1
|
Bäumler P, Brenske A, Winkelmann A, Irnich D, Averbeck B. Strong and aversive cold processing and pain facilitation in fibromyalgia patients relates to augmented thermal grill illusion. Sci Rep 2023; 13:15982. [PMID: 37749154 PMCID: PMC10520026 DOI: 10.1038/s41598-023-42288-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/07/2023] [Indexed: 09/27/2023] Open
Abstract
The thermal grill illusion (TGI) is assumed to result from crosstalk between the thermoreceptive and nociceptive pathways. To elucidate this further, we compared 40 female fibromyalgia patients to 20 healthy women in an exploratory cross-sectional study. Sensations (cold, warm/heat, unpleasantness, pain and burning) evoked by 20 °C, 40 °C and alternating 20 °C/40 °C (TGI) and somatosensory profiles according to standardized quantitative sensory testing (QST) were assessed on the palm of the dominant hand. Compared to healthy controls, fibromyalgia patients reported stronger thermal grill-evoked cold, warm, unpleasantness and pain as well as stronger and more aversive 20 °C- and 40 °C-evoked sensations. They showed a loss in warm, mechanical and vibration detection, a gain in thermal pain thresholds and higher temporal summation (TS). Among QST parameters higher TS in fibromyalgia patients was most consistently associated with an augmented TGI. Independently, an increased TGI was linked to cold (20 °C) but less to warm (40 °C) perception. In fibromyalgia patients all thermal grill-evoked sensations were positively related to a higher 20 °C-evoked cold sensation and/or 20 °C-evoked unpleasantness. In conclusion, the TGI appears to be driven mainly by the cold-input. Aversive cold processing and central pain facilitation in fibromyalgia patients seem to independently augment the activation of the pain pathway.
Collapse
Affiliation(s)
- Petra Bäumler
- Multidisciplinary Pain Center, Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Anna Brenske
- Multidisciplinary Pain Center, Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
- Walter Brendel Center of Experimental Medicine (WBex), Biomedical Center Munich (BMC), LMU Munich, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany
| | - Andreas Winkelmann
- Multidisciplinary Pain Center, Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Dominik Irnich
- Multidisciplinary Pain Center, Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Beate Averbeck
- Walter Brendel Center of Experimental Medicine (WBex), Biomedical Center Munich (BMC), LMU Munich, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
2
|
Schaldemose EL, Raaschou-Nielsen L, Böhme RA, Finnerup NB, Fardo F. It is one or the other: No overlap between healthy individuals perceiving thermal grill illusion or paradoxical heat sensation. Neurosci Lett 2023; 802:137169. [PMID: 36898653 DOI: 10.1016/j.neulet.2023.137169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Paradoxical heat sensation (PHS) and the thermal grill illusion (TGI) are both related to the perception of warmth or heat from innocuous cold stimuli. Despite being described as similar perceptual phenomena, recent findings suggested that PHS is common in neuropathy and related to sensory loss, while TGI is more frequently observed in healthy individuals. To clarify the relationship between these two phenomena, we conducted a study in a cohort of healthy individuals to investigate the association between PHS and TGI. We examined the somatosensory profiles of 60 healthy participants (34 females, median age 25 years) using the quantitative sensory testing (QST) protocol from the German Research Network on Neuropathic Pain. The number of PHS was measured using a modified thermal sensory limen (TSL) procedure where the skin was transiently pre-warmed, or pre-cooled before the PHS measure. This procedure also included a control condition with a pre-temperature of 32 °C. The number of TGI responses was quantified during simultaneous application of warm and cold innocuous stimuli. All participants had normal thermal and mechanical thresholds compared to the reference values from the QST protocol. Only two participants experienced PHS during the QST procedure. In the modified TSL procedure, we found no statistically significant differences in the number of participants reporting PHS in the control condition (N = 6) vs. pre-warming (N = 3; min = 35.7 °C, max = 43.5 °C) and pre-cooling (N = 4, min = 15.0 °C, max = 28.8 °C) conditions. Fourteen participants experienced TGI, and only one participant reported both TGI and PHS. Individuals with TGI had normal or even increased thermal sensation compared to individuals without TGI. Our findings demonstrate a clear distinction between individuals experiencing PHS or TGI, as there was no overlap observed when using identical warm and cold temperatures that were alternated either temporally or spatially. While PHS was previously related to sensory loss, our study revealed that TGI is associated with normal thermal sensitivity. This suggests that an efficient thermal sensory function is essential in generating the illusory sensation of pain of the TGI.
Collapse
Affiliation(s)
- Ellen Lund Schaldemose
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Line Raaschou-Nielsen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rebecca Astrid Böhme
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nanna Brix Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Francesca Fardo
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Osumi M, Sumitani M, Nobusako S, Sato G, Morioka S. Pain quality of thermal grill illusion is similar to that of central neuropathic pain rather than peripheral neuropathic pain. Scand J Pain 2022; 22:40-47. [PMID: 34019750 DOI: 10.1515/sjpain-2021-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/07/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Application of spatially interlaced innocuous warm and cool stimuli to the skin elicits illusory pain, known as the thermal grill illusion (TGI). This study aimed to discriminate the underlying mechanisms of central and peripheral neuropathic pain focusing on pain quality, which is considered to indicate the underlying mechanism(s) of pain. We compared pain qualities in central and peripheral neuropathic pain with reference to pain qualities of TGI-induced pain. METHODS Experiment 1:137 healthy participants placed their hand on eight custom-built copper bars for 60 s and their pain quality was assessed by the McGill Pain Questionnaire. Experiment 2: Pain quality was evaluated in patients suffering from central and peripheral neuropathic pain (42 patients with spinal cord injury, 31 patients with stroke, 83 patients with trigeminal neuralgia and 131 patients with postherpetic neuralgia). RESULTS Experiment 1: Two components of TGI-induced pain were found using principal component analysis: component 1 included aching, throbbing, heavy and burning pain, component 2 included itching, electrical-shock, numbness, and cold-freezing. Experiment 2: Multiple correspondence analysis (MCA) and cross tabulation analysis revealed specific pain qualities including aching, hot-burning, heavy, cold-freezing, numbness, and electrical-shock pain were associated with central neuropathic pain rather than peripheral neuropathic pain. CONCLUSIONS We found similar qualities between TGI-induced pain in healthy participants and central neuropathic pain rather than peripheral neuropathic pain. The mechanism of TGI is more similar to the mechanism of central neuropathic pain than that of neuropathic pain.
Collapse
Affiliation(s)
- Michihiro Osumi
- Graduate School of Health Science, Kio University, Nara, Japan
- Neurorehabilitation Research Center, Kio University, Nara, Japan
| | - Masahiko Sumitani
- Department of Pain and Palliative Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Satoshi Nobusako
- Graduate School of Health Science, Kio University, Nara, Japan
- Neurorehabilitation Research Center, Kio University, Nara, Japan
| | - Gosuke Sato
- Neurorehabilitation Research Center, Kio University, Nara, Japan
| | - Shu Morioka
- Graduate School of Health Science, Kio University, Nara, Japan
- Neurorehabilitation Research Center, Kio University, Nara, Japan
| |
Collapse
|
4
|
Shin DA, Chang MC. A Review on Various Topics on the Thermal Grill Illusion. J Clin Med 2021; 10:jcm10163597. [PMID: 34441893 PMCID: PMC8396808 DOI: 10.3390/jcm10163597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
The thermal grill illusion (TGI) is a paradoxical perception of burning heat and pain resulting from the simultaneous application of interlaced warm and cold stimuli to the skin. The TGI is considered a type of chronic centralized pain and has been used to apply nociceptive stimuli without inflicting harm to human participants in the study of pain mechanisms. In addition, the TGI is an interesting phenomenon for researchers, and various topics related to the TGI have been investigated in several studies, which we will review here. According to previous studies, the TGI is generated by supraspinal interactions. To evoke the TGI, cold and warm cutaneous stimuli should be applied within the same dermatome or across dermatomes corresponding to adjacent spinal segments, and a significant difference between cold and warm temperatures is necessary. In addition, due the presence of chronic pain, genetic factors, and sexual differences, the intensity of the TGI can differ. In addition, cold noxious stimulation, topical capsaicin, analgesics, self-touch, and the presence of psychological diseases can decrease the intensity of the TGI. Because the TGI corresponds to chronic centralized pain, we believe that the findings of previous studies can be applied to future studies to identify chronic pain mechanisms and clinical practice for pain management.
Collapse
Affiliation(s)
- Dong Ah Shin
- Department of Neurosurgery, College of Medicine, Yonsei University, Seodaemun-gu, Seoul 03722, Korea;
| | - Min Cheol Chang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Namku, Taegu 42415, Korea
- Correspondence: ; Tel.: +82-53-620-4682
| |
Collapse
|
5
|
Forstenpointner J, Berry D, Baron R, Borsook D. The cornucopia of central disinhibition pain - An evaluation of past and novel concepts. Neurobiol Dis 2020; 145:105041. [PMID: 32800994 DOI: 10.1016/j.nbd.2020.105041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/18/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022] Open
Abstract
Central disinhibition (CD), as applied to pain, decreases thresholds of endogenous systems. This provokes onset of spontaneous or evoked pain in an individual beyond the ability of the nervous system to inhibit pain resulting from a disease or tissue damage. The original CD concept as proposed by Craig entails a shift from the lateral pain pathway (i.e. discriminative pain processing) towards the medial pain pathway (i.e. emotional pain processing), within an otherwise neurophysiological intact environment. In this review, the original CD concept as proposed by Craig is extended by the primary "nociceptive pathway damage - CD" concept and the secondary "central pathway set point - CD". Thereby, the original concept may be transferred into anatomical and psychological non-functional conditions. We provide examples for either primary or secondary CD concepts within different clinical etiologies as well as present surrogate models, which directly mimic the underlying pathophysiology (A-fiber block) or modulate the CD pathway excitability (thermal grill). The thermal grill has especially shown promising advancements, which may be useful to examine CD pathway activation in the future. Therefore, within this topical review, a systematic review on the thermal grill illusion is intended to stimulate future research. Finally, the authors review different mechanism-based treatment approaches to combat CD pain.
Collapse
Affiliation(s)
- Julia Forstenpointner
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany; Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.
| | - Delany Berry
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - David Borsook
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Fardo F, Beck B, Allen M, Finnerup NB. Beyond labeled lines: A population coding account of the thermal grill illusion. Neurosci Biobehav Rev 2020; 108:472-479. [DOI: 10.1016/j.neubiorev.2019.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
|
7
|
Fardo F, Finnerup NB, Haggard P. Organization of the Thermal Grill Illusion by Spinal Segments. Ann Neurol 2018; 84:463-472. [PMID: 30063258 PMCID: PMC6175302 DOI: 10.1002/ana.25307] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
Abstract
Objective A common symptom of neuropathy is the misperception of heat and pain from cold stimuli. Similar cold allodynic sensations can be experimentally induced using the thermal grill illusion (TGI) in humans. It is currently unclear whether this interaction between thermosensory and nociceptive signals depends on spinal or supraspinal integration mechanisms. To address this issue, we developed a noninvasive protocol to assess thermosensory integration across spinal segments. Methods We leveraged anatomical knowledge regarding dermatomes and their spinal projections to investigate potential contributions of spinal integration to the TGI. We simultaneously stimulated a pair of skin locations on the arm or lower back using 1 cold (∼20°C) and 1 warm thermode (∼40°C). The 2 thermodes were always separated by a fixed physical distance on the skin, but elicited neural activity across a varying number of spinal segments, depending on which dermatomal boundaries the 2 stimuli spanned. Results Participants consistently overestimated the actual cold temperature on the skin during combined cold and warm stimulation, confirming the TGI effect. The TGI was present when cold and warm stimuli were delivered within the same dermatome, or across dermatomes corresponding to adjacent spinal segments. In striking contrast, no TGI effect was found when cold and warm stimuli projected to nonadjacent spinal segments. Interpretation These results demonstrate that the strength of the illusion is modulated by the segmental distance between cold and warm afferents. This suggests that both temperature perception and thermal–nociceptive interactions depend upon low‐level convergence mechanisms operating within a single spinal segment and its immediate neighbors. Ann Neurol 2018;84:463–472
Collapse
Affiliation(s)
- Francesca Fardo
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Interacting Minds Center, Aarhus University, Aarhus, Denmark
| | - Nanna Brix Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| |
Collapse
|
8
|
Averbeck B, Seitz L, Kolb FP, Kutz DF. Sex differences in thermal detection and thermal pain threshold and the thermal grill illusion: a psychophysical study in young volunteers. Biol Sex Differ 2017; 8:29. [PMID: 28859684 PMCID: PMC5579939 DOI: 10.1186/s13293-017-0147-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/01/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Sex-related differences in human thermal and pain sensitivity are the subject of controversial discussion. The goal of this study in a large number of subjects was to investigate sex differences in thermal and thermal pain perception and the thermal grill illusion (TGI) as a phenomenon reflecting crosstalk between the thermoreceptive and nociceptive systems. The thermal grill illusion is a sensation of strong, but not necessarily painful, heat often preceded by transient cold upon skin contact with spatially interlaced innocuous warm and cool stimuli. METHODS The TGI was studied in a group of 78 female and 58 male undergraduate students and was evoked by placing the palm of the right hand on the thermal grill (20/40 °C interleaved stimulus). Sex-related thermal perception was investigated by a retrospective analysis of thermal detection and thermal pain threshold data that had been measured in student laboratory courses over 5 years (776 female and 476 male undergraduate students) using the method of quantitative sensory testing (QST). To analyse correlations between thermal pain sensitivity and the TGI, thermal pain threshold and the TGI were determined in a group of 20 female and 20 male undergraduate students. RESULTS The TGI was more pronounced in females than males. Females were more sensitive with respect to thermal detection and thermal pain thresholds. Independent of sex, thermal detection thresholds were dependent on the baseline temperature with a specific progression of an optimum curve for cold detection threshold versus baseline temperature. The distribution of cold pain thresholds was multi-modal and sex-dependent. The more pronounced TGI in females correlated with higher cold sensitivity and cold pain sensitivity in females than in males. CONCLUSIONS Our finding that thermal detection threshold not only differs between the sexes but is also dependent on the baseline temperature reveals a complex processing of "cold" and "warm" inputs in thermal perception. The results of the TGI experiment support the assumption that sex differences in cold-related thermoreception are responsible for sex differences in the TGI.
Collapse
Affiliation(s)
- Beate Averbeck
- Department of Physiology, University of Munich, Munich, Germany
- Department of Physiology, Biomedical Center Munich (BMC), University of Munich, Planegg-Martinsried, D-82152 Germany
| | - Lena Seitz
- Department of Physiology, University of Munich, Munich, Germany
| | - Florian P. Kolb
- Department of Physiology, University of Munich, Munich, Germany
| | - Dieter F. Kutz
- Institute of Human Movement Science and Health, Faculty of Behavioral and Social Science, Chemnitz University of Technology, Chemnitz, Germany
| |
Collapse
|
9
|
Harper D, Hollins M. Conditioned pain modulation dampens the thermal grill illusion. Eur J Pain 2017; 21:1591-1601. [DOI: 10.1002/ejp.1060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2017] [Indexed: 11/07/2022]
Affiliation(s)
- D.E. Harper
- Department of Psychology and Neuroscience; University of North Carolina at Chapel Hill; USA
- Department of Anesthesiology; Chronic Pain and Fatigue Research Center; University of Michigan; Ann Arbor USA
| | - M. Hollins
- Department of Psychology and Neuroscience; University of North Carolina at Chapel Hill; USA
| |
Collapse
|
10
|
Boettger MK, Ditze G, Bär KJ, Krüdewagen EM, Schaible HG. Humans, but not animals, perceive the thermal grill illusion as painful. Behav Brain Res 2016; 313:172-176. [DOI: 10.1016/j.bbr.2016.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 01/01/2023]
|
11
|
Altered thermal grill response and paradoxical heat sensations after topical capsaicin application. Pain 2015; 156:1101-1111. [DOI: 10.1097/j.pain.0000000000000155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Relationships between the paradoxical painful and nonpainful sensations induced by a thermal grill. Pain 2014; 155:2612-2617. [DOI: 10.1016/j.pain.2014.09.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/13/2014] [Accepted: 09/22/2014] [Indexed: 12/29/2022]
|
13
|
Hunter J, Dranga R, van Wyk M, Dostrovsky J. Unique influence of stimulus duration and stimulation site (glabrous vs. hairy skin) on the thermal grill-induced percept. Eur J Pain 2014; 19:202-15. [DOI: 10.1002/ejp.538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2014] [Indexed: 12/17/2022]
Affiliation(s)
- J. Hunter
- Department of Physical Therapy; University of Toronto; Canada
| | - R. Dranga
- The Institute of Biomaterials & Biomedical Engineering (IBBME); University of Toronto; Canada
| | - M. van Wyk
- Department of Physical Therapy; University of Toronto; Canada
| | | |
Collapse
|