1
|
Marunaka Y. Physiological roles of chloride ions in bodily and cellular functions. J Physiol Sci 2023; 73:31. [PMID: 37968609 PMCID: PMC10717538 DOI: 10.1186/s12576-023-00889-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023]
Abstract
Physiological roles of Cl-, a major anion in the body, are not well known compared with those of cations. This review article introduces: (1) roles of Cl- in bodily and cellular functions; (2) the range of cytosolic Cl- concentration ([Cl-]c); (3) whether [Cl-]c could change with cell volume change under an isosmotic condition; (4) whether [Cl-]c could change under conditions where multiple Cl- transporters and channels contribute to Cl- influx and efflux in an isosmotic state; (5) whether the change in [Cl-]c could be large enough to act as signals; (6) effects of Cl- on cytoskeletal tubulin polymerization through inhibition of GTPase activity and tubulin polymerization-dependent biological activity; (7) roles of cytosolic Cl- in cell proliferation; (8) Cl--regulatory mechanisms of ciliary motility; (9) roles of Cl- in sweet/umami taste receptors; (10) Cl--regulatory mechanisms of with-no-lysine kinase (WNK); (11) roles of Cl- in regulation of epithelial Na+ transport; (12) relationship between roles of Cl- and H+ in body functions.
Collapse
Affiliation(s)
- Yoshinori Marunaka
- Medical Research Institute, Kyoto Industrial Health Association, General Incorporated Foundation, 67 Kitatsuboi-Cho, Nishinokyo, Nakagyo-Ku, Kyoto, 604-8472, Japan.
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan.
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
2
|
Li BQ, Wang HY, Li L, Jiang B, Ma CL, Yuan CH, Xiu DR. Should Positive Cytology Revealed by Intraoperative Lavage Preclude Radical Resection in Resectable Pancreatic Cancer?: A Systemic Review and Meta-analysis. Pancreas 2022; 51:1263-1276. [PMID: 37099766 DOI: 10.1097/mpa.0000000000002163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
OBJECTIVES The aims of this review were to determine whether positive peritoneal lavage cytology (CY+) precludes radical resection in pancreatic cancer and to propose prospections for future studies. METHODS MEDLINE, Embase, and Cochrane Central were searched for related articles. Dichotomous variables and survival outcomes were analyzed with the estimation of odds ratio and hazards ratio (HR), respectively. RESULTS A total of 4905 patients were included, of which 7.8% were CY+. Positive peritoneal lavage cytology was correlated with poor overall survival (univariate survival analysis [HR, 2.35; P < 0.00001]; multivariate analysis [HR, 1.62; P < 0.00001]), poor recurrence-free survival (univariate survival analysis [HR, 2.50; P < 0.00001]; multivariate analysis [HR, 1.84; P < 0.00001]), and higher initial peritoneal recurrence rate (odds ratio, 5.49; P < 0.00001). CONCLUSIONS Although CY+ predicts poor prognosis and a higher risk of peritoneal metastasis after curative resection, it is not sufficient to preclude curative resection based on the current evidence, and high-quality trials should be conducted to assess the prognostic impact of operation among resectable CY+ patients. In addition, more sensitive and accurate methods to detect peritoneal exfoliated tumor cells and more effective comprehensive treatment for resectable CY+ pancreatic cancer patients are clearly warranted.
Collapse
Affiliation(s)
- Bing-Qi Li
- From the Department of General Surgery, Peking University Third Hospital, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
3
|
Disruption of Chromatin Dynamics by Hypotonic Stress Suppresses HR and Shifts DSB Processing to Error-Prone SSA. Int J Mol Sci 2021; 22:ijms222010957. [PMID: 34681628 PMCID: PMC8535785 DOI: 10.3390/ijms222010957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
The processing of DNA double-strand breaks (DSBs) depends on the dynamic characteristics of chromatin. To investigate how abrupt changes in chromatin compaction alter these dynamics and affect DSB processing and repair, we exposed irradiated cells to hypotonic stress (HypoS). Densitometric and chromosome-length analyses show that HypoS transiently decompacts chromatin without inducing histone modifications known from regulated local chromatin decondensation, or changes in Micrococcal Nuclease (MNase) sensitivity. HypoS leaves undisturbed initial stages of DNA-damage-response (DDR), such as radiation-induced ATM activation and H2AX-phosphorylation. However, detection of ATM-pS1981, γ-H2AX and 53BP1 foci is reduced in a protein, cell cycle phase and cell line dependent manner; likely secondary to chromatin decompaction that disrupts the focal organization of DDR proteins. While HypoS only exerts small effects on classical nonhomologous end-joining (c-NHEJ) and alternative end-joining (alt-EJ), it markedly suppresses homologous recombination (HR) without affecting DNA end-resection at DSBs, and clearly enhances single-strand annealing (SSA). These shifts in pathway engagement are accompanied by decreases in HR-dependent chromatid-break repair in the G2-phase, and by increases in alt-EJ and SSA-dependent chromosomal translocations. Consequently, HypoS sensitizes cells to ionizing radiation (IR)-induced killing. We conclude that HypoS-induced global chromatin decompaction compromises regulated chromatin dynamics and genomic stability by suppressing DSB-processing by HR, and allowing error-prone processing by alt-EJ and SSA.
Collapse
|
4
|
Potassium and Chloride Ion Channels in Cancer: A Novel Paradigm for Cancer Therapeutics. Rev Physiol Biochem Pharmacol 2021; 183:135-155. [PMID: 34291318 DOI: 10.1007/112_2021_62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cancer is a collection of diseases caused by specific changes at the genomic level that support cell proliferation indefinitely. Traditionally, ion channels are known to control a variety of cellular processes including electrical signal generation and transmission, secretion, and contraction by controlling ionic gradients. However, recent studies had brought to light important facts on ion channels in cancer biology.In this review we discuss the mechanism linking potassium or chloride ion channel activity to biochemical pathways controlling proliferation in cancer cells and the potential advantages of targeting ion channels as an anticancer therapeutic option.
Collapse
|
5
|
Molnar TF, Drozgyik A. Narrative review of theoretical considerations regarding HITHOC between past and future. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:954. [PMID: 34350269 PMCID: PMC8263867 DOI: 10.21037/atm-20-5855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/26/2021] [Indexed: 01/10/2023]
Abstract
Hyppocrates constructed the medicines-surgery-energy triangle which includes all therapeutical modalities. Hyperthermic intraoperative chemotherapy (HITHOC) is a synergy-based single stage multimodality treatment encompassing the locoregional manifestation of the systemic malignant process. Pleural space, thermal effect, lavage/irrigation and chemotherapy represent the basic science ports of the network hub: HITHOC. The malignant transformation and process of the pleural surface (and underlying lung) challenges space management and tissue control. Thermotherapy without local chemotherapy is insufficient, similar to the normothermic local irrigation aligned with anticancer agents. The local administration of combined heat-transfer fluid and chemotherapy with or without subsequent surgical removal offers reasonable outcome in extensive primary pleural neoplasms (malignant mesothelioma), advanced (> Stage IIIA) NSCLC, functionally inoperable lung cancer and pleural carcinosis from extrathoracic malignancies. Measured by symptom-free survival and the quality of life, HITHOC in its present form, offers a modest yet fully substantiated solution. HITHOC in combination with the local application of targeted therapy and/or immunotherapy administered in the pleural space are currently under investigation. Additional development including new acting substances, their solvents and the means regarding surgical delivery and anesthesiology techniques are sign posts up ahead. Level 2 evidence are required in order to stepping up the recommendation levels, rewriting protocols and guidelines, in which HITHOC earns its revered position in the decision making process it deserves.
Collapse
Affiliation(s)
- Tamas F Molnar
- Department of Operational Medicine, Faculty of Medicine, University of Pécs, Pécs, Hungary.,Chair of Surgery, Faculty of Medicine, University of Pécs/Dept Surgery, Aladar Petz University Teaching Hospital, Győr, Hungary
| | - Andras Drozgyik
- Chair of Surgery, Faculty of Medicine, University of Pécs/Dept Surgery, Aladar Petz University Teaching Hospital, Győr, Hungary
| |
Collapse
|
6
|
Shiozaki A, Yamazato Y, Kosuga T, Kudou M, Shoda K, Arita T, Konishi H, Komatsu S, Kubota T, Fujiwara H, Okamoto K, Marunaka Y, Otsuji E. Effect of low temperature on the regulation of cell volume after hypotonic shock in gastric cancer cells. Int J Oncol 2019; 55:905-914. [PMID: 31432150 DOI: 10.3892/ijo.2019.4853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/20/2019] [Indexed: 11/05/2022] Open
Abstract
Although peritoneal lavage with distilled water performed after surgery prevents peritoneal seeding, cancer cells may avoid rupture under mild hypotonicity through regulatory volume decrease (RVD), which is the homeostatic regulation of ion and water transport. The aim of the present study was to investigate the effect of low temperature on cell volume and cell death under hypoosmolal conditions and determine the underlying molecular mechanisms in gastric cancer (GC). Three human GC cell lines (NUGC4, KATO‑III and MKN45) were exposed to hypotonic solutions, and the effects of low temperature on cell volume and viability were examined. Low temperature‑induced changes in membrane transporters were evaluated, and knockdown and overexpression experiments were conducted to determine their effects on cell volume during hypotonic stimulation. Low temperature (24˚C) during hypotonic stimulation inhibited RVD and enhanced the cytocidal effects on GC cells. The expression of leucine‑rich repeat containing protein A (LRRC8A), a component of a Cl‑ channel, was decreased, and aquaporin 5 (AQP5) expression was increased at low temperatures. LRRC8A knockdown markedly slowed the decrease in cell volume following cell swelling by hypotonic shock. AQP5 overexpression enhanced initial cell swelling after hypotonic shock and increased the final cell volume. These results suggest that a hypotonic solution at low temperature increased initial water influx via activation of AQP5 and decreased Cl‑ efflux via inhibition of LRRC8A. Therefore, low temperature enhanced the hypotonicity‑induced cytocidal effects on GC cells, and these results may contribute to the development of a novel lavage method effective in reducing peritoneal recurrence in GC.
Collapse
Affiliation(s)
- Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602‑8566, Japan
| | - Yuzo Yamazato
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602‑8566, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602‑8566, Japan
| | - Michihiro Kudou
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602‑8566, Japan
| | - Katsutoshi Shoda
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602‑8566, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602‑8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602‑8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602‑8566, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602‑8566, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602‑8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602‑8566, Japan
| | - Yoshinori Marunaka
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602‑8566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602‑8566, Japan
| |
Collapse
|
7
|
Cheng Q, Chen A, Du Q, Liao Q, Shuai Z, Chen C, Yang X, Hu Y, Zhao J, Liu S, Wen GR, An J, Jing H, Tuo B, Xie R, Xu J. Novel insights into ion channels in cancer stem cells (Review). Int J Oncol 2018; 53:1435-1441. [PMID: 30066845 DOI: 10.3892/ijo.2018.4500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/28/2018] [Indexed: 11/06/2022] Open
Abstract
Cancer stem cells (CSCs) are immortal cells in tumor tissues that have been proposed as the driving force of tumorigenesis and tumor invasion. Previously, ion channels were revealed to contribute to cancer cell proliferation, migration and apoptosis. Recent studies have demonstrated that ion channels are present in various CSCs; however, the functions of ion channels and their mechanisms in CSCs remain unknown. The present review aimed to focus on the roles of ion channels in the regulation of CSC behavior and the CSC-like properties of cancer cells. Evaluation of the relationship between ion channels and CSCs is critically important for understanding malignancy.
Collapse
Affiliation(s)
- Qijiao Cheng
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Anhai Chen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Qian Du
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Qiushi Liao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Zhangli Shuai
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Changmei Chen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Xinrong Yang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Yaxia Hu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Ju Zhao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Songpo Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Guo Rong Wen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Jiaxin An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Hai Jing
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
8
|
Kosuga T, Shiozaki A, Kudou M, Yamazato Y, Ichikawa D, Komatsu S, Konishi H, Okamoto K, Shoda K, Arita T, Morimura R, Murayama Y, Kuriu Y, Ikoma H, Nakanishi M, Fujiwara H, Marunaka Y, Otsuji E. Blockade of potassium ion transports enhances hypotonicity-induced cytocidal effects in gastric cancer. Oncotarget 2017; 8:101394-101405. [PMID: 29254173 PMCID: PMC5731883 DOI: 10.18632/oncotarget.20736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023] Open
Abstract
Background Peritoneal lavage with distilled water has been used for surgeries of various cancers to reduce peritoneal recurrence. This study examined whether blockade of potassium ion transports enhances hypotonicity-induced cytocidal effects in gastric cancer (GC). Results A potassium channel blocker inhibited the occurrence of regulatory volume decrease (RVD) induced by mild hypotonic stimulation, and significantly enhanced cytocidal effects on GC cells. Incubating MKN45 cells with hypotonic solutions containing a potassium channel blocker significantly reduced the formation of peritoneal metastases in nude mice. Methods The three human GC cell lines (HGC-27, Kato III, and MKN45) were exposed to mild hypotonic solutions, and the effects of blockade of potassium ion transports during hypotonic stimulation on cell volume changes and cell viabilities were examined. In the in vivo study, MKN45 cells stimulated with mild hypotonic solutions were intraperitoneally injected into nude mice, and the effects of blockade of potassium ion transports during hypotonic stimulation on the formation of peritoneal metastases were evaluated. Conclusions Blockade of potassium ion transports enhances hypotonicity-induced cytocidal effects on GC cells, which may contribute to development of a novel lavage method for further reduction of peritoneal recurrence in GC.
Collapse
Affiliation(s)
- Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihiro Kudou
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuzo Yamazato
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Ichikawa
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Katsutoshi Shoda
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryo Morimura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasutoshi Murayama
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiaki Kuriu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hisashi Ikoma
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masayoshi Nakanishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshinori Marunaka
- Department of Molecular Cell Physiology and Bio-Ionomics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Japan Institute for Food Education and Health, St. Agnes' University, Kyoto, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
9
|
Shiozaki A, Ichikawa D, Kosuga T, Marunaka Y, Otsuji E. Regulation of osmolality for cancer treatment. J Physiol Sci 2017; 67:353-360. [PMID: 28185236 PMCID: PMC10716996 DOI: 10.1007/s12576-017-0528-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/23/2017] [Indexed: 02/08/2023]
Abstract
Disseminated metastasis is associated with a poor prognosis, and its management in the peritoneal or pleural cavity is crucial in the treatment of cancer. Recent studies show that ion and water transporters play important roles in fundamental cellular functions, including the regulation of cell volume that would be involved in the cancer process. Here, we review the evidence for hypotonic treatments of cancer and evaluate the potential of the cellular physiological approach in clinical management. The regulation of extracellular osmolality is a promising method, with several studies demonstrating the cytocidal effects of hypotonic solution on cancer cells. Peritoneal lavage with distilled water (DW) during surgery is reported to improve the survival rate of patients with spontaneously ruptured hepatocellular carcinoma. The in vitro studies included in this review also indicate the cytocidal effects of hypotonic shock on esophageal, gastric, colonic, pancreatic, and liver cancer cells with several unique methods and apparatuses, such as a differential interference contrast microscope connected to a digital video camera, a high-resolution flow cytometer and re-incubation analysis. The in vivo studies demonstrate the safeness of a peritoneal injection of DW into mice and indicate that the development of dissemination nodules can be prevented by the pre-incubation of cancer cells with DW or the peritoneal injection of DW. We also demonstrate that the blockade of Cl- channels/transporters enhances the cytocidal effects of hypotonic shock by inhibiting regulatory volume decrease in various cancer cells. A deeper understanding of molecular mechanisms may lead to the discovery of these cellular physiological approaches as a novel therapeutic strategy for disseminated metastasis.
Collapse
Affiliation(s)
- Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Daisuke Ichikawa
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yoshinori Marunaka
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
- Department of Bio-Ionomics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
- Japan Institute for Food Education and Health, St. Agnes' University, Kyoto, 602-8013, Japan.
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
10
|
Kudou M, Shiozaki A, Kosuga T, Shimizu H, Ichikawa D, Konishi H, Morimura R, Komatsu S, Ikoma H, Fujiwara H, Okamoto K, Marunaka Y, Otsuji E. Heat shock exerts anticancer effects on liver cancer via autophagic degradation of aquaporin 5. Int J Oncol 2017; 50:1857-1867. [PMID: 28358429 DOI: 10.3892/ijo.2017.3940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/22/2017] [Indexed: 11/06/2022] Open
Abstract
Previous studies described that the expression of aquaporin 5 (AQP5) was altered in tumors of various organs. AQP5 is attracting attention as a new cancer therapeutic target. In the present study, heat shock-induced changes in AQP5 expression were evaluated by immunofluorescent staining (IF) and western blotting (WB) of liver cancer cells. AQP5 knockdown experiments or a heat shock treatment were conducted, and their effects on cell volume, proliferation, cell cycle, the activity of apoptosis and migration/invasion were compared. Cycloheximide (CHX) chase experiments and double IF of AQP5 and light chain 3B (LC3B) were performed to investigate the mechanisms underlying changes in AQP5 expression. The results showed that IF and WB revealed decrease in AQP5 expression on cellular membranes and in the cytoplasm of heated cells. AQP5 knockdown and heat shock similarly decreased cell volume, suppressed migration/invasion and proliferation, and induced early apoptosis and partial G0/G1 arrest. CHX chase experiments revealed that heat shock accelerated the degradation of AQP5, which was rescued under CHX and the autophagy inhibitor, bafilomycin A1 (BafA1). Double IF showed the co-localization of AQP5 and LC3B on BafA1-treated heated cells. In conclusion, we demonstrated that heat shock decreased AQP5 on cellular membranes and in the cytoplasm by activating autophagic degradation, and heat shock and AQP5 knockdown exerted similar anticancer effects, suggesting that heat shock exerts anticancer effects via the autophagic degradation of AQP5.
Collapse
Affiliation(s)
- Michihiro Kudou
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hiroki Shimizu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Daisuke Ichikawa
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Ryo Morimura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hisashi Ikoma
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yoshinori Marunaka
- Departments of Molecular Cell Physiology and Bio-Ionomics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
11
|
Kudou M, Shiozaki A, Kosuga T, Ichikawa D, Konishi H, Morimura R, Komatsu S, Ikoma H, Fujiwara H, Okamoto K, Hosogi S, Nakahari T, Marunaka Y, Otsuji E. Inhibition of Regulatory Volume Decrease Enhances the Cytocidal Effect of Hypotonic Shock in Hepatocellular Carcinoma. J Cancer 2016; 7:1524-33. [PMID: 27471568 PMCID: PMC4964136 DOI: 10.7150/jca.15181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/04/2016] [Indexed: 12/16/2022] Open
Abstract
Background: Hypotonic shock induces cytocidal effects through cell rupture, and cancer therapy based on this mechanism has been clinically administered to hepatocellular carcinoma patients. We herein investigated the effectiveness of hypotonic shock combined with the inhibition of regulatory volume decrease as cancer therapy for hepatocellular carcinoma. Methods: Morphological changes in human hepatocellular carcinoma cell lines were observed under a differential interference contrast microscope connected to a high-speed digital video camera. Cell volume changes under hypotonic shock with or without chloride, potassium, or water channel blockers were observed using a high-resolution flow cytometer. In order to investigate cytocidal effects, the number of surviving cells was compared after exposure to hypotonic solution with and without each channel blocker (re-incubation experiment). Results: Video recordings showed that cells exposed to distilled water rapidly swelled and then ruptured. Cell volume measurements revealed regulatory volume decrease under mild hypotonic shock, whereas severe hypotonic shock increased the number of broken fragments as a result of cell rupture. Moreover, regulatory volume decrease was inhibited in cells treated with each channel blocker. Re-incubation experiments showed the cytocidal effects of hypotonic shock in cells exposed to hypotonic solution, and additional treatments with each channel blocker enhanced these effects. Conclusion: The inhibition of regulatory volume decrease with chloride, potassium, or water channel blockers may enhance the cytocidal effects of hypotonic shock in hepatocellular carcinoma. Hypotonic shock combined with the inhibition of regulatory volume decrease was a more effective therapy than hypotonic shock alone.
Collapse
Affiliation(s)
- Michihiro Kudou
- 1. Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Atsushi Shiozaki
- 1. Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Toshiyuki Kosuga
- 1. Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Daisuke Ichikawa
- 1. Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Hirotaka Konishi
- 1. Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Ryo Morimura
- 1. Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shuhei Komatsu
- 1. Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Hisashi Ikoma
- 1. Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Hitoshi Fujiwara
- 1. Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kazuma Okamoto
- 1. Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shigekuni Hosogi
- 2. Departments of Molecular Cell Physiology and Bio-Ionomics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Takashi Nakahari
- 2. Departments of Molecular Cell Physiology and Bio-Ionomics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yoshinori Marunaka
- 2. Departments of Molecular Cell Physiology and Bio-Ionomics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan;; 3. Japan Institute for Food Education and Health, Heian Jogakuin (St. Agnes') University, Kyoto, 602-8013, Japan
| | - Eigo Otsuji
- 1. Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| |
Collapse
|
12
|
Takemoto K, Shiozaki A, Ichikawa D, Komatsu S, Konishi H, Nako Y, Murayama Y, Kuriu Y, Nakanishi M, Fujiwara H, Okamoto K, Sakakura C, Nakahari T, Marunaka Y, Otuji E. Evaluation of the efficacy of peritoneal lavage with distilled water in colorectal cancer surgery: in vitro and in vivo study. J Gastroenterol 2015; 50:287-97. [PMID: 24908098 DOI: 10.1007/s00535-014-0971-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 05/15/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND Peritoneal lavage with distilled water has been performed during colorectal cancer surgery. This study investigated the cytocidal effects of hypotonic shock in vitro and in vivo in colorectal cancer cells. METHODS Three human colorectal cancer cell lines, DLD1, HT29, and CACO2, were exposed to distilled water, and morphological changes were observed under a differential interference contrast microscope connected to a high-speed digital video camera. Cell volume changes were assessed using a high-resolution flow cytometer. Re-incubation experiments were performed to investigate the cytocidal effects of distilled water. In the in vivo experiment, cancer cells after hypotonic shock were injected intraperitoneally into mice and the degree of established peritoneal metastasis was subsequently evaluated. The effects of the blockade of Cl(-) channels on these cells during hypotonic shock were also analyzed. RESULTS Morphological observations revealed a rapid cell swelling followed by cell rupture. Measurements of cell volume changes showed that mild hypotonic shock induced regulatory volume decrease (RVD) while severe hypotonic shock broke cells into fragments. Re-incubation experiments demonstrated the cytocidal effects of hypotonicity. In vivo experiments revealed the absence of peritoneal dissemination in mice in the distilled water group, and its presence in all mice in the control group. The blockade of Cl(-) channels increased cell volume by inhibiting RVD and enhanced cytocidal effects during mild hypotonic shock. CONCLUSIONS These results clearly support the efficacy of peritoneal lavage with distilled water during colorectal cancer surgery and suggest that regulating of Cl(-) transport may enhance the cytocidal effects of hypotonic shock.
Collapse
Affiliation(s)
- Kenichi Takemoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Shiozaki A, Ichikawa D, Otsuji E, Marunaka Y. Cellular physiological approach for treatment of gastric cancer. World J Gastroenterol 2014; 20:11560-11566. [PMID: 25206263 PMCID: PMC4155349 DOI: 10.3748/wjg.v20.i33.11560] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/10/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Recent studies show that ion channels/transporters play important roles in fundamental cellular functions that would be involved in the cancer process. We review the evidence for their expression and functioning in human gastric cancer (GC), and evaluate the potential of cellular physiological approach in clinical management. Various types of ion channels, such as voltage-gated K+ channels, intracellular Cl- channels and transient receptor potential channels have been found to express in GC cells and tissues, and to control cell cycles. With regard to water channels, aquaporin 3 and 5 play an important role in the progression of GC. Regulators of intracellular pH, such as anion exchanger, sodium-hydrogen exchanger, vacuolar H+-ATPases and carbonic anhydrases are also involved in tumorigenesis of GC. Their pharmacological manipulation and gene silencing affect cellular behaviours, suggesting their potential as therapeutic targets for GC. Our studies indicate the intracellular Cl- concentration could act as a mediator of cellular signaling and control cell cycle progression in GC cells. Further, we demonstrate the cytocidal effects of hypotonic shock on GC cells, and indicate that the blockade of Cl- channels/transporters enhances these effects by inhibiting regulatory volume decrease. A deeper understanding of molecular mechanisms may lead to the discovery of these cellular physiological approaches as a novel therapeutic strategy for GC.
Collapse
|
14
|
Efficacy of a hypotonic treatment for peritoneal dissemination from gastric cancer cells: an in vivo evaluation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:707089. [PMID: 25093178 PMCID: PMC4100448 DOI: 10.1155/2014/707089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 06/13/2014] [Indexed: 01/05/2023]
Abstract
The aim of the present study was to determine the efficacy of a hypotonic treatment for peritoneal dissemination from gastric cancer cells using an in vivo model. We firstly evaluated the toxicity of a peritoneal injection of distilled water (DW) (2 mL for 3 days) in mice. Macroscopic and microscopic examinations revealed that the peritoneal injection of DW did not severely damage the abdominal organs of these mice. MKN45 gastric cancer cells preincubated with NaCl buffer or DW for 20 minutes in vitro were then intraperitoneally injected into nude mice, and the development of dissemination nodules was analyzed. The total number, weight, and volume of the dissemination nodules were significantly decreased by the DW preincubation. We then determined whether the peritoneal injection of DW inhibited the establishment of peritoneal dissemination. After a peritoneal injection of MKN45 cells into nude mice, NaCl buffer or DW was injected into the abdominal cavity for 3 days. The total volume of dissemination nodules was significantly lower in DW-injected mice than in NaCl-injected mice. In conclusion, we demonstrated the safeness of a peritoneal injection of DW. Furthermore, the development of dissemination nodules from gastric cancer cells was prevented by a preincubation with or peritoneal injection of DW.
Collapse
|