Bazzo KO, Souto AA, Lopes TG, Zanin RF, Gomez MV, Souza AH, Campos MM. Evidence for the analgesic activity of resveratrol in acute models of nociception in mice. JOURNAL OF NATURAL PRODUCTS 2013; 76:13-21. [PMID: 23273136 DOI: 10.1021/np300529x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The effects of trans-resveratrol (1) were evaluated in acute nociception models induced by capsaicin or glutamate in mice, in an attempt to further characterize its mechanism of action. The oral administration of 1 (50 and 100 mg/kg) reduced significantly the licking behavior elicited by capsaicin (1.6 μg/paw) or glutamate (10 μmol/paw). The co-administration of 1 into the mouse paw (200 μg/site) markedly prevented glutamate-induced licking, without affecting capsaicin responses. In addition, the intrathecal (it) injection of 1 (150 to 600 μg/site) greatly reduced the licking behavior caused by capsaicin, but not glutamate. Similarly, the intracerebroventricular injection of 1 (300 μg/site) caused a potent inhibition of capsaicin-induced nociception, while the glutamate responses remained unaffected. However, the co-administration of 1 (300 μg/site) reduced the biting behavior induced by spinal injection of glutamate (30 μg/site, it), leaving capsaicin (6.4 μg/site)-induced biting unaltered. Notably, the oral administration of 1 (100 mg/kg) inhibited significantly the capsaicin-induced increase of c-Fos and COX-2 labeling in the spinal cord and COX-2 expression in the cortex, but failed to affect c-Fos and COX-2 expression in the glutamate model. This study has explored the effects of 1 in both the capsaicin and glutamate models, extending current knowledge on the analgesic effects of trans-resveratrol.
Collapse
Affiliation(s)
- Karen O Bazzo
- Postgraduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
19
|
Neely GG, Rao S, Costigan M, Mair N, Racz I, Milinkeviciute G, Meixner A, Nayanala S, Griffin RS, Belfer I, Dai F, Smith S, Diatchenko L, Marengo S, Haubner BJ, Novatchkova M, Gibson D, Maixner W, Pospisilik JA, Hirsch E, Whishaw IQ, Zimmer A, Gupta V, Sasaki J, Kanaho Y, Sasaki T, Kress M, Woolf CJ, Penninger JM. Construction of a global pain systems network highlights phospholipid signaling as a regulator of heat nociception. PLoS Genet 2012; 8:e1003071. [PMID: 23236288 PMCID: PMC3516557 DOI: 10.1371/journal.pgen.1003071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 09/21/2012] [Indexed: 01/06/2023] Open
Abstract
The ability to perceive noxious stimuli is critical for an animal's survival in the face of environmental danger, and thus pain perception is likely to be under stringent evolutionary pressure. Using a neuronal-specific RNAi knock-down strategy in adult Drosophila, we recently completed a genome-wide functional annotation of heat nociception that allowed us to identify α2δ3 as a novel pain gene. Here we report construction of an evolutionary-conserved, system-level, global molecular pain network map. Our systems map is markedly enriched for multiple genes associated with human pain and predicts a plethora of novel candidate pain pathways. One central node of this pain network is phospholipid signaling, which has been implicated before in pain processing. To further investigate the role of phospholipid signaling in mammalian heat pain perception, we analysed the phenotype of PIP5Kα and PI3Kγ mutant mice. Intriguingly, both of these mice exhibit pronounced hypersensitivity to noxious heat and capsaicin-induced pain, which directly mapped through PI3Kγ kinase-dead knock-in mice to PI3Kγ lipid kinase activity. Using single primary sensory neuron recording, PI3Kγ function was mechanistically linked to a negative regulation of TRPV1 channel transduction. Our data provide a systems map for heat nociception and reinforces the extraordinary conservation of molecular mechanisms of nociception across different species. Nociception is the perception of noxious, potentially damaging stimuli; and this pain or its equivalent behavioral readout is evolutionarily conserved from fruit flies to humans. Using genetic techniques in the fruit fly, we have been able to evaluate the potential functional contribution of every gene in the fruit fly genome for a role in avoidance of high noxious temperatures (heat pain-like responses). Using this functional genomics data set, we have developed a conserved network map of heat pain/nociception that predicts numerous conserved genes and pathways as novel pain pathways, including phospholipid signaling. Studies in multiple mutant mice confirmed a role for lipid signaling in pain perception, and more specifically we identify the critical lipid kinase (PI3Kγ) as a negative regulator of TRPV1 (receptor for noxious heat and capsaicin, the active component in chili peppers) signaling. This finding shows that our fly-based genetic pain network map is a valuable tool for the discovery of novel “nociception genes” in mammals.
Collapse
Affiliation(s)
- G Gregory Neely
- Neuroscience Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|