1
|
Liu W, Chen Y, Xie T, Zhang Z, Wang Y, Xie X, Chen L, Zhou Z. Dual-energy CT extracellular volume fraction predicts tumor collagen ratio and possibly survival for inoperable pancreatic cancer patients. Eur Radiol 2025; 35:1451-1463. [PMID: 39922972 DOI: 10.1007/s00330-024-11330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/22/2024] [Accepted: 11/28/2024] [Indexed: 02/10/2025]
Abstract
OBJECTIVES Tumor collagen is vital in chemotherapy resistance of pancreatic cancer (PC), but its non-invasive evaluation remains challenging. This study aims to investigate the association of variables derived from dual-energy CT with the collagen ratio (CR) of PC and to determine the prognostic value of CR in unresectable diseases. MATERIALS AND METHODS A total of 83 patients with resected PC and 71 patients with unresectable PC were enrolled. In the resected group, the correlation between the tumor CR and variables of dual-energy CT was analyzed. In the unresectable group, Cox regression analyses were conducted to investigate the prognostic value of dual-energy CT-predicted CR and other clinicoradiological indicators. RESULTS The patients with resected PC were divided into low and high-CR sets with a threshold of 55%. In the resected group, the extracellular volume fraction calculated by the iodine concentration (ECV_IC) was the only predictor of tumor CR according to univariate and multivariate analysis (hazard ratio [HR] (95% confidence interval [CI]):1.19 [1.03-1.37]). The correlation coefficient r was 0.26 (p = 0.02) between ECV_IC and specific CR values. In the training set of unresectable PC group, ECV_IC (HR (95% CI): 0.94 (0.89-0.99), p = 0.03) and contrast-enhanced pattern (CEP) (HR (95% CI): 3.20 (1.41-7.27), p = 0.01) were independent prognostic factors for overall survival. The nomogram model was constructed and showed a good performance. CONCLUSION The ECV_IC is a non-invasive indicator of tumor CR in PC. The ECV_IC and CEP have the potential to predict the prognosis of unresectable PC. KEY POINTS Question Non-invasive evaluation of tumor collagen, a vital determinant of chemotherapy resistance of pancreatic cancer, remains challenging. Findings Tumor collagen ratio can be noninvasively predicted by extracellular volume fraction based on iodine concentration. Clinical relevance The nomogram model composed of extracellular volume fraction and contrast-enhanced pattern can serve as an effective and convenient tool for stratifying the prognosis of patients with unresectable pancreatic cancer.
Collapse
Affiliation(s)
- Wei Liu
- Department of Radiology, Fudan University Shanghai Cancer Center & Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi Chen
- Department of Radiology, Fudan University Shanghai Cancer Center & Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Tiansong Xie
- Department of Radiology, Fudan University Shanghai Cancer Center & Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zehua Zhang
- Department of Radiology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, 201100, China
| | - Yu Wang
- Clinical and Technical Support, Philips Healthcare, Shanghai, China
| | - Xuebin Xie
- Department of Radiology, Kiang Wu Hospital, Macao, 999078, China
| | - Lei Chen
- Department of Radiology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, 201100, China.
| | - Zhengrong Zhou
- Department of Radiology, Fudan University Shanghai Cancer Center & Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Department of Radiology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, 201100, China.
| |
Collapse
|
2
|
Alver TN, Bergholtz H, Holm MB, Dorg LT, Skrede ML, Kure EH, Verbeke CS. Spatial Transcriptomics Reveals Cancer and Stromal Cell Heterogeneity Between Center and Invasive Front of Pancreatic Cancer. Mod Pathol 2025; 38:100726. [PMID: 39889965 DOI: 10.1016/j.modpat.2025.100726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/19/2024] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
Intratumor heterogeneity is considered a major cause of treatment failure in pancreatic ductal adenocarcinoma (PDAC). In recent years, marked heterogeneity at the genomic and transcriptional level has been revealed, but the spatial distribution of the heterogeneous cell populations has not been considered. Yet, it is assumed that cancer cells at the invasive front are endowed with enhanced migratory and invasive properties, although evidence is scanty, and cancer-associated fibroblasts (CAFs) in this location have not been characterized. In this study, digital spatial profiling was used to compare the transcriptional profiles of cancer cells and CAFs in the tumor center versus the invasive front of human PDAC. Four well-differentiated PDACs with conventional morphology were investigated with the GeoMx system (Nanostring). Regions of interest were analyzed in the tumor center and at the invasive front using a whole transcriptome assay in the cancer cell and CAF segments separately. Three of the PDACs harbored mutated KRAS, whereas the fourth case was confirmed wild-type KRAS. Substantial inter-regional heterogeneity was identified, with increased activity of pathways associated with cellular stress (including TNFα-signaling via NFκB, hypoxia, P53 pathway), proliferation (MYC targets, mitotic spindle), glycolysis, and epithelial-mesenchymal transition (EMT) at the invasive front in both the cancer cell and CAF segments compared with the center of the tumor. Immunohistochemical validation on 17 PDACs of well, moderate, and poor differentiation confirmed significant inter-regional heterogeneity in the expression level of markers of EMT and glycolysis. The results of this study show that in PDAC, transcriptional profiles of both cancer cells and CAFs differ between the center of the tumor and the invasive front.
Collapse
Affiliation(s)
- Tine Norman Alver
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Norway.
| | - Helga Bergholtz
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Norway
| | - Maia Blomhoff Holm
- Department of Pathology, Oslo University Hospital, Rikshospitalet, Norway; Department of Pathology, Institute of Clinical Medicine, University of Oslo, Norway
| | - Linda Trobe Dorg
- Department of Pathology, Institute of Clinical Medicine, University of Oslo, Norway
| | | | - Elin Hegland Kure
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Norway
| | - Caroline Sophie Verbeke
- Department of Pathology, Oslo University Hospital, Rikshospitalet, Norway; Department of Pathology, Institute of Clinical Medicine, University of Oslo, Norway
| |
Collapse
|
3
|
Erreni M, Fumagalli MR, D’Anna R, Sollai M, Bozzarelli S, Nappo G, Zanini D, Parente R, Garlanda C, Rimassa L, Terracciano LM, Biswas SK, Zerbi A, Mantovani A, Doni A. Depicting the cellular complexity of pancreatic adenocarcinoma by Imaging Mass Cytometry: focus on cancer-associated fibroblasts. Front Immunol 2024; 15:1472433. [PMID: 39575252 PMCID: PMC11578750 DOI: 10.3389/fimmu.2024.1472433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/08/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) represents the complexity of interaction between cancer and cells of the tumor microenvironment (TME). Immune cells affect tumor cell behavior, thus driving cancer progression. Cancer-associated fibroblasts (CAFs) are responsible of the desmoplastic and fibrotic reaction by regulating deposition and remodeling of extracellular matrix (ECM). As tumor-promoting cells abundant in PDAC ECM, CAFs represent promising targets for novel anticancer interventions. However, relevant clinical trials are hampered by the lack of specific markers and elusive differences among CAF subtypes. Indeed, while single-cell transcriptomic analyses have provided important information on the cellular constituents of PDACs and related molecular pathways, studies based on the identification of protein markers in tissues aimed at identifying CAF subtypes and new molecular targets result incomplete. Methods Herein, we applied multiplexed Imaging Mass Cytometry (IMC) at single-cell resolution on 8 human PDAC tissues to depict the PDAC composing cells, and profiling immune cells, endothelial cells (ECs), as well as endocrine cells and tumor cells. Results We focused on CAFs by characterizing up to 19 clusters distinguished by phenotype, spatiality, and interaction with immune and tumor cells. We report evidence that specific subtypes of CAFs (CAFs 10 and 11) predominantly are enriched at the tumor-stroma interface and closely associated with tumor cells. CAFs expressing different combinations of FAP, podoplanin and cadherin-11, were associated with a higher level of CA19-9. Moreover, we identified specific subsets of FAP+ and podoplanin+/cadherin-11+ CAFs enriched in patients with negative prognosis. Discussion The present study provides new general insights into the complexity of the PDAC microenvironment by defining phenotypic heterogeneities and spatial distributions of CAFs, thus suggesting different functions of their subtypes in the PDAC microenvironment.
Collapse
Affiliation(s)
- Marco Erreni
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Maria Rita Fumagalli
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Raffaella D’Anna
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Mauro Sollai
- Pathology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Silvia Bozzarelli
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Gennaro Nappo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Pancreatic Surgery Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Damiano Zanini
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Raffaella Parente
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Cecilia Garlanda
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Luigi Maria Terracciano
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Pathology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Subhra K. Biswas
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Alessandro Zerbi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Pancreatic Surgery Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Andrea Doni
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
4
|
Crimì F, Turatto F, D'Alessandro C, Sussan G, Iacobone M, Torresan F, Tizianel I, Campi C, Quaia E, Caccese M, Ceccato F. Texture analysis can predict response to etoposide-doxorubicin-cisplatin in patients with adrenocortical carcinoma. J Endocrinol Invest 2024:10.1007/s40618-024-02476-2. [PMID: 39382628 DOI: 10.1007/s40618-024-02476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND The adrenocortical carcinoma (ACC) is a rare and highly aggressive malignancy originating from the adrenal cortex. These patients usually undergo chemotherapy with etoposide, doxorubicin, cisplatin and mitotane (EDP-M) in case of locally advanced or metastatic ACC. Computed tomography (CT) radiomics showed to be useful in adrenal pathologies. The study aimed to analyze the association between response to EDP-M treatment and CT textural features at diagnosis in patients with locally advanced or metastatic ACCs. METHODS We enrolled 17 patients with advanced or metastatic ACC who underwent CT before and after EDP-M therapy. The response to treatment was evaluated according to RECIST 1.1, Choi, and volumetric criteria. Based on the aforementioned criteria, the patients were classified as responders and not responders. Textural features were extracted from the biggest lesion in contrast-enhanced CT images with LifeX software. ROC curves were drawn for the variables that were significantly different (p < 0.05) between the two groups. RESULTS Long-run high grey level emphasis (LRHGLE_GLRLM) and histogram kurtosis were significantly different between responder and not responder groups (p = 0.04) and the multivariate ROC curve combining the two features showed a very good AUC (0.900; 95%IC: 0.724-1.000) in discriminating responders from not responders. More heterogeneous tissue texture of initial staging CT in locally advanced or metastatic ACC could predict the positive response to EDP-M treatment. CONCLUSIONS Adrenal texture is able to predict the response to EDP-M therapy in patients with advanced ACC.
Collapse
Affiliation(s)
- Filippo Crimì
- Department of Medicine-DIMED, University of Padova, Padova, Italy
- Institute of Radiology, University-Hospital of Padova, Padova, Italy
| | - Francesca Turatto
- Department of Medicine-DIMED, University of Padova, Padova, Italy
- Institute of Radiology, University-Hospital of Padova, Padova, Italy
| | - Carlo D'Alessandro
- Department of Medicine-DIMED, University of Padova, Padova, Italy
- Institute of Radiology, University-Hospital of Padova, Padova, Italy
| | - Giovanni Sussan
- Department of Medicine-DIMED, University of Padova, Padova, Italy
- Institute of Radiology, University-Hospital of Padova, Padova, Italy
| | - Maurizio Iacobone
- Endocrine Surgery Unit, Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, 35128, Italy
| | - Francesca Torresan
- Endocrine Surgery Unit, Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, 35128, Italy
| | - Irene Tizianel
- Department of Medicine-DIMED, University of Padova, Padova, Italy
- Endocrinology Unit, Department of Medicine-DIMED, University of Padova, Via Ospedale Civile, Padova, 105 - 35128, Italy
| | - Cristina Campi
- Department of Mathematics, University of Genoa, Genoa, Italy
- Life Science Computational Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genoa, Italy
| | - Emilio Quaia
- Department of Medicine-DIMED, University of Padova, Padova, Italy
- Institute of Radiology, University-Hospital of Padova, Padova, Italy
| | - Mario Caccese
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Filippo Ceccato
- Department of Medicine-DIMED, University of Padova, Padova, Italy.
- Endocrinology Unit, Department of Medicine-DIMED, University of Padova, Via Ospedale Civile, Padova, 105 - 35128, Italy.
| |
Collapse
|
5
|
Holm MB, Lenggenhager D, Detlefsen S, Sántha P, Verbeke CS. Identification of tumour regression in neoadjuvantly treated pancreatic cancer is based on divergent and nonspecific criteria. Histopathology 2024; 85:171-181. [PMID: 38571446 DOI: 10.1111/his.15190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/23/2023] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
AIMS Following the increased use of neoadjuvant therapy for pancreatic cancer, grading of tumour regression (TR) has become part of routine diagnostics. However, it suffers from marked interobserver variation, which is mainly ascribed to the subjectivity of the defining criteria of the categories in TR grading systems. We hypothesized that a further cause for the interobserver variation is the use of divergent and nonspecific morphological criteria to identify tumour regression. METHODS AND RESULTS Twenty treatment-naïve pancreatic cancers and 20 pancreatic cancers treated with neoadjuvant chemotherapy were reviewed by three experienced pancreatic pathologists who, blinded for treatment status, categorized each tumour as treatment-naïve or neoadjuvantly treated, and annotated all tissue areas they considered showing tumour regression. Only 50%-65% of the cases were categorized correctly, and the annotated tissue areas were highly discrepant (only 3%-41% overlap). When the prevalence of various morphological features deemed to indicate TR was compared between treatment-naïve and neoadjuvantly treated tumours, only one pattern, characterized by reduced cancer cell density and prominent stroma affecting a large area of the tumour bed, occurred significantly more frequently, but not exclusively, in the neoadjuvantly treated group. Finally, stromal features, both morphological and biological, were investigated as possible markers for tumour regression, but failed to distinguish TR from native tumour stroma. CONCLUSION There is considerable divergence in opinion between pathologists when it comes to the identification of tumour regression. Reliable identification of TR is only possible if it is extensive, while lesser degrees of treatment effect cannot be recognized with certainty.
Collapse
Affiliation(s)
- Maia Blomhoff Holm
- Department of Pathology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Daniela Lenggenhager
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Sönke Detlefsen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Petra Sántha
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Caroline Sophie Verbeke
- Department of Pathology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Vendittelli P, Bokhorst JM, Smeets EMM, Kryklyva V, Brosens LAA, Verbeke C, Litjens G. Automatic quantification of tumor-stroma ratio as a prognostic marker for pancreatic cancer. PLoS One 2024; 19:e0301969. [PMID: 38771787 PMCID: PMC11108171 DOI: 10.1371/journal.pone.0301969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/26/2024] [Indexed: 05/23/2024] Open
Abstract
PURPOSE This study aims to introduce an innovative multi-step pipeline for automatic tumor-stroma ratio (TSR) quantification as a potential prognostic marker for pancreatic cancer, addressing the limitations of existing staging systems and the lack of commonly used prognostic biomarkers. METHODS The proposed approach involves a deep-learning-based method for the automatic segmentation of tumor epithelial cells, tumor bulk, and stroma from whole-slide images (WSIs). Models were trained using five-fold cross-validation and evaluated on an independent external test set. TSR was computed based on the segmented components. Additionally, TSR's predictive value for six-month survival on the independent external dataset was assessed. RESULTS Median Dice (inter-quartile range (IQR)) of 0.751(0.15) and 0.726(0.25) for tumor epithelium segmentation on internal and external test sets, respectively. Median Dice of 0.76(0.11) and 0.863(0.17) for tumor bulk segmentation on internal and external test sets, respectively. TSR was evaluated as an independent prognostic marker, demonstrating a cross-validation AUC of 0.61±0.12 for predicting six-month survival on the external dataset. CONCLUSION Our pipeline for automatic TSR quantification offers promising potential as a prognostic marker for pancreatic cancer. The results underscore the feasibility of computational biomarker discovery in enhancing patient outcome prediction, thus contributing to personalized patient management.
Collapse
Affiliation(s)
- Pierpaolo Vendittelli
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John-Melle Bokhorst
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Esther M. M. Smeets
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Valentyna Kryklyva
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Geert Litjens
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Saleh O, Shihadeh H, Yousef A, Erekat H, Abdallh F, Al-Leimon A, Elsalhy R, Altiti A, Dajani M, AlBarakat MM. The Effect of Intratumor Heterogeneity in Pancreatic Ductal Adenocarcinoma Progression and Treatment. Pancreas 2024; 53:e450-e465. [PMID: 38728212 DOI: 10.1097/mpa.0000000000002342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
BACKGROUND AND OBJECTIVES Pancreatic cancer is one of the most lethal malignancies. Even though many substantial improvements in the survival rates for other major cancer forms were made, pancreatic cancer survival rates have remained relatively unchanged since the 1960s. Even more, no standard classification system for pancreatic cancer is based on cellular biomarkers. This review will discuss and provide updates about the role of stem cells in the progression of PC, the genetic changes associated with it, and the promising biomarkers for diagnosis. MATERIALS AND METHODS The search process used PubMed, Cochrane Library, and Scopus databases to identify the relevant and related articles. Articles had to be published in English to be considered. RESULTS The increasing number of studies in recent years has revealed that the diversity of cancer-associated fibroblasts is far greater than previously acknowledged, which highlights the need for further research to better understand the various cancer-associated fibroblast subpopulations. Despite the huge diversity in pancreatic cancer, some common features can be noted to be shared among patients. Mutations involving CDKN2, P53, and K-RAS can be seen in a big number of patients, for example. Similarly, some patterns of genes and biomarkers expression and the level of their expression can help in predicting cancer behavior such as metastasis and drug resistance. The current trend in cancer research, especially with the advancement in technology, is to sequence everything in hopes of finding disease-related mutations. CONCLUSION Optimizing pancreatic cancer treatment requires clear classification, understanding CAF roles, and exploring stroma reshaping approaches.
Collapse
Affiliation(s)
- Othman Saleh
- From the Faculty of Medicine, The Hashemite University, Zarqa
| | | | | | - Hana Erekat
- School of medicine, University of Jordan, Amman
| | - Fatima Abdallh
- From the Faculty of Medicine, The Hashemite University, Zarqa
| | | | | | | | - Majd Dajani
- From the Faculty of Medicine, The Hashemite University, Zarqa
| | - Majd M AlBarakat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
8
|
Di Chiaro P, Nacci L, Arco F, Brandini S, Polletti S, Palamidessi A, Donati B, Soriani C, Gualdrini F, Frigè G, Mazzarella L, Ciarrocchi A, Zerbi A, Spaggiari P, Scita G, Rodighiero S, Barozzi I, Diaferia GR, Natoli G. Mapping functional to morphological variation reveals the basis of regional extracellular matrix subversion and nerve invasion in pancreatic cancer. Cancer Cell 2024; 42:662-681.e10. [PMID: 38518775 DOI: 10.1016/j.ccell.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 12/07/2023] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Intratumor morphological heterogeneity of pancreatic ductal adenocarcinoma (PDAC) predicts clinical outcomes but is only partially understood at the molecular level. To elucidate the gene expression programs underpinning intratumor morphological variation in PDAC, we investigated and deconvoluted at single cell level the molecular profiles of histologically distinct clusters of PDAC cells. We identified three major morphological and functional variants that co-exist in varying proportions in all PDACs, display limited genetic diversity, and are associated with a distinct organization of the extracellular matrix: a glandular variant with classical ductal features; a transitional variant displaying abortive ductal structures and mixed endodermal and myofibroblast-like gene expression; and a poorly differentiated variant lacking ductal features and basement membrane, and showing neuronal lineage priming. Ex vivo and in vitro evidence supports the occurrence of dynamic transitions among these variants in part influenced by extracellular matrix composition and stiffness and associated with local, specifically neural, invasion.
Collapse
Affiliation(s)
- Pierluigi Di Chiaro
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy.
| | - Lucia Nacci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Fabiana Arco
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Stefania Brandini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Sara Polletti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Andrea Palamidessi
- IFOM, The FIRC Institute for Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Benedetta Donati
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Chiara Soriani
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Francesco Gualdrini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Gianmaria Frigè
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Luca Mazzarella
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy; Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, IEO, European Institute of Oncology, IRCCS, Milano, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessandro Zerbi
- IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy; Humanitas University, Pieve Emanuele - Milano, Italy
| | | | - Giorgio Scita
- IFOM, The FIRC Institute for Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Department of Oncology and Haemato-Oncology, University of Milan, Milano, Italy
| | - Simona Rodighiero
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Iros Barozzi
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Giuseppe R Diaferia
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy.
| | - Gioacchino Natoli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy.
| |
Collapse
|
9
|
Saleh M, Virarkar M, Mahmoud HS, Wong VK, Gonzalez Baerga CI, Parikh M, Elsherif SB, Bhosale PR. Radiomics analysis with three-dimensional and two-dimensional segmentation to predict survival outcomes in pancreatic cancer. World J Radiol 2023; 15:304-314. [PMID: 38058604 PMCID: PMC10696186 DOI: 10.4329/wjr.v15.i11.304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Radiomics can assess prognostic factors in several types of tumors, but considering its prognostic ability in pancreatic cancer has been lacking. AIM To evaluate the performance of two different radiomics software in assessing survival outcomes in pancreatic cancer patients. METHODS We retrospectively reviewed pretreatment contrast-enhanced dual-energy computed tomography images from 48 patients with biopsy-confirmed pancreatic ductal adenocarcinoma who later underwent neoadjuvant chemoradiation and surgery. Tumors were segmented using TexRad software for 2-dimensional (2D) analysis and MIM software for 3D analysis, followed by radiomic feature extraction. Cox proportional hazard modeling correlated texture features with overall survival (OS) and progression-free survival (PFS). Cox regression was used to detect differences in OS related to pretreatment tumor size and residual tumor following treatment. The Wilcoxon test was used to show the relationship between tumor volume and the percent of residual tumor. Kaplan-Meier analysis was used to compare survival in patients with different tumor densities in Hounsfield units for both 2D and 3D analysis. RESULTS 3D analysis showed that higher mean tumor density [hazard ratio (HR) = 0.971, P = 0.041)] and higher median tumor density (HR = 0.970, P = 0.037) correlated with better OS. 2D analysis showed that higher mean tumor density (HR = 0.963, P = 0.014) and higher mean positive pixels (HR = 0.962, P = 0.014) correlated with better OS; higher skewness (HR = 3.067, P = 0.008) and higher kurtosis (HR = 1.176, P = 0.029) correlated with worse OS. Higher entropy correlated with better PFS (HR = 0.056, P = 0.036). Models determined that patients with increased tumor size greater than 1.35 cm were likely to have a higher percentage of residual tumors of over 10%. CONCLUSION Several radiomics features can be used as prognostic tools for pancreatic cancer. However, results vary between 2D and 3D analyses. Mean tumor density was the only variable that could reliably predict OS, irrespective of the analysis used.
Collapse
Affiliation(s)
- Mohammed Saleh
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Mayur Virarkar
- Department of Diagnostic Radiology, The University of Florida College of Medicine, Jacksonville, FL 32209, United States
| | - Hagar S Mahmoud
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Vincenzo K Wong
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Carlos Ignacio Gonzalez Baerga
- Department of Diagnostic Radiology, The University of Florida College of Medicine, Jacksonville, FL 32209, United States
| | - Miti Parikh
- Keck School of Medicine, University of South California, Los Angeles, CA 90033, United States
| | - Sherif B Elsherif
- Department of Diagnostic Radiology, The University of Florida College of Medicine, Jacksonville, FL 32209, United States
| | - Priya R Bhosale
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| |
Collapse
|
10
|
Rusu A, Caruntu ID, Lozneanu L, Ciobanu DG, Amalinei C, Giusca SE. Galectin-8 Immunohistochemical Profile in Pancreatic Ductal Adenocarcinoma: Emerging Evidence for Its Prognostic Role. Diagnostics (Basel) 2023; 13:3215. [PMID: 37892036 PMCID: PMC10606265 DOI: 10.3390/diagnostics13203215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents the most frequent pancreatic malignancy, with stromal and epithelial heterogeneity reflected in outcome variability. Therefore, a molecular classification is promoted based on the validation of new diagnostic and prognostic markers. Galectin-8 (Gal8) has been pointed out as a prognostic factor for survival in several types of tumors. Due to limited existing data on PDAC, our study aimed to evaluate the Gal8 profile in PDAC alongside its prognostic status. A total of 87 cases of PDAC were immunohistochemically investigated, and Gal8 immunoexpression was qualitatively and semi-quantitatively assessed and correlated with classical clinicopathological parameters and survival. Gal8 immunoexpression was identified to be mostly nuclear and cytoplasmic, followed by exclusively cytoplasmic and exclusively nuclear. A statistical analysis between Gal8 profiles defined by negative, low, or high scores and clinicopathological characteristics showed significant differences in tumor size, pN stage, and lympho-vascular invasion. Although a Cox regression analysis did not support the prognostic status of Gal8, and we did not confirm its relationship with OS, our results show that exclusively nuclear labeling was associated with an increased mean OS compared with cytoplasmic and nuclear labeling (29.37 vs. 17.93 months). To the best of our knowledge, this is the first study to report a detailed pattern of Gal8 immunostaining in PDAC and to correlate this pattern with clinicopathological characteristics and survival. Our results show that Gal8 immunoexpression is associated with a more aggressive phenotype, thus opening perspectives for larger studies to validate Gal8 as a prognostic factor.
Collapse
Affiliation(s)
- Andreea Rusu
- Department of Morpho-Functional Sciences I—Histology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (A.R.); (L.L.); (C.A.)
| | - Irina-Draga Caruntu
- Department of Morpho-Functional Sciences I—Histology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (A.R.); (L.L.); (C.A.)
- Department of Pathology, “Dr. C.I. Parhon” Clinical Hospital, 700503 Iasi, Romania
| | - Ludmila Lozneanu
- Department of Morpho-Functional Sciences I—Histology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (A.R.); (L.L.); (C.A.)
- Department of Pathology, “Sf. Spiridon” Clinical Emergency County Hospital, 700111 Iasi, Romania;
| | - Delia Gabriela Ciobanu
- Department of Pathology, “Sf. Spiridon” Clinical Emergency County Hospital, 700111 Iasi, Romania;
- Department of Morpho-Functional Sciences I—Morphopathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Cornelia Amalinei
- Department of Morpho-Functional Sciences I—Histology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (A.R.); (L.L.); (C.A.)
| | - Simona-Eliza Giusca
- Department of Pathology, “Dr. C.I. Parhon” Clinical Hospital, 700503 Iasi, Romania
- Department of Morpho-Functional Sciences I—Morphopathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| |
Collapse
|
11
|
Koch V, Weitzer N, Dos Santos DP, Gruenewald LD, Mahmoudi S, Martin SS, Eichler K, Bernatz S, Gruber-Rouh T, Booz C, Hammerstingl RM, Biciusca T, Rosbach N, Gökduman A, D'Angelo T, Finkelmeier F, Yel I, Alizadeh LS, Sommer CM, Cengiz D, Vogl TJ, Albrecht MH. Multiparametric detection and outcome prediction of pancreatic cancer involving dual-energy CT, diffusion-weighted MRI, and radiomics. Cancer Imaging 2023; 23:38. [PMID: 37072856 PMCID: PMC10114410 DOI: 10.1186/s40644-023-00549-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/17/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND The advent of next-generation computed tomography (CT)- and magnetic resonance imaging (MRI) opened many new perspectives in the evaluation of tumor characteristics. An increasing body of evidence suggests the incorporation of quantitative imaging biomarkers into clinical decision-making to provide mineable tissue information. The present study sought to evaluate the diagnostic and predictive value of a multiparametric approach involving radiomics texture analysis, dual-energy CT-derived iodine concentration (DECT-IC), and diffusion-weighted MRI (DWI) in participants with histologically proven pancreatic cancer. METHODS In this study, a total of 143 participants (63 years ± 13, 48 females) who underwent third-generation dual-source DECT and DWI between November 2014 and October 2022 were included. Among these, 83 received a final diagnosis of pancreatic cancer, 20 had pancreatitis, and 40 had no evidence of pancreatic pathologies. Data comparisons were performed using chi-square statistic tests, one-way ANOVA, or two-tailed Student's t-test. For the assessment of the association of texture features with overall survival, receiver operating characteristics analysis and Cox regression tests were used. RESULTS Malignant pancreatic tissue differed significantly from normal or inflamed tissue regarding radiomics features (overall P < .001, respectively) and iodine uptake (overall P < .001, respectively). The performance for the distinction of malignant from normal or inflamed pancreatic tissue ranged between an AUC of ≥ 0.995 (95% CI, 0.955-1.0; P < .001) for radiomics features, ≥ 0.852 (95% CI, 0.767-0.914; P < .001) for DECT-IC, and ≥ 0.690 (95% CI, 0.587-0.780; P = .01) for DWI, respectively. During a follow-up of 14 ± 12 months (range, 10-44 months), the multiparametric approach showed a moderate prognostic power to predict all-cause mortality (c-index = 0.778 [95% CI, 0.697-0.864], P = .01). CONCLUSIONS Our reported multiparametric approach allowed for accurate discrimination of pancreatic cancer and revealed great potential to provide independent prognostic information on all-cause mortality.
Collapse
Affiliation(s)
- Vitali Koch
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany.
| | - Nils Weitzer
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Daniel Pinto Dos Santos
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Leon D Gruenewald
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Scherwin Mahmoudi
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Simon S Martin
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Katrin Eichler
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Simon Bernatz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Tatjana Gruber-Rouh
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Christian Booz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Renate M Hammerstingl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Teodora Biciusca
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Nicolas Rosbach
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Aynur Gökduman
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Tommaso D'Angelo
- Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Fabian Finkelmeier
- Department of Internal Medicine, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Ibrahim Yel
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Leona S Alizadeh
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Christof M Sommer
- Clinic of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Duygu Cengiz
- Department of Radiology, University of Koc School of Medicine, Istanbul, Turkey
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Moritz H Albrecht
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| |
Collapse
|
12
|
Szymoński K, Chmura Ł, Lipiec E, Adamek D. Vibrational spectroscopy – are we close to finding a solution for early pancreatic cancer diagnosis? World J Gastroenterol 2023; 29:96-109. [PMID: 36683712 PMCID: PMC9850953 DOI: 10.3748/wjg.v29.i1.96] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/03/2022] [Accepted: 10/31/2022] [Indexed: 01/04/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive and lethal neoplasm, ranking seventh in the world for cancer deaths, with an overall 5-year survival rate of below 10%. The knowledge about PC pathogenesis is rapidly expanding. New aspects of tumor biology, including its molecular and morphological heterogeneity, have been reported to explain the complicated “cross-talk” that occurs between the cancer cells and the tumor stroma or the nature of pancreatic ductal adenocarcinoma-associated neural remodeling. Nevertheless, currently, there are no specific and sensitive diagnosis options for PC. Vibrational spectroscopy (VS) shows a promising role in the development of early diagnosis technology. In this review, we summarize recent reports about improvements in spectroscopic methodologies, briefly explain and highlight the drawbacks of each of them, and discuss available solutions. The important aspects of spectroscopic data evaluation with multivariate analysis and a convolutional neural network methodology are depicted. We conclude by presenting a study design for systemic verification of the VS-based methods in the diagnosis of PC.
Collapse
Affiliation(s)
- Krzysztof Szymoński
- Department of Pathomorphology, Jagiellonian University Medical College, Cracow 33-332, Poland
- Department of Pathomorphology, University Hospital in Cracow, Cracow 31-501, Poland
| | - Łukasz Chmura
- Department of Pathomorphology, Jagiellonian University Medical College, Cracow 33-332, Poland
- Department of Pathomorphology, University Hospital in Cracow, Cracow 31-501, Poland
| | - Ewelina Lipiec
- M. Smoluchowski Institute of Physics, Jagiellonian University, Cracow 30-348, Poland
| | - Dariusz Adamek
- Department of Pathomorphology, University Hospital in Cracow, Cracow 31-501, Poland
- Department of Neuropathology, Jagiellonian University Medical College, Cracow 33-332, Poland
| |
Collapse
|
13
|
Huang X, Chi H, Gou S, Guo X, Li L, Peng G, Zhang J, Xu J, Nian S, Yuan Q. An Aggrephagy-Related LncRNA Signature for the Prognosis of Pancreatic Adenocarcinoma. Genes (Basel) 2023; 14:124. [PMID: 36672865 PMCID: PMC9859148 DOI: 10.3390/genes14010124] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a common, highly malignant, and aggressive gastrointestinal tumor. The conventional treatment of PAAD shows poor results, and patients have poor prognosis. The synthesis and degradation of proteins are essential for the occurrence and development of tumors. Aggrephagy is a type of autophagy that selectively degrades aggregated proteins. It decreases the formation of aggregates by degrading proteins, thus reducing the harm to cells. By breaking down proteins, it decreases the formation of aggregates; thus, minimizing damage to cells. For evaluating the response to immunotherapy and prognosis in PAAD patients, in this study, we developed a reliable signature based on aggrephagy-related genes (ARGs). We obtained 298 AGGLncRNAs. Based on the results of one-way Cox and LASSO analyses, the lncRNA signature was constructed. In the risk model, the prognosis of patients in the low-risk group was noticeably better than that of the patients in the high-risk group. Additionally, the ROC curves and nomograms validated the capacity of the risk model to predict the prognosis of PAAD. The patients in the low-risk and high-risk groups showed considerable variations in functional enrichment and immunological analysis. Regarding drug sensitivity, the low-risk and high-risk groups had different half-maximal inhibitory concentrations (IC50).
Collapse
Affiliation(s)
- Xueyuan Huang
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Siqi Gou
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Xiyuan Guo
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Lin Li
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Gaoge Peng
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Jinhao Zhang
- School of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Jiayu Xu
- Statistics Department, School of Science, Minzu University of China, Beijing 100081, China
| | - Siji Nian
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Qing Yuan
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
14
|
Szymoński K, Milian-Ciesielska K, Lipiec E, Adamek D. Current Pathology Model of Pancreatic Cancer. Cancers (Basel) 2022; 14:2321. [PMID: 35565450 PMCID: PMC9105915 DOI: 10.3390/cancers14092321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive and lethal malignant neoplasms, ranking in seventh place in the world in terms of the incidence of death, with overall 5-year survival rates still below 10%. The knowledge about PC pathomechanisms is rapidly expanding. Daily reports reveal new aspects of tumor biology, including its molecular and morphological heterogeneity, explain complicated "cross-talk" that happens between the cancer cells and tumor stroma, or the nature of the PC-associated neural remodeling (PANR). Staying up-to-date is hard and crucial at the same time. In this review, we are focusing on a comprehensive summary of PC aspects that are important in pathologic reporting, impact patients' outcomes, and bring meaningful information for clinicians. Finally, we show promising new trends in diagnostic technologies that might bring a difference in PC early diagnosis.
Collapse
Affiliation(s)
- Krzysztof Szymoński
- Department of Pathomorphology, Jagiellonian University Medical College, 31-531 Cracow, Poland;
- Department of Pathomorphology, University Hospital, 30-688 Cracow, Poland;
| | | | - Ewelina Lipiec
- M. Smoluchowski Institute of Physics, Jagiellonian University, 30-348 Cracow, Poland;
| | - Dariusz Adamek
- Department of Pathomorphology, Jagiellonian University Medical College, 31-531 Cracow, Poland;
| |
Collapse
|
15
|
Bozóky B, Fernández Moro C, Strell C, Geyer N, Heuchel RL, Löhr JM, Ernberg I, Szekely L, Gerling M, Bozóky B. Stabilization of the classical phenotype upon integration of pancreatic cancer cells into the duodenal epithelium. Neoplasia 2021; 23:1300-1306. [PMID: 34798385 PMCID: PMC8605302 DOI: 10.1016/j.neo.2021.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/06/2021] [Accepted: 11/08/2021] [Indexed: 12/05/2022] Open
Abstract
PDAC cells in the duodenal epithelium mimic intestinal cells and co-opt the basement membrane. Intramucosal PDAC location is strongly coupled to the classical phenotype and to intestinal traits. Intratumoral heterogeneity is linked to specific tissue compartments, which shape phenotype plasticity of PDAC cells.
Introduction Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive solid tumors. Based on transcriptomic classifiers, basal-like and classical PDAC subtypes have been defined that differ in prognosis. Cells of both subtypes can coexist in individual tumors; however, the contribution of either clonal heterogeneity or microenvironmental cues to subtype heterogeneity is unclear. Here, we report the spatial tumor phenotype dynamics in a cohort of patients in whom PDAC infiltrated the duodenal wall, and identify the duodenal epithelium as a distinct PDAC microniche. Materials and methods We used serial multiplex quantitative immunohistochemistry (smq-IHC) for 24 proteins to phenotypically chart PDAC tumor cells in patients whose tumors infiltrated the duodenal epithelium. Additionally, we used a genetically engineered mouse model to study the PDAC cell phenotype in the small intestinal epithelium in a controlled genetic background. Result We show that pancreatic cancer cells revert to non-destructive growth upon integration into the duodenal epithelium, where they adopt traits of intestinal cell differentiation, associated with phenotypical stabilization of the classical subtype. The integrated tumor cells replace epithelial cells in an adenoma-like manner, as opposed to invasive growth in the submucosa. Finally, we show that this phenomenon is shared between species, by confirming duodenal integration and phenotypic switching in a genetic PDAC mouse model. Discussion Our results identify the duodenal epithelium as a distinct PDAC microniche and tightly link microenvironmental cue to cancer transcriptional subtypes. The phenomenon of “intestinal mimicry” provides a unique opportunity for the systematic investigation of microenvironmental influences on pancreatic cancer plasticity.
Collapse
Affiliation(s)
- Benedek Bozóky
- Theme Cancer, Karolinska University Hospital, Solna 17176, Sweden; Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Solnavägen 9, Solna 17165, Sweden
| | - Carlos Fernández Moro
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Huddinge 14186, Sweden; Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Huddinge 14186, Sweden
| | - Carina Strell
- Department of Oncology-Pathology, Karolinska Institutet, Solna 17164, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
| | - Natalie Geyer
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7, Huddinge 14183, Sweden
| | - Rainer L Heuchel
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Huddinge 14186, Sweden
| | - J Matthias Löhr
- Theme Cancer, Karolinska University Hospital, Solna 17176, Sweden; Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Huddinge 14186, Sweden
| | - Ingemar Ernberg
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Solnavägen 9, Solna 17165, Sweden
| | - Laszlo Szekely
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Huddinge 14186, Sweden; Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Huddinge 14186, Sweden
| | - Marco Gerling
- Theme Cancer, Karolinska University Hospital, Solna 17176, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7, Huddinge 14183, Sweden.
| | - Béla Bozóky
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Huddinge 14186, Sweden
| |
Collapse
|
16
|
Kriegsmann M, Kriegsmann K, Steinbuss G, Zgorzelski C, Kraft A, Gaida MM. Deep Learning in Pancreatic Tissue: Identification of Anatomical Structures, Pancreatic Intraepithelial Neoplasia, and Ductal Adenocarcinoma. Int J Mol Sci 2021; 22:5385. [PMID: 34065423 PMCID: PMC8160892 DOI: 10.3390/ijms22105385] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 01/16/2023] Open
Abstract
Identification of pancreatic ductal adenocarcinoma (PDAC) and precursor lesions in histological tissue slides can be challenging and elaborate, especially due to tumor heterogeneity. Thus, supportive tools for the identification of anatomical and pathological tissue structures are desired. Deep learning methods recently emerged, which classify histological structures into image categories with high accuracy. However, to date, only a limited number of classes and patients have been included in histopathological studies. In this study, scanned histopathological tissue slides from tissue microarrays of PDAC patients (n = 201, image patches n = 81.165) were extracted and assigned to a training, validation, and test set. With these patches, we implemented a convolutional neuronal network, established quality control measures and a method to interpret the model, and implemented a workflow for whole tissue slides. An optimized EfficientNet algorithm achieved high accuracies that allowed automatically localizing and quantifying tissue categories including pancreatic intraepithelial neoplasia and PDAC in whole tissue slides. SmoothGrad heatmaps allowed explaining image classification results. This is the first study that utilizes deep learning for automatic identification of different anatomical tissue structures and diseases on histopathological images of pancreatic tissue specimens. The proposed approach is a valuable tool to support routine diagnostic review and pancreatic cancer research.
Collapse
Affiliation(s)
- Mark Kriegsmann
- Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University of Heidelberg, 69120 Heidelberg, Germany; (K.K.); (G.S.)
| | - Georg Steinbuss
- Department of Hematology, Oncology and Rheumatology, University of Heidelberg, 69120 Heidelberg, Germany; (K.K.); (G.S.)
| | | | - Anne Kraft
- Institute of Pathology, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany;
| | - Matthias M. Gaida
- Institute of Pathology, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany;
- Research Center for Immunotherapy, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany
- Joint Unit Immunopathology, Institute of Pathology, University Medical Center, JGU-Mainz and TRON, Translational Oncology at the University Medical Center, JGU-Mainz, 55131 Mainz, Germany
| |
Collapse
|
17
|
[The microarchitecture of pancreatic cancer from the point of view of the pathologist and the radiologist]. DER PATHOLOGE 2021; 42:524-529. [PMID: 33956172 PMCID: PMC8390414 DOI: 10.1007/s00292-021-00949-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 11/06/2022]
Abstract
Die diagnostische Radiologie ist gemeinsam mit der diagnostischen Pathologie eines der klinisch-morphologischen Fächer, welche in unterschiedlicher makroskopischer bzw. mikroskopischer Auflösung zur Detektion, Charakterisierung sowie zum Ausbreitungsmuster eines Tumors führen. Die klinischen Disziplinen sind oft voneinander getrennt, wenngleich es vor allem in klinischen Tumorboards immer stärkere Verzahnungen gibt. Am Beispiel des Pankreaskarzinoms sind die Korrelationen radiologischer und pathologischer Diagnostik dargestellt.
Collapse
|
18
|
van Roessel S, Janssen BV, Soer EC, Fariña Sarasqueta A, Verbeke CS, Luchini C, Brosens LAA, Verheij J, Besselink MG. Scoring of tumour response after neoadjuvant therapy in resected pancreatic cancer: systematic review. Br J Surg 2021; 108:119-127. [PMID: 33711148 DOI: 10.1093/bjs/znaa031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/02/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Preoperative chemo(radio)therapy is used increasingly in pancreatic cancer. Histological evaluation of the tumour response provides information on the efficacy of preoperative treatment and is used to determine prognosis and guide decisions on adjuvant treatment. This systematic review aimed to provide an overview of the current evidence on tumour response scoring systems in pancreatic cancer. METHODS Studies reporting on the assessment of resected pancreatic ductal adenocarcinoma following neoadjuvant chemo(radio)therapy were searched using PubMed and EMBASE. All original studies reporting on histological tumour response in relation to clinical outcome (survival, recurrence-free survival) or interobserver agreement were eligible for inclusion. This systematic review followed the PRISMA guidelines. RESULTS The literature search yielded 1453 studies of which 25 met the eligibility criteria, revealing 13 unique scoring systems. The most frequently investigated tumour response scoring systems were the College of American Pathologists system, Evans scoring system, and MD Anderson Cancer Center system, investigated 11, 9 and 5 times respectively. Although six studies reported a survival difference between the different grades of these three systems, the reported outcomes were often inconsistent. In addition, 12 of the 25 studies did not report on crucial aspects of pathological examination, such as the method of dissection, sampling approach, and amount of sampling. CONCLUSION Numerous scoring systems for the evaluation of tumour response after preoperative chemo(radio)therapy in pancreatic cancer exist, but comparative studies are lacking. More comparative data are needed on the interobserver variability and prognostic significance of the various scoring systems before best practice can be established.
Collapse
Affiliation(s)
- S van Roessel
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - B V Janssen
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - E C Soer
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - A Fariña Sarasqueta
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - C S Verbeke
- Department of Pathology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - C Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - L A A Brosens
- Department of Pathology, University Medical Centre Utrecht, Utrecht, the Netherlands.,Department of Pathology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - J Verheij
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - M G Besselink
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
19
|
McGuigan AJ, Coleman HG, McCain RS, Kelly PJ, Johnston DI, Taylor MA, Turkington RC. Immune cell infiltrates as prognostic biomarkers in pancreatic ductal adenocarcinoma: a systematic review and meta-analysis. J Pathol Clin Res 2021; 7:99-112. [PMID: 33481339 PMCID: PMC7869931 DOI: 10.1002/cjp2.192] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/15/2020] [Accepted: 11/16/2020] [Indexed: 12/24/2022]
Abstract
Immune cell infiltration has been identified as a prognostic biomarker in several cancers. However, no immune based biomarker has yet been validated for use in pancreatic ductal adenocarcinoma (PDAC). We undertook a systematic review and meta-analysis of immune cell infiltration, measured by immunohistochemistry (IHC), as a prognostic biomarker in PDAC. All other IHC prognostic biomarkers in PDAC were also summarised. MEDLINE, EMBASE and Web of Science were searched between 1998 and 2018. Studies investigating IHC biomarkers and prognosis in PDAC were included. REMARK score and Newcastle-Ottawa scale were used for qualitative analysis. Random-effects meta-analyses were used to pool results, where possible. Twenty-six articles studied immune cell infiltration IHC biomarkers and PDAC prognosis. Meta-analysis found high infiltration with CD4 (hazard ratio [HR] = 0.65, 95% confidence interval [CI] = 0.51-0.83.) and CD8 (HR = 0.68, 95% CI = 0.55-0.84.) T-lymphocytes associated with better disease-free survival. Reduced overall survival was associated with high CD163 (HR = 1.62, 95% CI = 1.03-2.56). Infiltration of CD3, CD20, FoxP3 and CD68 cells, and PD-L1 expression was not prognostic. In total, 708 prognostic biomarkers were identified in 1101 studies. In summary, high CD4 and CD8 infiltration are associated with better disease-free survival in PDAC. Increased CD163 is adversely prognostic. Despite the publication of 708 IHC prognostic biomarkers in PDAC, none has been validated for clinical use. Further research should focus on reproducibility of prognostic biomarkers in PDAC in order to achieve this.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- B7-H1 Antigen/genetics
- B7-H1 Antigen/metabolism
- Biomarkers/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Carcinoma, Pancreatic Ductal/diagnosis
- Carcinoma, Pancreatic Ductal/pathology
- Disease-Free Survival
- Humans
- Immunohistochemistry
- Pancreatic Neoplasms/diagnosis
- Pancreatic Neoplasms/pathology
- Prognosis
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Reproducibility of Results
- Pancreatic Neoplasms
Collapse
Affiliation(s)
- Andrew J McGuigan
- The Patrick G Johnston Centre for Cancer ResearchQueen's University BelfastBelfastUK
| | - Helen G Coleman
- The Patrick G Johnston Centre for Cancer ResearchQueen's University BelfastBelfastUK
- Centre for Public HealthQueen's University BelfastBelfastUK
| | - R Stephen McCain
- Centre for Public HealthQueen's University BelfastBelfastUK
- Department of Hepatobiliary SurgeryMater Hospital, Belfast Health and Social Care TrustBelfastUK
| | - Paul J Kelly
- Department of Tissue PathologyRoyal Victoria Hospital, Belfast Health and Social Care TrustBelfastUK
| | - David I Johnston
- Northern Ireland Cancer CentreBelfast Health and Social Care TrustBelfastUK
| | - Mark A Taylor
- Department of Hepatobiliary SurgeryMater Hospital, Belfast Health and Social Care TrustBelfastUK
| | - Richard C Turkington
- The Patrick G Johnston Centre for Cancer ResearchQueen's University BelfastBelfastUK
| |
Collapse
|
20
|
Morphological Heterogeneity in Pancreatic Cancer Reflects Structural and Functional Divergence. Cancers (Basel) 2021; 13:cancers13040895. [PMID: 33672734 PMCID: PMC7924365 DOI: 10.3390/cancers13040895] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Pancreatic cancer has a poor prognosis, which is largely due to resistance to treatment. Tumor heterogeneity is a known cause for treatment failure and has been studied at the molecular level. Morphological heterogeneity is common but has not been investigated, despite the fact that pathology examination is an integral part of clinical diagnostics. This study assessed whether morphological heterogeneity reflects structural and functional diversity in key cancer biological processes. Using archival tissues from resected pancreatic cancer, we selected four common and distinct morphological phenotypes and demonstrated that these differed significantly for a panel of 26 structural and functional features of the cancer-cell and stromal compartments. The strong link between these features and morphological phenotypes allowed prediction of the latter based on the results for the panel of features. The findings of this study indicate that morphological heterogeneity reflects biological diversity and that its assessment may potentially provide clinically relevant information. Abstract Inter- and intratumor heterogeneity is an important cause of treatment failure. In human pancreatic cancer (PC), heterogeneity has been investigated almost exclusively at the genomic and transcriptional level. Morphological heterogeneity, though prominent and potentially easily assessable in clinical practice, remains unexplored. This proof-of-concept study aims at demonstrating that morphological heterogeneity reflects structural and functional divergence. From the wide morphological spectrum of conventional PC, four common and distinctive patterns were investigated in 233 foci from 39 surgical specimens. Twenty-six features involved in key biological processes in PC were analyzed (immuno-)histochemically and morphometrically: cancer cell proliferation (Ki67) and migration (collagen fiber alignment, MMP14), cancer stem cells (CD44, CD133, ALDH1), amount, composition and spatial arrangement of extracellular matrix (epithelial proximity, total collagen, collagen I and III, fibronectin, hyaluronan), cancer-associated fibroblasts (density, αSMA), and cancer-stroma interactions (integrins α2, α5, α1; caveolin-1). All features differed significantly between at least two of the patterns. Stromal and cancer-cell-related features co-varied with morphology and allowed prediction of the morphological pattern. In conclusion, morphological heterogeneity in the cancer-cell and stromal compartments of PC correlates with structural and functional diversity. As such, histopathology has the potential to inform on the operationality of key biological processes in individual tumors.
Collapse
|
21
|
Stellate Cells Aid Growth-Permissive Metabolic Reprogramming and Promote Gemcitabine Chemoresistance in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13040601. [PMID: 33546284 PMCID: PMC7913350 DOI: 10.3390/cancers13040601] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/04/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The great majority, more than 90%, of patients with pancreatic ductal adenocarcinoma (PDAC) die within less than five years after detection of the disease, despite recent treatment advances. The poor prognosis is related to late diagnosis, aggressive disease progression, and tumor resistance to conventional chemotherapy. PDAC tumor tissue is characterized by dense fibrosis and poor nutrient availability. A large portion of the tumor is made up of stromal fibroblasts, the pancreatic stellate cells (PSCs), which are known to contribute to tumor progression in several ways. PSCs have been shown to act as an alternate energy source, induce drug resistance, and inhibit drug availability in tumor cells, however, the underlying exact molecular mechanisms remain unknown. In this literature review, we discuss recent available knowledge about the contributions of PSCs to the overall progression of PDAC via changes in tumor metabolism and how this is linked to therapy resistance. Abstract Pancreatic ductal adenocarcinoma (PDAC), also known as pancreatic cancer (PC), is characterized by an overall poor prognosis and a five-year survival that is less than 10%. Characteristic features of the tumor are the presence of a prominent desmoplastic stromal response, an altered metabolism, and profound resistance to cancer drugs including gemcitabine, the backbone of PDAC chemotherapy. The pancreatic stellate cells (PSCs) constitute the major cellular component of PDAC stroma. PSCs are essential for extracellular matrix assembly and form a supportive niche for tumor growth. Various cytokines and growth factors induce activation of PSCs through autocrine and paracrine mechanisms, which in turn promote overall tumor growth and metastasis and induce chemoresistance. To maintain growth and survival in the nutrient-poor, hypoxic environment of PDAC, tumor cells fulfill their high energy demands via several unconventional ways, a process generally referred to as metabolic reprogramming. Accumulating evidence indicates that activated PSCs not only contribute to the therapy-resistant phenotype of PDAC but also act as a nutrient supplier for the tumor cells. However, the precise molecular links between metabolic reprogramming and an acquired therapy resistance in PDAC remain elusive. This review highlights recent findings indicating the importance of PSCs in aiding growth-permissive metabolic reprogramming and gemcitabine chemoresistance in PDAC.
Collapse
|
22
|
Kim SS, Lee S, Lee HS, Bang S, Park MS. Prognostic factors in patients with locally advanced or borderline resectable pancreatic ductal adenocarcinoma: chemotherapy vs. chemoradiotherapy. Abdom Radiol (NY) 2021; 46:655-666. [PMID: 32748250 DOI: 10.1007/s00261-020-02661-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE To identify common and unique pre-treatment prognostic factors in patients with borderline resectable (BR) or locally advanced (LA) pancreatic ductal adenocarcinoma (PDAC), treated with chemotherapy (CTx) or concurrent chemoradiotherapy (CRT). METHODS We enrolled 215 patients with BR/LA PDAC, who were treated with either CTx (n = 82) or CRT (n = 133) as a first-line treatment between 2013 and 2016. Clinical data and CT imaging findings for predicting overall survival (OS) and progression-free survival (PFS) were analyzed using Cox regression analysis. RESULTS Carbohydrate antigen (CA) 19-9 > 1000 U/mL (hazard ratio [HR] 1.91; p = 0.001) and non-homogeneous enhancement (HR 1.95; p < 0.001) were associated with shorter OS in all study populations. There was no significant difference in median OS (15.3 vs 16.8 months, p = 0.297) and PFS (10.0 vs 11.7 months, p = 0.321) between the CTx and CRT groups. Non-homogeneous enhancement (HR 2.04; p = 0.006) and presence of positive lymph node on CT (HR 2.38; p = 0.036) were associated with poor OS in the CTx group, while CA 19-9 > 1000 U/mL (HR 2.38; p = 0.001) and non-homogeneous enhancement (HR 1.73; p = 0.006) were independent predictors for poor OS in the CRT group. CONCLUSION Enhancement pattern on CT was a common prognostic factor for patients with PDAC treated with either CTx or CRT. Presence of positive lymph nodes on CT was a poor prognostic factor for the CTx group only, whereas CA 19-9 > 1000 U/mL was a poor prognostic factor for the CRT group only.
Collapse
Affiliation(s)
- Seung-Seob Kim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sunyoung Lee
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hee Seung Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seungmin Bang
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi-Suk Park
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
23
|
Wu Y, Zhang C, Jiang K, Werner J, Bazhin AV, D'Haese JG. The Role of Stellate Cells in Pancreatic Ductal Adenocarcinoma: Targeting Perspectives. Front Oncol 2021; 10:621937. [PMID: 33520728 PMCID: PMC7841014 DOI: 10.3389/fonc.2020.621937] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a gastrointestinal malignancy with a dismal clinical outcome. Accumulating evidence suggests that activated pancreatic stellate cells (PSCs), the major producers of extracellular matrix (ECM), drive the severe stromal/desmoplastic reaction in PDAC. Furthermore, the crosstalk among PSCs, pancreatic cancer cells (PCCs) as well as other stroma cells can establish a growth-supportive tumor microenvironment (TME) of PDAC, thereby enhancing tumor growth, metastasis, and chemoresistance via various pathways. Recently, targeting stroma has emerged as a promising strategy for PDAC therapy, and several novel strategies have been proposed. The aim of our study is to give a profound review of the role of PSCs in PDAC progression and recent advances in stroma-targeting strategies.
Collapse
Affiliation(s)
- Yang Wu
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Chun Zhang
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kuirong Jiang
- Pancreas Center and Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Jan G D'Haese
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
24
|
Campbell F, Verbeke CS. Ductal Adenocarcinoma. PATHOLOGY OF THE PANCREAS 2021:145-201. [DOI: 10.1007/978-3-030-49848-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Mesoscopic 3D imaging of pancreatic cancer and Langerhans islets based on tissue autofluorescence. Sci Rep 2020; 10:18246. [PMID: 33106532 PMCID: PMC7588461 DOI: 10.1038/s41598-020-74616-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
The possibility to assess pancreatic anatomy with microscopic resolution in three dimensions (3D) would significantly add to pathological analyses of disease processes. Pancreatic ductal adenocarcinoma (PDAC) has a bleak prognosis with over 90% of the patients dying within 5 years after diagnosis. Cure can be achieved by surgical resection, but the efficiency remains drearily low. Here we demonstrate a method that without prior immunohistochemical labelling provides insight into the 3D microenvironment and spread of PDAC and premalignant cysts in intact surgical biopsies. The method is based solely on the autofluorescent properties of the investigated tissues using optical projection tomography and/or light-sheet fluorescence microscopy. It does not interfere with subsequent histopathological analysis and may facilitate identification of tumor-free resection margins within hours. We further demonstrate how the developed approach can be used to assess individual volumes and numbers of the islets of Langerhans in unprecedently large biopsies of human pancreatic tissue, thus providing a new means by which remaining islet mass may be assessed in settings of diabetes. Generally, the method may provide a fast approach to provide new anatomical insight into pancreatic pathophysiology.
Collapse
|
26
|
Abstract
Worldwide, approximately half a million people are diagnosed with pancreatic cancer every year, with mortality rates of more than 90%. T cells within pancreatic tumors are generally infrequent and incapable of eliciting antitumor immunity. Thus, pancreatic cancer is considered an "immunologically cold" tumor. However, recent studies clearly show that when T-cell immunity in pancreatic cancer is sufficiently induced, T cells become effective weapons. This fact suggests that to improve pancreatic cancer patients' clinical outcomes, we need to unveil the complex immune biology of this disease. In this review, we discuss the elements of tumor immunogenicity in the specific context of pancreatic malignancy.
Collapse
|
27
|
Li B, Wang Y, Jiang H, Li B, Shi X, Gao S, Ni C, Zhang Z, Guo S, Xu J, Jin G. Pros and Cons: High Proportion of Stromal Component Indicates Better Prognosis in Patients With Pancreatic Ductal Adenocarcinoma-A Research Based on the Evaluation of Whole-Mount Histological Slides. Front Oncol 2020; 10:1472. [PMID: 32974173 PMCID: PMC7471248 DOI: 10.3389/fonc.2020.01472] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
The study aimed to investigate the potential of tumor–stroma ratio (TSR) on digitalized whole-mount histopathology to predict prognosis in patients with pancreatic ductal adenocarcinoma (PDAC). The effectiveness were evaluated through internal validation. Data were retrospectively collected from consecutive patients who underwent primary pancreatic resection from December 2016 to August 2017 (developing cohort) and from September 2017 to April 2018 (validation cohort). Digitalized whole-mount slide images were used to evaluate TSR by both pathologists and a computerized model based on Conditional Generative Adversarial Model (cGAN), respectively. TSR>1 and ≤ 1 denoted low and high stromal component. Logistic regression analysis revealed intratumoral necrosis and R1 independently associated with low stromal component in the developing cohort. Cox regression analysis revealed tumor–node–metastasis (TNM) stage [II vs. I: hazard ratio (HR), 2.584; 95% CI, 1.386–4.819; P = 0.003; III vs. I: HR, 4.384; 95% CI, 2.285–8.411; P < 0.001], stromal component (low vs. high: HR, 1.876; 95% CI, 1.227–2.870; P = 0.004), tumor grade (G3 vs. G1/2: HR, 2.124; 95% CI, 1.419–3.179; P < 0.001), and perineural invasion (with vs. without: HR, 2.147; 95% CI, 1.187–3.883; P = 0.011) were independent prognostic factors in the developing cohort. Stromal component categories could classify patients into subgroups within TNM stages I, II, and III based on over survival. All results were validated in the validation cohort. The weighted kappa value for categorical assessments between pathologists' evaluation and computer-aided evaluation was 0.804 (95% CI, 0.573–0.951). TSR represents a simple and reliable metric for combining the prognostic value of TNM stage in patients with PDAC.
Collapse
Affiliation(s)
- Bo Li
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital Affiliated to Navy Medical University (Second Military Medical University), Shanghai, China.,Department of General Surgery, Beidaihe Rehabilitation and Recuperation Center of Joint Logistics Support Force, Qinhuangdao, China
| | - Yang Wang
- Department of Pathology, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Hui Jiang
- Department of Pathology, Changhai Hospital Affiliated to Navy Medical University (Second Military Medical University), Shanghai, China
| | - Baoming Li
- Jiangsu Key Laboratory of Big Data Analysis Technique and CICAEET, Nanjing University of Information Science and Technology, Nanjing, China
| | - Xiaohan Shi
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital Affiliated to Navy Medical University (Second Military Medical University), Shanghai, China
| | - Suizhi Gao
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital Affiliated to Navy Medical University (Second Military Medical University), Shanghai, China
| | - Canrong Ni
- Department of Pathology, Changhai Hospital Affiliated to Navy Medical University (Second Military Medical University), Shanghai, China
| | - Zelin Zhang
- Jiangsu Key Laboratory of Big Data Analysis Technique and CICAEET, Nanjing University of Information Science and Technology, Nanjing, China
| | - Shiwei Guo
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital Affiliated to Navy Medical University (Second Military Medical University), Shanghai, China
| | - Jun Xu
- Jiangsu Key Laboratory of Big Data Analysis Technique and CICAEET, Nanjing University of Information Science and Technology, Nanjing, China
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital Affiliated to Navy Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
28
|
Gupta P, Pérez-Mancera PA, Kocher H, Nisbet A, Schettino G, Velliou EG. A Novel Scaffold-Based Hybrid Multicellular Model for Pancreatic Ductal Adenocarcinoma-Toward a Better Mimicry of the in vivo Tumor Microenvironment. Front Bioeng Biotechnol 2020; 8:290. [PMID: 32391339 PMCID: PMC7193232 DOI: 10.3389/fbioe.2020.00290] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
With a very low survival rate, pancreatic ductal adenocarcinoma (PDAC) is a deadly disease. This has been primarily attributed to (i) its late diagnosis and (ii) its high resistance to current treatment methods. The latter specifically requires the development of robust, realistic in vitro models of PDAC, capable of accurately mimicking the in vivo tumor niche. Advancements in the field of tissue engineering (TE) have helped the development of such models for PDAC. Herein, we report for the first time a novel hybrid, polyurethane (PU) scaffold-based, long-term, multicellular (tri-culture) model of pancreatic cancer involving cancer cells, endothelial cells, and stellate cells. Recognizing the importance of ECM proteins for optimal growth of different cell types, the model consists of two different zones/compartments: an inner tumor compartment consisting of cancer cells [fibronectin (FN)-coated] and a surrounding stromal compartment consisting of stellate and endothelial cells [collagen I (COL)-coated]. Our developed novel hybrid, tri-culture model supports the proliferation of all different cell types for 35 days (5 weeks), which is the longest reported timeframe in vitro. Furthermore, the hybrid model showed extensive COL production by the cells, mimicking desmoplasia, one of PDAC's hallmark features. Fibril alignment of the stellate cells was observed, which attested to their activated state. All three cell types expressed various cell-specific markers within the scaffolds, throughout the culture period and showed cellular migration between the two zones of the hybrid scaffold. Our novel model has great potential as a low-cost tool for in vitro studies of PDAC, as well as for treatment screening.
Collapse
Affiliation(s)
- Priyanka Gupta
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, United Kingdom
| | - Pedro A. Pérez-Mancera
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Hemant Kocher
- Centre for Tumour Biology and Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Andrew Nisbet
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Giuseppe Schettino
- Department of Physics, University of Surrey, Guildford, United Kingdom
- Medical Radiation Science Group, The National Physical Laboratory, Teddington, United Kingdom
| | - Eirini G. Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
29
|
Pothula SP, Pirola RC, Wilson JS, Apte MV. Pancreatic stellate cells: Aiding and abetting pancreatic cancer progression. Pancreatology 2020; 20:409-418. [PMID: 31928917 DOI: 10.1016/j.pan.2020.01.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
Abstract
Tumour-stromal interactions have now been acknowledged to play a major role in pancreatic cancer (PC) progression. The abundant collagenous stroma is produced by a specific cell type in the pancreas-the pancreatic stellate cell (PSC). Pancreatic stellate cells (PSCs) are a unique resident cell type of pancreas and with a critical role in both healthy and diseased pancreas. Accumulating evidence indicates that PSCs interact closely with cancer cells as well as with other cell types of the stroma such as immune cells, endothelial cells and neuronal cells, to set up a growth permissive microenvironment for pancreatic tumours, which facilitates local tumour growth as well as distant metastasis. Consequently, recent work in the field has focused on the development of novel therapeutic approaches targeting the stroma to inhibit PC progression. Such a multi-pronged approach targeting both tumour and stromal elements of PC has been successfully applied in pre-clinical settings. The challenge now is to translate the pre-clinical findings into the clinical setting to achieve better outcomes for pancreatic cancer patients.
Collapse
Affiliation(s)
- Srinivasa P Pothula
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, and the Ingham Institute for Applied Medical Research, Liverpool, Australia
| | - Romano C Pirola
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, and the Ingham Institute for Applied Medical Research, Liverpool, Australia
| | - Jeremy S Wilson
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, and the Ingham Institute for Applied Medical Research, Liverpool, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, and the Ingham Institute for Applied Medical Research, Liverpool, Australia.
| |
Collapse
|
30
|
Turner A, Bond DR, Vuong QV, Chalmers A, Beckett EL, Weidenhofer J, Scarlett CJ. Elaeocarpus reticulatus fruit extracts reduce viability and induce apoptosis in pancreatic cancer cells in vitro. Mol Biol Rep 2020; 47:2073-2084. [PMID: 32065323 DOI: 10.1007/s11033-020-05307-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 02/06/2020] [Indexed: 12/30/2022]
Abstract
Treatment options for pancreatic cancer (PC) are severely limited due to late diagnosis, early metastasis and the inadequacy of chemotherapy and radiotherapy to combat the aggressive biology of the disease. In recent years, plant-derived bioactive compounds have emerged as a source of novel, anti-cancer agents. Used in traditional medicine worldwide, Elaeocarpus species have reported anti-inflammatory, antioxidant and anti-cancer properties. This study aimed to isolate and identify potential anti-PC compounds in the fruit of Elaeocarpus reticulatus Sm. A 50% acetone crude extract significantly decreased the viability of four pancreatic cell lines (≥ 10 µg/mL for BxPC-3 cells) and induced apoptosis in BxPC-3 and HPDE cells. Analysis by HPLC identified the triterpenoid Cucurbitacin I as a likely component of the extract. Furthermore, treatment with Cucurbitacin I significantly reduced the viability of HPDE and BxPC-3 cells, with results comparable to the same concentration of gemcitabine. Interestingly, attempts to isolate bioactive compounds revealed that the crude extract was more effective at reducing PC-cell viability than the fractionated extracts. This study provides initial insight into the bioactive constituents of E. reticulatus fruits.
Collapse
Affiliation(s)
- Alexandria Turner
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia.
| | - Danielle R Bond
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia.,Hunter Medical Research Institute, New Lambton Heights, 2305, Australia
| | - Quan V Vuong
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia
| | - Anita Chalmers
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia
| | - Emma L Beckett
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia.,Hunter Medical Research Institute, New Lambton Heights, 2305, Australia
| | - Judith Weidenhofer
- Hunter Medical Research Institute, New Lambton Heights, 2305, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Ourimbah, 2258, Australia
| | - Christopher J Scarlett
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia
| |
Collapse
|
31
|
Cui SJ, Tang TY, Zou XW, Su QM, Feng L, Gong XY. Role of imaging biomarkers for prognostic prediction in patients with pancreatic ductal adenocarcinoma. Clin Radiol 2020; 75:478.e1-478.e11. [PMID: 32037002 DOI: 10.1016/j.crad.2019.12.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumours. PDAC has a poor prognosis; therefore, it is necessary to perform further risk stratification. Identifying prognostic factors before treatment might help to implement suitable and personalised treatment for individuals and avoid side effects. Conventional staging systems and tumour biomarkers are fundamental to establish prognosis; however, they have obvious limitations. Novel imaging biomarkers extracted from advanced imaging techniques offer opportunities to evaluate underlying tumour physiological characteristics, such as mutational status, cellular composition, local microenvironment, tumour metabolism, and biological behaviour. Thus, imaging biomarkers might help the decision making of oncologists and surgeons. The present review discusses the functions of imaging biomarkers for prognostic prediction in patients with PDAC and their potential value for further translation in clinical practice.
Collapse
Affiliation(s)
- S-J Cui
- The Second Clinical Medical College, Zhejiang Chinese Medical University, 310053, Hangzhou, China; Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, 310013, Hangzhou, China
| | - T-Y Tang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - X-W Zou
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Q-M Su
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - L Feng
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - X-Y Gong
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, 310013, Hangzhou, China; Institute of Artificial Intelligence and Remote Imaging, Hangzhou Medical College, 310000, Hangzhou, China.
| |
Collapse
|
32
|
N Kalimuthu S, Wilson GW, Grant RC, Seto M, O'Kane G, Vajpeyi R, Notta F, Gallinger S, Chetty R. Morphological classification of pancreatic ductal adenocarcinoma that predicts molecular subtypes and correlates with clinical outcome. Gut 2020; 69:317-328. [PMID: 31201285 DOI: 10.1136/gutjnl-2019-318217] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Transcriptional analyses have identified several distinct molecular subtypes in pancreatic ductal adenocarcinoma (PDAC) that have prognostic and potential therapeutic significance. However, to date, an indepth, clinicomorphological correlation of these molecular subtypes has not been performed. We sought to identify specific morphological patterns to compare with known molecular subtypes, interrogate their biological significance, and furthermore reappraise the current grading system in PDAC. DESIGN We first assessed 86 primary, chemotherapy-naive PDAC resection specimens with matched RNA-Seq data for specific, reproducible morphological patterns. Differential expression was applied to the gene expression data using the morphological features. We next compared the differentially expressed gene signatures with previously published molecular subtypes. Overall survival (OS) was correlated with the morphological and molecular subtypes. RESULTS We identified four morphological patterns that segregated into two components ('gland forming' and 'non-gland forming') based on the presence/absence of well-formed glands. A morphological cut-off (≥40% 'non-gland forming') was established using RNA-Seq data, which identified two groups (A and B) with gene signatures that correlated with known molecular subtypes. There was a significant difference in OS between the groups. The morphological groups remained significantly prognostic within cancers that were moderately differentiated and classified as 'classical' using RNA-Seq. CONCLUSION Our study has demonstrated that PDACs can be morphologically classified into distinct and biologically relevant categories which predict known molecular subtypes. These results provide the basis for an improved taxonomy of PDAC, which may lend itself to future treatment strategies and the development of deep learning models.
Collapse
Affiliation(s)
- Sangeetha N Kalimuthu
- Anatomical Pathology, Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Gavin W Wilson
- Latner Thoracic Surgery Laboratory, Division of Thoracic Surgery, Department of Surgery, University Health Network, Toronto, Ontario, Canada
| | - Robert C Grant
- Department of Medical Oncology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Matthew Seto
- Anatomical Pathology, Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Grainne O'Kane
- Department of Medical Oncology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Rajkumar Vajpeyi
- Anatomical Pathology, Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Faiyaz Notta
- Division of Research, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, Ontario, Canada
| | - Runjan Chetty
- Anatomical Pathology, Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Nielsen MFB, Mortensen MB, Sørensen MD, Wirenfeldt M, Kristensen BW, Schrøder HD, Pfeiffer P, Detlefsen S. Spatial and phenotypic characterization of pancreatic cancer-associated fibroblasts after neoadjuvant treatment. Histol Histopathol 2020; 35:811-825. [PMID: 31960942 DOI: 10.14670/hh-18-201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PC) is characterized by a highly fibrotic desmoplastic stroma. Subtypes of cancer-associated fibroblasts (CAFs) have been identified in chemotherapy-naïve PC (CTN-PC), but their precise functions are still unclear. Our knowledge regarding the properties of CAFs in the regressive stroma after neoadjuvant treatment (NAT) of PC (NAT-PC) is particularly limited. We aimed to examine the marker phenotypic properties of CAFs in the regressive stroma of PC. Surgical specimens from patients with CTN-PC (n=10) and NAT-PC (n=10) were included. Juxtatumoural, peripheral, lobular, septal, peripancreatic, and regressive stromal compartments were manually outlined using digital imaging analysis (DIA) for area quantification. The compartment-specific expression of CD271, cytoglobin, DOG-1, miR-21, osteonectin, PDGF-Rβ, and tenascin C was evaluated by immunohistochemistry or in situ hybridization, using manual scoring and automated DIA. The area fraction of the regressive stroma was significantly higher in NAT-PC than in CTN-PC (P=0.0002). CD271 (P<0.01), cytoglobin (P<0.05), DOG1 (P<0.05), miR-21 (P<0.05), and tenascin C (P<0.05) exhibited significant differences in their expression profiles between the juxtatumoural compared to the peripheral and regressive stroma. PDGF-Rβ expression was significantly higher in juxtatumoural than in peripheral CAFs (P<0.05). Our data provide further support of the concept of stromal heterogeneity and phenotypic different CAF subtypes in PC. CAFs in the regressive stroma of NAT-PC show a marker phenotype similar to some (namely, peripheral) and different from other (namely, juxtatumoural) previously defined CAF subtypes. It may be hypothesized that phenotypic CAF subtypes, at least in part, also may share functional properties. Studies examining the precise functional characteristics of CAF subtypes in PC are needed.
Collapse
Affiliation(s)
- Michael Friberg Bruun Nielsen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Michael Bau Mortensen
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.,Department of Surgery, HPB Section, Odense University Hospital, Odense, Denmark
| | - Mia Dahl Sørensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Martin Wirenfeldt
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Bjarne Winther Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Henrik Daa Schrøder
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Per Pfeiffer
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Sönke Detlefsen
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.,Department of Pathology, Odense University Hospital, Odense, Denmark.
| |
Collapse
|
34
|
Aupperle-Lellbach H, Törner K, Staudacher M, Müller E, Steiger K, Klopfleisch R. Characterization of 22 Canine Pancreatic Carcinomas and Review of Literature. J Comp Pathol 2019; 173:71-82. [PMID: 31812175 DOI: 10.1016/j.jcpa.2019.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/06/2019] [Accepted: 10/14/2019] [Indexed: 01/10/2023]
Abstract
Pancreatic carcinomas are rare in dogs and clinical signs are mostly non-specific. The literature on clinically and pathologically characterized canine exocrine pancreatic tumours is limited to 76 cases reported since 1963. This retrospective study analysed formalin-fixed samples of pancreatic carcinomas from 22 dogs, obtained during elective exploratory surgery (n = 16) or if the dog was humanely destroyed (n = 6). Tumours were diagnosed according to the World Health Organization classification of tumours of the pancreas of domestic animals. In seven cases, blood samples taken during or shortly before surgery were analysed for concentrations of alpha-amylase, 1,2-o-dilauryl-rac-glycero-3-glutaric acid-(6'-methylresorufin) ester lipase (DGGR lipase), C-reactive protein (CRP), alanine aminotransferase, glutamate dehydrogenase, alkaline phosphatase (ALP), canine trypsin-like immunoreactivity (cTLI) and canine pancreatic lipase immunoreactivity (cPLI). Neutrophil and lymphocyte numbers were determined as part of a complete blood count. Clinical signs were non-specific and included vomiting, inappetence and diarrhoea. Acinar carcinomas were most common (19/22) and observed growth patterns included: solid (n = 14), acinar (n = 5), clear cell (n = 3), mucinous (n = 2), trabecular (n = 1) or rosette-like (n = 1), occurring as a single pattern or in combination. Ductal carcinomas were identified in three cases. Pancreatitis was a common additional histological finding; five dogs had mild and nine dogs had severe pancreatitis. cPLI, DGGR lipase, cTLI and CRP were elevated in 5/5 acinar carcinomas. All liver enzymes were elevated in three of these five animals and ALP was increased in 4/5 dogs. Two dogs with ductal pancreatic carcinomas showed normal cPLI concentrations. One had increased CRP, liver enzymes and leucocytosis with neutrophilia, the other had elevated DGGR lipase and cTLI concentrations. Clinical findings in canine pancreatic carcinomas were non-specific and simultaneous inflammation can mask the detection of the underlying neoplasm in clinical examination and laboratory testing.
Collapse
Affiliation(s)
| | - K Törner
- Laboklin GmbH & Co. KG, Bad Kissingen, Germany
| | - M Staudacher
- AniCura Aachen, Dres. Staudacher, Aachen, Germany
| | - E Müller
- Laboklin GmbH & Co. KG, Bad Kissingen, Germany
| | - K Steiger
- Institute of Pathology, Technische Universität München, Germany
| | - R Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
35
|
Misra S, Moro CF, Del Chiaro M, Pouso S, Sebestyén A, Löhr M, Björnstedt M, Verbeke CS. Ex vivo organotypic culture system of precision-cut slices of human pancreatic ductal adenocarcinoma. Sci Rep 2019; 9:2133. [PMID: 30765891 PMCID: PMC6376017 DOI: 10.1038/s41598-019-38603-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 01/03/2019] [Indexed: 12/25/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, which is mainly due to late diagnosis and profound resistance to treatment. The latter is to a large extent attributed to the tumor stroma that is exceedingly prominent in PDAC and engages in complex interactions with the cancer cells. Hence, relevant preclinical models of PDAC should also include the tumor stroma. We herein describe the establishment and functional validation of an ex vivo organotypic culture of human PDAC that is based on precision-cut tissue slices from surgical specimens and reproducibly recapitulates the complex cellular and acellular composition of PDAC, including its microenvironment. The cancer cells, tumor microenvironment and interspersed remnants of nonneoplastic pancreas contained in these 350 µm thick slices maintained their structural integrity, phenotypic characteristics and functional activity when in culture for at least 4 days. In particular, tumor cell proliferation persisted and the grade of differentiation and morphological phenotype remained unaltered. Cultured tissue slices were metabolically active and responsive to rapamycin, an mTOR inhibitor. This culture system is to date the closest surrogate to the parent carcinoma and harbors great potential as a drug sensitivity testing system for the personalized treatment of PDAC.
Collapse
Affiliation(s)
- Sougat Misra
- Department of Laboratory Medicine, Division of Pathology F46, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86, Stockholm, Sweden
| | - Carlos F Moro
- Department of Laboratory Medicine, Division of Pathology F46, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86, Stockholm, Sweden
- Department of Clinical Pathology/Cytology, Karolinska University Hospital, Stockholm, SE-141 86, Sweden
| | - Marco Del Chiaro
- Department of Clinical Intervention and Technology (CLINTEC), Center for Digestive Diseases, Karolinska University Hospital and Division of Surgery, Karolinska Institutet, Stockholm, 14186, Sweden
| | - Soledad Pouso
- Department of Clinical Pathology/Cytology, Karolinska University Hospital, Stockholm, SE-141 86, Sweden
| | - Anna Sebestyén
- Tumour Biology Laboratory, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, 1085 Ulloi ut 26., Hungary
| | - Matthias Löhr
- Department of Clinical Intervention and Technology (CLINTEC), Center for Digestive Diseases, Karolinska University Hospital and Division of Surgery, Karolinska Institutet, Stockholm, 14186, Sweden
| | - Mikael Björnstedt
- Department of Laboratory Medicine, Division of Pathology F46, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86, Stockholm, Sweden
| | - Caroline S Verbeke
- Department of Clinical Pathology/Cytology, Karolinska University Hospital, Stockholm, SE-141 86, Sweden.
- Institute of Clinical Medicine, University of Oslo, Postbox 1171 Blindern, Oslo, 0318, Norway.
- Department of Pathology, Oslo University Hospital, Rikshospitalet, Postbox 4956 Nydalen, Oslo, 0424, Norway.
| |
Collapse
|
36
|
Okui N, Kamata Y, Sagawa Y, Kuhara A, Hayashi K, Uwagawa T, Homma S, Yanaga K. Claudin 7 as a possible novel molecular target for the treatment of pancreatic cancer. Pancreatology 2019; 19:88-96. [PMID: 30416041 DOI: 10.1016/j.pan.2018.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/22/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Pancreatic cancer consists of various subpopulations of cells, some of which have aggressive proliferative properties. The molecules responsible for the aggressive proliferation of pancreatic cancer may become molecular targets for the therapies against pancreatic cancer. METHODS From a human pancreatic cancer cell line, MIA PaCa-2, MIA PaCa-2-A cells with an epithelial morphology and MIA PaCa-2-R cells with a non-epithelial morphology were clonogenically isolated by the limiting dilution method. Gene expression of these subpopulations was analyzed by DNA microarray. Gene knockdown was performed using siRNA. RESULTS Although the MIA PaCa-2-A and MIA PaCa-2-R cells displayed the same DNA short tandem repeat (STR) pattern identical to that of the parental MIA PaCa-2 cells, the MIA PaCa-2-A cells were more proliferative than the MIA PaCa-2-R cells both in culture and in tumor xenografts generated in immunodeficient mice. Furthermore, the MIA PaCa-2-A cells were more resistant to gemcitabine than the MIA PaCa-2-R cells. DNA microarray analysis revealed a high expression of claudin (CLDN) 7 in the MIA PaCa-2-A cells, as opposed to a low expression in the MIA PaCa-2-R cells. The knockdown of CLDN7 in the MIA PaCa-2-A cells induced a marked inhibition of proliferation. The MIA PaCa-2-A cells in which CLDN7 was knocked down exhibited a decreased expression of phosphorylated extracellular signal-regulated kinase (p-Erk)1/2 and G1 cell cycle arrest. CONCLUSIONS CLDN7 may be expressed in the rapidly proliferating and dominant cell population in human pancreatic cancer tissues and may be a novel molecular target for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Norimitsu Okui
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuko Kamata
- Division of Oncology, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Yukiko Sagawa
- Division of Oncology, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Akiko Kuhara
- Division of Oncology, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazumi Hayashi
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tadashi Uwagawa
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Sadamu Homma
- Division of Oncology, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan.
| | - Katsuhiko Yanaga
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
37
|
McGuigan A, Kelly P, Turkington RC, Jones C, Coleman HG, McCain RS. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J Gastroenterol 2018; 24:4846-4861. [PMID: 30487695 PMCID: PMC6250924 DOI: 10.3748/wjg.v24.i43.4846] [Citation(s) in RCA: 1166] [Impact Index Per Article: 166.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 02/06/2023] Open
Abstract
This review aims to outline the most up-to-date knowledge of pancreatic adenocarcinoma risk, diagnostics, treatment and outcomes, while identifying gaps that aim to stimulate further research in this understudied malignancy. Pancreatic adenocarcinoma is a lethal condition with a rising incidence, predicted to become the second leading cause of cancer death in some regions. It often presents at an advanced stage, which contributes to poor five-year survival rates of 2%-9%, ranking firmly last amongst all cancer sites in terms of prognostic outcomes for patients. Better understanding of the risk factors and symptoms associated with this disease is essential to inform both health professionals and the general population of potential preventive and/or early detection measures. The identification of high-risk patients who could benefit from screening to detect pre-malignant conditions such as pancreatic intraepithelial neoplasia, intraductal papillary mucinous neoplasms and mucinous cystic neoplasms is urgently required, however an acceptable screening test has yet to be identified. The management of pancreatic adenocarcinoma is evolving, with the introduction of new surgical techniques and medical therapies such as laparoscopic techniques and neo-adjuvant chemoradiotherapy, however this has only led to modest improvements in outcomes. The identification of novel biomarkers is desirable to move towards a precision medicine era, where pancreatic cancer therapy can be tailored to the individual patient, while unnecessary treatments that have negative consequences on quality of life could be prevented for others. Research efforts must also focus on the development of new agents and delivery systems. Overall, considerable progress is required to reduce the burden associated with pancreatic cancer. Recent, renewed efforts to fund large consortia and research into pancreatic adenocarcinoma are welcomed, but further streams will be necessary to facilitate the momentum needed to bring breakthroughs seen for other cancer sites.
Collapse
Affiliation(s)
- Andrew McGuigan
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7AE, United Kingdom
| | - Paul Kelly
- Department of Pathology, Royal Victoria Hospital, Belfast BT12 6BA, United Kingdom
| | - Richard C Turkington
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7AE, United Kingdom
| | - Claire Jones
- Department of Hepatobiliary Surgery, Mater Hospital, Belfast BT14 6AB, United Kingdom
| | - Helen G Coleman
- Centre for Public Health, Queen’s University Belfast, Belfast BT12 6BJ, United Kingdom
| | - R Stephen McCain
- Department of Hepatobiliary Surgery, Mater Hospital, Belfast BT14 6AB, United Kingdom
- Centre for Public Health, Queen’s University Belfast, Belfast BT12 6BJ, United Kingdom
| |
Collapse
|
38
|
Kamposioras K, Tsimplouli C, Verbeke C, Anthoney A, Daoukopoulou A, Papandreou CN, Sakellaridis N, Vassilopoulos G, Potamianos SP, Liakouli V, Migneco G, Del Galdo F, Dimas K. Silencing of caveolin-1 in fibroblasts as opposed to epithelial tumor cells results in increased tumor growth rate and chemoresistance in a human pancreatic cancer model. Int J Oncol 2018; 54:537-549. [PMID: 30483772 PMCID: PMC6317659 DOI: 10.3892/ijo.2018.4640] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 04/03/2018] [Indexed: 01/27/2023] Open
Abstract
Caveolin-1 (Cav-1) expression has been shown to be associated with tumor growth and resistance to chemotherapy in pancreatic cancer. The primary aim of this study was to explore the significance of Cav-1 expression in pancreatic cancer cells as compared to fibroblasts in relation to cancer cell proliferation and chemoresistance, both in vitro and in vivo, in an immunodeficient mouse model. We also aimed to evaluate the immunohistochemical expression of Cav-1 in the epithelial and stromal component of pancreatic cancer tissue specimens. The immunohistochemical staining of poorly differentiated tissue sections revealed a strong and weak Cav-1 expression in the epithelial tumor cells and stromal fibroblasts, respectively. Conversely, the well-differentiated areas were characterized by a weak epithelial Cav-1 expression. Cav-1 downregulation in cancer cells resulted in an increased proliferation in vitro; however, it had no effect on chemoresistance and growth gain in vivo. By contrast, the decreased expression of Cav-1 in fibroblasts resulted in a growth advantage and the chemo-resistance of cancer cells when they were co-injected into immunodeficient mice to develop mixed fibroblast/cancer cell xenografts. On the whole, the findings of this study suggest that the downregulation of Cav-1 in fibroblasts is associated with an increased tumor proliferation rate in vivo and chemoresistance. Further studies are warranted to explore whether the targeting of Cav-1 in the stroma may represent a novel therapeutic approach in pancreatic cancer.
Collapse
Affiliation(s)
| | - Chrysiida Tsimplouli
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| | | | - Alan Anthoney
- Department of Medical Oncology, The Leeds Teaching Hospitals NHS Trust, LS9 7TF Leeds, UK
| | - Argyro Daoukopoulou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| | - Christos N Papandreou
- Department of Medical Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Nikolaos Sakellaridis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| | - George Vassilopoulos
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Spyros P Potamianos
- Department of Gastroenterology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Vasiliki Liakouli
- Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine, LMBRU, University of Leeds, LS9 7TF Leeds, UK
| | - Gemma Migneco
- Division of Oncology, Leeds Institute of Molecular Medicine, St. James's University Hospital Leeds, LS9 7TF Leeds, UK
| | - Francesco Del Galdo
- Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine, LMBRU, University of Leeds, LS9 7TF Leeds, UK
| | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
39
|
Lv F, Zheng K, Yu J, Huang Z. MicroRNA-661 expression is upregulated in pancreatic ductal adenocarcinoma and promotes cell proliferation. Oncol Lett 2018; 16:6293-6298. [PMID: 30405764 PMCID: PMC6202501 DOI: 10.3892/ol.2018.9454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 06/13/2018] [Indexed: 12/14/2022] Open
Abstract
Deregulation of microRNA (miRNA/miR) expression has been implicated in the development of pancreatic ductal adenocarcinoma (PDAC). However, the role of miR-661 in PDAC remains unknown. In the present study, it was revealed that miR-661 expression was significantly upregulated in PDAC tissues compared with that in adjacent normal tissues by using reverse transcription-quantitative polymerase chain reaction assays. Higher miR-661 expression revealed a positive association with lymph node metastasis, an advanced T stage and a poor prognosis in patients with PDAC. Furthermore, ectopic expression of miR-661 significantly promoted the cell proliferation ability in PDAC cell lines, and simultaneously promoted Wnt signaling pathway-related protein expression of β-catenin, transcription factor 4 and cyclin D1 in vitro. However, the downregulation of miR-661 revealed reverse effects. Thus, the results of the present study indicated that miR-661 may function as a prognostic marker and provide insight for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Feifei Lv
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China.,Department of General Surgery, The First Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010020, P.R. China
| | - Kehong Zheng
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Jinlong Yu
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Zonghai Huang
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
40
|
Verbeke C, Häberle L, Lenggenhager D, Esposito I. Pathology assessment of pancreatic cancer following neoadjuvant treatment: Time to move on. Pancreatology 2018; 18:467-476. [PMID: 29843972 DOI: 10.1016/j.pan.2018.04.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023]
Abstract
Neoadjuvant treatment has increasingly become an integral part of the multimodal management of patients with pancreatic cancer. In patients who are able to undergo surgery following preoperative therapy, tumour regression grading remains the diagnostic gold standard for the histomorphological assessment of the effect of neoadjuvant treatment. In recent years, however, there has been growing concern about inherent flaws of tumour regression grading systems as well as their imprecise and impractical criteria that result in divergence of practice and lack of interobserver agreement. Furthermore, existing tumour regression systems differ in their defining criteria and thresholds, leading to incomparability of data. In this review, the principles and limitations of the main existing tumour regression systems are discussed, and potential alternative assessment approaches and novel markers are presented.
Collapse
Affiliation(s)
- Caroline Verbeke
- Dept of Pathology, Institute of Clinical Medicine, University of Oslo, Norway; Dept of Pathology, Oslo University Hospital, Norway.
| | - Lena Häberle
- Institute of Pathology, Heinrich-Heine University and University Hospital of Düsseldorf, Germany
| | - Daniela Lenggenhager
- Dept of Pathology, Institute of Clinical Medicine, University of Oslo, Norway; Dept of Pharmacology, Institute of Clinical Medicine, University of Oslo, Norway; Institute of Pathology and Molecular Pathology, University of Zürich and University Hospital Zürich, Switzerland
| | - Irene Esposito
- Institute of Pathology, Heinrich-Heine University and University Hospital of Düsseldorf, Germany.
| |
Collapse
|
41
|
Yun G, Kim YH, Lee YJ, Kim B, Hwang JH, Choi DJ. Tumor heterogeneity of pancreas head cancer assessed by CT texture analysis: association with survival outcomes after curative resection. Sci Rep 2018; 8:7226. [PMID: 29740111 PMCID: PMC5940761 DOI: 10.1038/s41598-018-25627-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 04/25/2018] [Indexed: 12/12/2022] Open
Abstract
The value of image based texture features as a powerful method to predict prognosis and assist clinical management in cancer patients has been established recently. However, texture analysis using histograms and grey-level co-occurrence matrix in pancreas cancer patients has rarely been reported. We aimed to analyze the association of survival outcomes with texture features in pancreas head cancer patients. Eighty-eight pancreas head cancer patients who underwent preoperative CT images followed by curative resection were included. Texture features using different filter values were obtained. The texture features of average, contrast, correlation, and standard deviation with no filter, and fine to medium filter values as well as the presence of nodal metastasis were significantly different between the recurred (n = 70, 79.5%) and non-recurred group (n = 18, 20.5%). In the multivariate Cox regression analysis, lower standard deviation and contrast and higher correlation with lower average value representing homogenous texture were significantly associated with poorer DFS (disease free survival), along with the presence of lymph node metastasis. Texture parameters from routinely performed pre-operative CT images could be used as an independent imaging tool for predicting the prognosis in pancreas head cancer patients who underwent curative resection.
Collapse
Affiliation(s)
- Gabin Yun
- Seoul National University Bundang Hospital, Department of Radiology, Seongnam, 13620, Korea
| | - Young Hoon Kim
- Seoul National University Bundang Hospital, Department of Radiology, Seongnam, 13620, Korea.
| | - Yoon Jin Lee
- Seoul National University Bundang Hospital, Department of Radiology, Seongnam, 13620, Korea
| | - Bohyoung Kim
- Seoul National University Bundang Hospital, Department of Radiology, Seongnam, 13620, Korea.,Hankuk University of Foreign Studies, Division of Biomedical Engineering, Yongin, 17035, Korea
| | - Jin-Hyeok Hwang
- Seoul National University Bundang Hospital, Department of Internal Medicine, Seongnam, 13620, Korea
| | - Dong Joon Choi
- Seoul National University Bundang Hospital, Department of Radiology, Seongnam, 13620, Korea
| |
Collapse
|
42
|
The Dutch Pancreas Biobank Within the Parelsnoer Institute: A Nationwide Biobank of Pancreatic and Periampullary Diseases. Pancreas 2018. [PMID: 29521943 DOI: 10.1097/mpa.0000000000001018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Large biobanks with uniform collection of biomaterials and associated clinical data are essential for translational research. The Netherlands has traditionally been well organized in multicenter clinical research on pancreatic diseases, including the nationwide multidisciplinary Dutch Pancreatic Cancer Group and Dutch Pancreatitis Study Group. To enable high-quality translational research on pancreatic and periampullary diseases, these groups established the Dutch Pancreas Biobank. METHODS The Dutch Pancreas Biobank is part of the Parelsnoer Institute and involves all 8 Dutch university medical centers and 5 nonacademic hospitals. Adult patients undergoing pancreatic surgery (all indications) are eligible for inclusion. Preoperative blood samples, tumor tissue from resected specimens, pancreatic cyst fluid, and follow-up blood samples are collected. Clinical parameters are collected in conjunction with the mandatory Dutch Pancreatic Cancer Audit. RESULTS Between January 2015 and May 2017, 488 patients were included in the first 5 participating centers: 4 university medical centers and 1 nonacademic hospital. Over 2500 samples were collected: 1308 preoperative blood samples, 864 tissue samples, and 366 follow-up blood samples. CONCLUSIONS Prospective collection of biomaterials and associated clinical data has started in the Dutch Pancreas Biobank. Subsequent translational research will aim to improve treatment decisions based on disease characteristics.
Collapse
|
43
|
Fujii-Nishimura Y, Yamazaki K, Masugi Y, Douguchi J, Kurebayashi Y, Kubota N, Ojima H, Kitago M, Shinoda M, Hashiguchi A, Sakamoto M. Mesenchymal-epithelial transition of pancreatic cancer cells at perineural invasion sites is induced by Schwann cells. Pathol Int 2018; 68:214-223. [DOI: 10.1111/pin.12641] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/29/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Yoko Fujii-Nishimura
- Department of Pathology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Ken Yamazaki
- Department of Pathology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Yohei Masugi
- Department of Pathology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Junya Douguchi
- Department of Pathology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Yutaka Kurebayashi
- Department of Pathology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Naoto Kubota
- Department of Pathology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Hidenori Ojima
- Department of Pathology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Minoru Kitago
- Department of Surgery; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Masahiro Shinoda
- Department of Surgery; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Akinori Hashiguchi
- Department of Pathology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Michiie Sakamoto
- Department of Pathology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| |
Collapse
|
44
|
Buanes TA. Role of surgery in pancreatic cancer. World J Gastroenterol 2017; 23:3765-3770. [PMID: 28638216 PMCID: PMC5467062 DOI: 10.3748/wjg.v23.i21.3765] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/17/2017] [Accepted: 04/21/2017] [Indexed: 02/06/2023] Open
Abstract
Treatment of pancreatic cancer is multimodal and surgery is an essential part, mandatory for curative potential. Also chemotherapy is essential, and serious postoperative complications or rapid disease progression may preclude completion of multimodal treatment. The sequence of treatment interventions has therefore become an important concern, and numerous ongoing randomized controlled trials compare clinical outcome after upfront surgery and neoadjuvant treatment with subsequent resection. In previous years, borderline resectable and locally advanced pancreatic cancer was most often considered unresectable. More effective chemotherapy together with the latest improvements in surgical expertise has resulted in extended operations, pushing the borders of resectability. Multivisceral resections with or without resection of major mesenteric vessels are now performed in numerous patients, resulting in better outcome, recorded as overall survival and/or patient reported outcome. But postoperative morbidity increases concurrently, and clinical benefit must be carefully evaluated against risk of potential harm, associated with new comprehensive multimodal treatment sequences. Even though cost/utility analyses are deficient, extended surgery has resulted in significantly longer and better life for many patients with no other treatment alternative. Improved selection of patients to surgery and/or chemotherapy will in the near future be possible, based on better tumor biology insight. Clinically available biomarkers enabling personalized treatment are forthcoming, but these options are still limited. The importance of surgical resection for each patient’s prognosis is presently increasing, justifying sustained expansion of the surgical treatment modality.
Collapse
|
45
|
Scott SJ, Adams MS, Salgaonkar V, Sommer FG, Diederich CJ. Theoretical investigation of transgastric and intraductal approaches for ultrasound-based thermal therapy of the pancreas. J Ther Ultrasound 2017; 5:10. [PMID: 28469915 PMCID: PMC5414307 DOI: 10.1186/s40349-017-0090-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/07/2017] [Indexed: 02/07/2023] Open
Abstract
Background The goal of this study was to theoretically investigate the feasibility of intraductal and transgastric approaches to ultrasound-based thermal therapy of pancreatic tumors, and to evaluate possible treatment strategies. Methods This study considered ultrasound applicators with 1.2 mm outer diameter tubular transducers, which are inserted into the tissue to be treated by an endoscopic approach, either via insertion through the gastric wall (transgastric) or within the pancreatic duct lumen (intraductal). 8 patient-specific, 3D, transient, biothermal and acoustic finite element models were generated to model hyperthermia (n = 2) and ablation (n = 6), using sectored (210°–270°, n = 4) and 360° (n = 4) transducers for treatment of 3.3–17.0 cm3 tumors in the head (n = 5), body (n = 2), and tail (n = 1) of the pancreas. A parametric study was performed to determine appropriate treatment parameters as a function of tissue attenuation, blood perfusion rates, and distance to sensitive anatomy. Results Parametric studies indicated that pancreatic tumors up to 2.5 or 2.7 cm diameter can be ablated within 10 min with the transgastric and intraductal approaches, respectively. Patient-specific simulations demonstrated that 67.1–83.3% of the volumes of four sample 3.3–11.4 cm3 tumors could be ablated within 3–10 min using transgastric or intraductal approaches. 55.3–60.0% of the volume of a large 17.0 cm3 tumor could be ablated using multiple applicator positions within 20–30 min with either transgastric or intraductal approaches. 89.9–94.7% of the volume of two 4.4–11.4 cm3 tumors could be treated with intraductal hyperthermia. Sectored applicators are effective in directing acoustic output away from and preserving sensitive structures. When acoustic energy is directed towards sensitive structures, applicators should be placed at least 13.9–14.8 mm from major vessels like the aorta, 9.4–12.0 mm from other vessels, depending on the vessel size and flow rate, and 14 mm from the duodenum. Conclusions This study demonstrated the feasibility of generating shaped or conformal ablative or hyperthermic temperature distributions within pancreatic tumors using transgastric or intraductal ultrasound.
Collapse
Affiliation(s)
- Serena J Scott
- Department of Radiation Oncology, Thermal Therapy Research Group, University of California, San Francisco, 1600 Divisadero Street, Suite H1031, San Francisco, CA 94143-1708 USA
| | - Matthew S Adams
- Department of Radiation Oncology, Thermal Therapy Research Group, University of California, San Francisco, 1600 Divisadero Street, Suite H1031, San Francisco, CA 94143-1708 USA.,UC Berkeley - UC San Francisco Graduate Program in Bioengineering, California, USA
| | - Vasant Salgaonkar
- Department of Radiation Oncology, Thermal Therapy Research Group, University of California, San Francisco, 1600 Divisadero Street, Suite H1031, San Francisco, CA 94143-1708 USA
| | - F Graham Sommer
- Department of Radiology, Stanford University School of Medicine, Stanford, CA USA
| | - Chris J Diederich
- Department of Radiation Oncology, Thermal Therapy Research Group, University of California, San Francisco, 1600 Divisadero Street, Suite H1031, San Francisco, CA 94143-1708 USA.,UC Berkeley - UC San Francisco Graduate Program in Bioengineering, California, USA
| |
Collapse
|
46
|
Buanes TA. Updated therapeutic outcome for patients with periampullary and pancreatic cancer related to recent translational research. World J Gastroenterol 2016; 22:10502-10511. [PMID: 28082802 PMCID: PMC5192261 DOI: 10.3748/wjg.v22.i48.10502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/14/2016] [Accepted: 11/28/2016] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy with improved effect in patients with metastatic pancreatic cancer has recently been established, launching a new era for patients with this very aggressive disease. FOLFIRINOX and gemcitabine plus nab-paclitaxel are different regimens, both capable of stabilizing the disease, thus increasing the number of patients who can reach second line and even third line of treatment. Concurrently, new windows of opportunity open for nutritional support and other therapeutic interventions, improving quality of life. Also pancreatic surgery has changed significantly during the latest years. Extended operations, including vascular/multivisceral resections are frequently performed in specialized centers, pushing borders of resectability. Potentially curative treatment including neoadjuvant and adjuvant chemotherapy is offered new patient groups. Translational research is the basis for the essential understanding of the ongoing development. Even thou biomarkers for clinical management of patients with periampullary tumors have almost been lacking, biomarker driven trials are now in progress. New insight is constantly made available for clinicians; one recent example is selection of patients for gemcitabine treatment based on the expression level of the human equilibrium nucleoside transporter 1. An example of new diagnostic tools is identification of early pancreatic cancer patients by a three-biomarker panel in urine: The proteins lymphatic vessel endothelial hyaluronan receptor 1, regenerating gene 1 alpha and translation elongation factor 1 alpha. Requirement of treatment guideline revisions is intensifying, as combined chemotherapy regimens result in unexpected advantages. The European Study Group for Pancreatic Cancer 4 trial outcome is an illustration: Addition of capecitabine in the adjuvant setting improved overall survival more than expected from the effect in advanced disease. Rapid implementation of new treatment options is mandatory when progress finally extends to patients with this serious disease.
Collapse
|