1
|
Kane LE, Mellotte GS, Conlon KC, Ryan BM, Maher SG. Multi-Omic Biomarkers as Potential Tools for the Characterisation of Pancreatic Cystic Lesions and Cancer: Innovative Patient Data Integration. Cancers (Basel) 2021; 13:769. [PMID: 33673153 PMCID: PMC7918773 DOI: 10.3390/cancers13040769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is regarded as one of the most lethal malignant diseases in the world, with GLOBOCAN 2020 estimates indicating that PC was responsible for almost half a million deaths worldwide in 2020. Pancreatic cystic lesions (PCLs) are fluid-filled structures found within or on the surface of the pancreas, which can either be pre-malignant or have no malignant potential. While some PCLs are found in symptomatic patients, nowadays many PCLs are found incidentally in patients undergoing cross-sectional imaging for other reasons-so called 'incidentalomas'. Current methods of characterising PCLs are imperfect and vary hugely between institutions and countries. As such, there is a profound need for improved diagnostic algorithms. This could facilitate more accurate risk stratification of those PCLs that have malignant potential and reduce unnecessary surveillance. As PC continues to have such a poor prognosis, earlier recognition and risk stratification of PCLs may lead to better treatment protocols. This review will focus on the importance of biomarkers in the context of PCLs and PCand outline how current 'omics'-related work could contribute to the identification of a novel integrated biomarker profile for the risk stratification of patients with PCLs and PC.
Collapse
Affiliation(s)
- Laura E. Kane
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin D08 W9RT, Ireland;
| | - Gregory S. Mellotte
- Department of Gastroenterology, Tallaght University Hospital, Dublin D24 NR0A, Ireland; (G.S.M.); (B.M.R.)
| | - Kevin C. Conlon
- Discipline of Surgery, School of Medicine, Trinity College Dublin, Dublin D02 PN40, Ireland;
| | - Barbara M. Ryan
- Department of Gastroenterology, Tallaght University Hospital, Dublin D24 NR0A, Ireland; (G.S.M.); (B.M.R.)
| | - Stephen G. Maher
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin D08 W9RT, Ireland;
| |
Collapse
|
2
|
Molecular Diagnosis of Cystic Neoplasms of the Pancreas: a Review. J Gastrointest Surg 2020; 24:1201-1214. [PMID: 32128679 DOI: 10.1007/s11605-020-04537-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/29/2020] [Indexed: 01/31/2023]
Abstract
BACKGROUND The prevalence of incidental pancreatic cystic neoplasms (PCNs) has increased dramatically with advancements in cross-sectional imaging. Diagnostic imaging is limited in differentiating between benign and malignant PCNs. The aim of this review is to provide an overview of biomarkers that can be used to distinguish PCNs. METHODS A review of the literature on molecular diagnosis of cystic neoplasms of the pancreas was performed. RESULTS Pancreatic cysts can be categorized into inflammatory and non-inflammatory lesions. Inflammatory cysts include pancreatic pseudocysts. Noninflammatory lesions include both mucinous and non-mucinous lesions. Mucinous lesions include intraductal papillary mucinous neoplasm (IPMN) and mucinous cystic neoplasm. Non-mucinous lesions include serous cystadenoma and solid-pseudopapillary tumor of the pancreas. Imaging, cyst aspiration, and histologic findings, as well as carcinoembryonic antigen and amylase are commonly used to distinguish between cyst types. However, molecular techniques to detect differences in genetic mutations, protein expression, glycoproteomics, and metabolomic profiling are important developments in distinguishing between cyst types. DISCUSSION Nomograms incorporating common clinical, laboratory, and imaging findings have been developed in a better effort to predict malignant IPMN. The incorporation of top molecular biomarker candidates to nomograms may improve the predictive ability of current models to more accurately diagnose malignant PCNs.
Collapse
|
3
|
Carmicheal J, Patel A, Dalal V, Atri P, Dhaliwal AS, Wittel UA, Malafa MP, Talmon G, Swanson BJ, Singh S, Jain M, Kaur S, Batra SK. Elevating pancreatic cystic lesion stratification: Current and future pancreatic cancer biomarker(s). Biochim Biophys Acta Rev Cancer 2019; 1873:188318. [PMID: 31676330 DOI: 10.1016/j.bbcan.2019.188318] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an incredibly deadly disease with a 5-year survival rate of 9%. The presence of pancreatic cystic lesions (PCLs) confers an increased likelihood of future pancreatic cancer in patients placing them in a high-risk category. Discerning concurrent malignancy and risk of future PCL progression to cancer must be carefully and accurately determined to improve survival outcomes and avoid unnecessary morbidity of pancreatic resection. Unfortunately, current image-based guidelines are inadequate to distinguish benign from malignant lesions. There continues to be a need for accurate molecular and imaging biomarker(s) capable of identifying malignant PCLs and predicting the malignant potential of PCLs to enable risk stratification and effective intervention management. This review provides an update on the current status of biomarkers from pancreatic cystic fluid, pancreatic juice, and seromic molecular analyses and discusses the potential of radiomics for differentiating PCLs harboring cancer from those that do not.
Collapse
Affiliation(s)
- Joseph Carmicheal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Asish Patel
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vipin Dalal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amaninder S Dhaliwal
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Uwe A Wittel
- Department of General- and Visceral Surgery, University of Freiburg Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Mokenge P Malafa
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Geoffrey Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benjamin J Swanson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shailender Singh
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA; Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
4
|
He Y, Mohamedali A, Huang C, Baker MS, Nice EC. Oncoproteomics: Current status and future opportunities. Clin Chim Acta 2019; 495:611-624. [PMID: 31176645 DOI: 10.1016/j.cca.2019.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
Oncoproteomics is the systematic study of cancer samples using omics technologies to detect changes implicated in tumorigenesis. Recent progress in oncoproteomics is already opening new avenues for the identification of novel biomarkers for early clinical stage cancer detection, targeted molecular therapies, disease monitoring, and drug development. Such information will lead to new understandings of cancer biology and impact dramatically on the future care of cancer patients. In this review, we will summarize the advantages and limitations of the key technologies used in (onco)proteogenomics, (the Omics Pipeline), explain how they can assist us in understanding the biology behind the overarching "Hallmarks of Cancer", discuss how they can advance the development of precision/personalised medicine and the future directions in the field.
Collapse
Affiliation(s)
- Yujia He
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, PR China
| | - Abidali Mohamedali
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, New South Wales 2109, Australia
| | - Canhua Huang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, PR China
| | - Mark S Baker
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales 2109, Australia.
| | - Edouard C Nice
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, PR China; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales 2109, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.
| |
Collapse
|
5
|
Neagu AN. Proteome Imaging: From Classic to Modern Mass Spectrometry-Based Molecular Histology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:55-98. [PMID: 31347042 DOI: 10.1007/978-3-030-15950-4_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In order to overcome the limitations of classic imaging in Histology during the actually era of multiomics, the multi-color "molecular microscope" by its emerging "molecular pictures" offers quantitative and spatial information about thousands of molecular profiles without labeling of potential targets. Healthy and diseased human tissues, as well as those of diverse invertebrate and vertebrate animal models, including genetically engineered species and cultured cells, can be easily analyzed by histology-directed MALDI imaging mass spectrometry. The aims of this review are to discuss a range of proteomic information emerging from MALDI mass spectrometry imaging comparative to classic histology, histochemistry and immunohistochemistry, with applications in biology and medicine, concerning the detection and distribution of structural proteins and biological active molecules, such as antimicrobial peptides and proteins, allergens, neurotransmitters and hormones, enzymes, growth factors, toxins and others. The molecular imaging is very well suited for discovery and validation of candidate protein biomarkers in neuroproteomics, oncoproteomics, aging and age-related diseases, parasitoproteomics, forensic, and ecotoxicology. Additionally, in situ proteome imaging may help to elucidate the physiological and pathological mechanisms involved in developmental biology, reproductive research, amyloidogenesis, tumorigenesis, wound healing, neural network regeneration, matrix mineralization, apoptosis and oxidative stress, pain tolerance, cell cycle and transformation under oncogenic stress, tumor heterogeneity, behavior and aggressiveness, drugs bioaccumulation and biotransformation, organism's reaction against environmental penetrating xenobiotics, immune signaling, assessment of integrity and functionality of tissue barriers, behavioral biology, and molecular origins of diseases. MALDI MSI is certainly a valuable tool for personalized medicine and "Eco-Evo-Devo" integrative biology in the current context of global environmental challenges.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania.
| |
Collapse
|
6
|
Vaysse PM, Heeren RMA, Porta T, Balluff B. Mass spectrometry imaging for clinical research - latest developments, applications, and current limitations. Analyst 2018. [PMID: 28642940 DOI: 10.1039/c7an00565b] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mass spectrometry is being used in many clinical research areas ranging from toxicology to personalized medicine. Of all the mass spectrometry techniques, mass spectrometry imaging (MSI), in particular, has continuously grown towards clinical acceptance. Significant technological and methodological improvements have contributed to enhance the performance of MSI recently, pushing the limits of throughput, spatial resolution, and sensitivity. This has stimulated the spread of MSI usage across various biomedical research areas such as oncology, neurological disorders, cardiology, and rheumatology, just to name a few. After highlighting the latest major developments and applications touching all aspects of translational research (i.e. from early pre-clinical to clinical research), we will discuss the present challenges in translational research performed with MSI: data management and analysis, molecular coverage and identification capabilities, and finally, reproducibility across multiple research centers, which is the largest remaining obstacle in moving MSI towards clinical routine.
Collapse
Affiliation(s)
- Pierre-Maxence Vaysse
- Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Tiffany Porta
- Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
7
|
Greco V, Piras C, Pieroni L, Ronci M, Putignani L, Roncada P, Urbani A. Applications of MALDI-TOF mass spectrometry in clinical proteomics. Expert Rev Proteomics 2018; 15:683-696. [PMID: 30058389 DOI: 10.1080/14789450.2018.1505510] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The development of precision medicine requires advanced technologies to address the multifactorial disease stratification and to support personalized treatments. Among omics techniques, proteomics based on Mass Spectrometry (MS) is becoming increasingly relevant in clinical practice allowing a phenotypic characterization of the dynamic functional status of the organism. From this perspective, Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) MS is a suitable platform for providing a high-throughput support to clinics. Areas covered: This review aims to provide an updated overview of MALDI-TOF MS applications in clinical proteomics. The most relevant features of this analysis have been discussed, highlighting both pre-analytical and analytical factors that are crucial in proteomics studies. Particular emphasis is placed on biofluids proteomics for biomarkers discovery and on recent progresses in clinical microbiology, drug monitoring, and minimal residual disease (MRD). Expert commentary: Despite some analytical limitations, the latest technological advances together with the easiness of use, the low time and low cost consuming and the high throughput are making MALDI-TOF MS instruments very attractive for the clinical practice. These features offer a significant potential for the routine of the clinical laboratory and ultimately for personalized medicine.
Collapse
Affiliation(s)
- Viviana Greco
- a Institute of Biochemistry and Clinical Biochemistry , Università Cattolica del Sacro Cuore , Rome , Italy.,b Department of Laboratory Diagnostic and Infectious Diseases , Fondazione Policlinico Universitario Agostino Gemelli-IRCCS , Rome , Italy
| | - Cristian Piras
- c Dipartimento di Medicina Veterinaria , Università degli studi di Milano , Milano , Italy
| | - Luisa Pieroni
- d Proteomics and Metabonomics Unit , IRCCS-Fondazione Santa Lucia , Rome , Italy
| | - Maurizio Ronci
- d Proteomics and Metabonomics Unit , IRCCS-Fondazione Santa Lucia , Rome , Italy.,e Department of Medical, Oral and Biotechnological Sciences , University "G. D'Annunzio" of Chieti-Pescara , Chieti , Italy
| | - Lorenza Putignani
- f Unit of Parasitology Bambino Gesù Children's Hospital , IRCCS , Rome , Italy.,g Unit of Human Microbiome , Bambino Gesù Children's Hospital, IRCCS , Rome , Italy
| | - Paola Roncada
- h Dipartimento di Scienze della Salute , Università degli studi "Magna Græcia" di Catanzaro , Catanzaro , Italy
| | - Andrea Urbani
- a Institute of Biochemistry and Clinical Biochemistry , Università Cattolica del Sacro Cuore , Rome , Italy.,b Department of Laboratory Diagnostic and Infectious Diseases , Fondazione Policlinico Universitario Agostino Gemelli-IRCCS , Rome , Italy
| |
Collapse
|
8
|
Fania C, Pezzilli R, Melzi d'Eril G, Gelfi C, Barassi A. Identification of Small Proteins and Peptides in the Differentiation of Patients with Intraductal Mucinous Neoplasms of the Pancreas, Chronic Pancreatitis and Pancreatic Adenocarcinoma. Dig Dis Sci 2018; 63:920-933. [PMID: 29417328 DOI: 10.1007/s10620-018-4944-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 01/20/2018] [Indexed: 12/09/2022]
Abstract
BACKGROUND There are a limited number of studies investigating the type of serum proteins capable of differentiating intraductal papillary mucinous neoplasms from benign or malignant diseases of the pancreas. AIMS To select proteins able to differentiate intraductal papillary mucinous neoplasms from benign and malignant pancreatic disease using semiquantitative proteomics. METHODS Serum samples were obtained from 74 patients (19 with type II intraductal papillary mucinous neoplasms, 8 with type I/III intraductal papillary mucinous neoplasms, 24 with chronic pancreatitis, 23 with pancreatic ductal adenocarcinomas) and 21 healthy subjects. Small proteins and peptides were assayed by matrix-assisted laser desorption/ionization for the detection of differentially abundant species possibly related to tumor onset. Serum pancreatic amylase, lipase, carcinoembryonic antigen and carbohydrate antigen 19-9 (CA 19-9) were also assayed. RESULTS Twenty-six of 84 peaks detected were dysregulated (7 more abundant and 19 less abundant in the type II intraductal papillary mucinous neoplasms, p < 0.05). Of the differentially abundant peaks, 17 were commonly dysregulated (3 peaks more abundant and 13 less abundant in type II intraductal papillary mucinous neoplasms, and one at m/z = 9961 at variance), indicating a protein fingerprint shared by types I/III and type II intraductal papillary mucinous neoplasms and pancreatic ductal adenocarcinomas. CONCLUSIONS These results suggest that our approach can be used to differentiate type II intraductal papillary mucinous neoplasms from type I/III neoplasms, and type II intraductal papillary mucinous neoplasms from pancreatic ductal adenocarcinomas.
Collapse
Affiliation(s)
- Chiara Fania
- Clinical Proteomics Unit, IRCCS Policlinico San Donato, San Donato Milanese, MI, Italy
| | - Raffaele Pezzilli
- Pancreas Unit, Department of Digestive System, Sant'Orsola-Malpighi Hospital, Via Massarenti, 9, 40138, Bologna, Italy.
| | - Gianvico Melzi d'Eril
- Department of Health Sciences, San Paolo Hospital, University of Milan, Milan, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Alessandra Barassi
- Department of Health Sciences, San Paolo Hospital, University of Milan, Milan, Italy
| |
Collapse
|
9
|
Everest-Dass AV, Moh ESX, Ashwood C, Shathili AMM, Packer NH. Human disease glycomics: technology advances enabling protein glycosylation analysis - part 1. Expert Rev Proteomics 2018; 15:165-182. [PMID: 29285957 DOI: 10.1080/14789450.2018.1421946] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Protein glycosylation is recognized as an important post-translational modification, with specific substructures having significant effects on protein folding, conformation, distribution, stability and activity. However, due to the structural complexity of glycans, elucidating glycan structure-function relationships is demanding. The fine detail of glycan structures attached to proteins (including sequence, branching, linkage and anomericity) is still best analysed after the glycans are released from the purified or mixture of glycoproteins (glycomics). The technologies currently available for glycomics are becoming streamlined and standardized and many features of protein glycosylation can now be determined using instruments available in most protein analytical laboratories. Areas covered: This review focuses on the current glycomics technologies being commonly used for the analysis of the microheterogeneity of monosaccharide composition, sequence, branching and linkage of released N- and O-linked glycans that enable the determination of precise glycan structural determinants presented on secreted proteins and on the surface of all cells. Expert commentary: Several emerging advances in these technologies enabling glycomics analysis are discussed. The technological and bioinformatics requirements to be able to accurately assign these precise glycan features at biological levels in a disease context are assessed.
Collapse
Affiliation(s)
- Arun V Everest-Dass
- a Biomolecular Discovery and Design Research Centre, Faculty of Science and Engineering , Macquarie University , Sydney , Australia.,b Institute for Glycomics , Griffith University , Gold Coast , Australia.,c ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Edward S X Moh
- a Biomolecular Discovery and Design Research Centre, Faculty of Science and Engineering , Macquarie University , Sydney , Australia.,c ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Christopher Ashwood
- a Biomolecular Discovery and Design Research Centre, Faculty of Science and Engineering , Macquarie University , Sydney , Australia.,c ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Abdulrahman M M Shathili
- a Biomolecular Discovery and Design Research Centre, Faculty of Science and Engineering , Macquarie University , Sydney , Australia.,c ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Nicolle H Packer
- a Biomolecular Discovery and Design Research Centre, Faculty of Science and Engineering , Macquarie University , Sydney , Australia.,b Institute for Glycomics , Griffith University , Gold Coast , Australia.,c ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| |
Collapse
|
10
|
Ucal Y, Durer ZA, Atak H, Kadioglu E, Sahin B, Coskun A, Baykal AT, Ozpinar A. Clinical applications of MALDI imaging technologies in cancer and neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:795-816. [PMID: 28087424 DOI: 10.1016/j.bbapap.2017.01.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 12/08/2016] [Accepted: 01/06/2017] [Indexed: 12/25/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) imaging mass spectrometry (IMS) enables localization of analytes of interest along with histology. More specifically, MALDI-IMS identifies the distributions of proteins, peptides, small molecules, lipids, and drugs and their metabolites in tissues, with high spatial resolution. This unique capacity to directly analyze tissue samples without the need for lengthy sample preparation reduces technical variability and renders MALDI-IMS ideal for the identification of potential diagnostic and prognostic biomarkers and disease gradation. MALDI-IMS has evolved rapidly over the last decade and has been successfully used in both medical and basic research by scientists worldwide. In this review, we explore the clinical applications of MALDI-IMS, focusing on the major cancer types and neurodegenerative diseases. In particular, we re-emphasize the diagnostic potential of IMS and the challenges that must be confronted when conducting MALDI-IMS in clinical settings. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Yasemin Ucal
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey
| | - Zeynep Aslıhan Durer
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey
| | - Hakan Atak
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey
| | - Elif Kadioglu
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey
| | - Betul Sahin
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey
| | - Abdurrahman Coskun
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey
| | - Ahmet Tarık Baykal
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey
| | - Aysel Ozpinar
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey.
| |
Collapse
|
11
|
Rocha B, Ruiz-Romero C, Blanco FJ. Mass spectrometry imaging: a novel technology in rheumatology. Nat Rev Rheumatol 2016; 13:52-63. [DOI: 10.1038/nrrheum.2016.184] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Novel imaging tools for investigating the role of immune signalling in the brain. Brain Behav Immun 2016; 58:40-47. [PMID: 27129634 DOI: 10.1016/j.bbi.2016.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 04/05/2016] [Accepted: 04/25/2016] [Indexed: 12/29/2022] Open
Abstract
The importance of neuro-immune interactions in both physiological and pathophysiological states cannot be overstated. As our appreciation for the neuroimmune nature of the brain and spinal cord grows, so does our need to extend the spatial and temporal resolution of our molecular analysis techniques. Current imaging technologies applied to investigate the actions of the neuroimmune system in both health and disease states have been adapted from the fields of immunology and neuroscience. While these classical techniques have provided immense insight into the function of the CNS, they are however, inherently limited. Thus, the development of innovative methods which overcome these limitations are crucial for imaging and quantifying acute and chronic neuroimmune responses. Therefore, this review aims to convey emerging novel and complementary imaging technologies in a form accessible to medical scientists engaging in neuroimmune research.
Collapse
|
13
|
Schwamborn K, Kriegsmann M, Weichert W. MALDI imaging mass spectrometry - From bench to bedside. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:776-783. [PMID: 27810414 DOI: 10.1016/j.bbapap.2016.10.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/24/2016] [Accepted: 10/28/2016] [Indexed: 10/20/2022]
Abstract
Today, pathologists face many challenges in defining the precise morphomolecular diagnosis and in guiding clinicians to the optimal patients' treatment. To achieve this goal, increasingly, classical histomorphological methods have to be supplemented by high throughput molecular assays. Since MALDI imaging mass spectrometry (IMS) enables the assessment of spatial molecular arrangements in tissue sections, it goes far beyond microscopy in providing hundreds of different molecular images from a single scan without the need of target-specific reagents. Thus, this technology has the potential to uncover new markers for diagnostic purposes or markers that correlate with disease severity as well as prognosis and therapeutic response. Additionally, in the future MALDI IMS based classifiers measured with this technology in real time in the diagnostic setting might be applicable in the routine diagnostic setting. In this review, recently published studies that show the usefulness, advantages, and applicability of MALDI IMS in different fields of pathology (diagnosis, prognosis and treatment response) are highlighted. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Kristina Schwamborn
- Institute of Pathology, Technische Universität München (TUM), Munich, Germany.
| | - Mark Kriegsmann
- University of Heidelberg, Department of Pathology, Heidelberg, Germany
| | - Wilko Weichert
- Institute of Pathology, Technische Universität München (TUM), Munich, Germany
| |
Collapse
|
14
|
Rocha B, Cillero-Pastor B, Blanco FJ, Ruiz-Romero C. MALDI mass spectrometry imaging in rheumatic diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:784-794. [PMID: 27742553 DOI: 10.1016/j.bbapap.2016.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 01/15/2023]
Abstract
Mass spectrometry imaging (MSI) is a technique used to visualize the spatial distribution of biomolecules such as peptides, proteins, lipids or other organic compounds by their molecular masses. Among the different MSI strategies, MALDI-MSI provides a sensitive and label-free approach for imaging of a wide variety of protein or peptide biomarkers from the surface of tissue sections, being currently used in an increasing number of biomedical applications such as biomarker discovery and tissue classification. In the field of rheumatology, MALDI-MSI has been applied to date for the analysis of joint tissues such as synovial membrane or cartilage. This review summarizes the studies and key achievements obtained using MALDI-MSI to increase understanding on rheumatic pathologies and to describe potential diagnostic or prognostic biomarkers of these diseases. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Beatriz Rocha
- Proteomics Unit-ProteoRed/ISCIII, Rheumatology Group, INIBIC - Hospital Universitario de A Coruña, SERGAS, A Coruña, Spain
| | | | - Francisco J Blanco
- Proteomics Unit-ProteoRed/ISCIII, Rheumatology Group, INIBIC - Hospital Universitario de A Coruña, SERGAS, A Coruña, Spain; RIER-RED de Inflamación y Enfermedades Reumáticas, INIBIC-CHUAC, A Coruña, Spain.
| | - Cristina Ruiz-Romero
- Proteomics Unit-ProteoRed/ISCIII, Rheumatology Group, INIBIC - Hospital Universitario de A Coruña, SERGAS, A Coruña, Spain; CIBER-BBN Instituto de Salud Carlos III, INIBIC-CHUAC, A Coruña, Spain.
| |
Collapse
|
15
|
Huang D, Wang S, Wang A, Chen X, Zhang H. Thymosin beta 4 silencing suppresses proliferation and invasion of non-small cell lung cancer cells by repressing Notch1 activation. Acta Biochim Biophys Sin (Shanghai) 2016; 48:788-94. [PMID: 27521796 DOI: 10.1093/abbs/gmw070] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/12/2016] [Indexed: 12/15/2022] Open
Abstract
Thymosin beta 4 (Tβ4), a pleiotropic actin-sequestering polypeptide that is involved in wound healing and developmental processes, has been reported to be strongly associated with tumorigenesis. A recent tissue microarray analysis showed that Tβ4 was highly expressed in certain tumor cells, including lung cancer. However, the exact expression pattern and the role of Tβ4 in non-small cell lung cancer (NSCLC) have not to our knowledge been investigated. In the present study, we confirmed that Tβ4 expression was increased in NSCLC tissues and cell lines. Tβ4 gene silencing in A549 and H1299 cells inhibited cell proliferation, migration, and invasion in vitro and decreased tumor growth in vivo Mechanistic investigations revealed a significant decrease in Notch1 activation in Tβ4 gene-silenced cells. Moreover, restoring the Notch1 expression attenuated the function of Tβ4 silencing in NSCLC cells. Taken together, these findings suggest that Tβ4 may play an oncogenic role in NSCLC progression and may be a novel molecular target for anti-NSCLC therapy.
Collapse
Affiliation(s)
- Dayu Huang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital of Tongji University, Shanghai 200433, China
| | - Shaohua Wang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - An Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital of Tongji University, Shanghai 200433, China
| | - Xiaofeng Chen
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Huijun Zhang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai 200040, China
| |
Collapse
|
16
|
Longuespée R, Casadonte R, Kriegsmann M, Pottier C, Picard de Muller G, Delvenne P, Kriegsmann J, De Pauw E. MALDI mass spectrometry imaging: A cutting-edge tool for fundamental and clinical histopathology. Proteomics Clin Appl 2016; 10:701-19. [PMID: 27188927 DOI: 10.1002/prca.201500140] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/07/2016] [Accepted: 05/13/2016] [Indexed: 01/16/2023]
Abstract
Histopathological diagnoses have been done in the last century based on hematoxylin and eosin staining. These methods were complemented by histochemistry, electron microscopy, immunohistochemistry (IHC), and molecular techniques. Mass spectrometry (MS) methods allow the thorough examination of various biocompounds in extracts and tissue sections. Today, mass spectrometry imaging (MSI), and especially matrix-assisted laser desorption ionization (MALDI) imaging links classical histology and molecular analyses. Direct mapping is a major advantage of the combination of molecular profiling and imaging. MSI can be considered as a cutting edge approach for molecular detection of proteins, peptides, carbohydrates, lipids, and small molecules in tissues. This review covers the detection of various biomolecules in histopathological sections by MSI. Proteomic methods will be introduced into clinical histopathology within the next few years.
Collapse
Affiliation(s)
- Rémi Longuespée
- Proteopath GmbH, Trier, Germany.,Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| | | | - Mark Kriegsmann
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Charles Pottier
- Laboratory of Experimental Pathology, GIGA-Cancer, Department of Pathology, University of Liège, Liège, Belgium
| | | | - Philippe Delvenne
- Laboratory of Experimental Pathology, GIGA-Cancer, Department of Pathology, University of Liège, Liège, Belgium
| | - Jörg Kriegsmann
- Proteopath GmbH, Trier, Germany.,MVZ for Histology, Cytology and Molecular Diagnostics Trier, Trier, Germany
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| |
Collapse
|
17
|
Lahiri S, Sun N, Buck A, Imhof A, Walch A. MALDI imaging mass spectrometry as a novel tool for detecting histone modifications in clinical tissue samples. Expert Rev Proteomics 2016; 13:275-84. [DOI: 10.1586/14789450.2016.1146598] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Brosens LAA, Hackeng WM, Offerhaus GJ, Hruban RH, Wood LD. Pancreatic adenocarcinoma pathology: changing "landscape". J Gastrointest Oncol 2015; 6:358-74. [PMID: 26261723 DOI: 10.3978/j.issn.2078-6891.2015.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/22/2015] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is a devastating disease. At time of diagnosis the disease is usually advanced and only a minority of patients are eligible for surgical resection. The overall 5-year survival is 6%. However, survival of patients with early stage pancreatic cancer is significantly better. To improve the prognosis of patients with pancreatic cancer, it is essential to diagnose and treat pancreatic cancer in the earliest stage. Prevention of pancreatic cancer by treating noninvasive precursor lesions just before they invade tissues can potentially lead to even better outcomes. Pancreatic carcinogenesis results from a stepwise progression in which accumulating genetic alterations drive neoplastic progression in well-defined precursor lesions, ultimately giving rise to an invasive adenocarcinoma. A thorough understanding of the genetic changes that drive pancreatic carcinogenesis can lead to identification of biomarkers for early detection and targets for therapy. Recent next-generation sequencing (NGS) studies have shed new light on our understanding of the natural history of pancreatic cancer and the precursor lesions that give rise to these cancers. Importantly, there is a significant window of opportunity for early detection and treatment between the first genetic alteration in a cell in the pancreas and development of full-blown pancreatic cancer. The current views on the pathology and genetics of pancreatic carcinogenesis that evolved from studies of pancreatic cancer and its precursor lesions are discussed in this review.
Collapse
Affiliation(s)
- Lodewijk A A Brosens
- 1 Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands ; 2 Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Wenzel M Hackeng
- 1 Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands ; 2 Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - G Johan Offerhaus
- 1 Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands ; 2 Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ralph H Hruban
- 1 Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands ; 2 Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Laura D Wood
- 1 Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands ; 2 Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
19
|
Crecelius AC, Schubert US, von Eggeling F. MALDI mass spectrometric imaging meets “omics”: recent advances in the fruitful marriage. Analyst 2015; 140:5806-20. [DOI: 10.1039/c5an00990a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI MSI) is a method that allows the investigation of the molecular content of surfaces, in particular, tissues, within its morphological context.
Collapse
Affiliation(s)
- A. C. Crecelius
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - U. S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - F. von Eggeling
- Jena Center for Soft Matter (JCSM)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Institute of Physical Chemistry
| |
Collapse
|