1
|
Jeon H, Sterpi M, Mo C, Bteich F. Claudins: from gatekeepers of epithelial integrity to potential targets in hepato-pancreato-biliary cancers. Front Oncol 2024; 14:1454882. [PMID: 39391254 PMCID: PMC11464258 DOI: 10.3389/fonc.2024.1454882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/22/2024] [Indexed: 10/12/2024] Open
Abstract
Claudins, a family of tetraspan transmembrane proteins, are critical to the integrity of tight junctions in epithelia and endothelia, influencing cellular processes such as development, differentiation, and apoptosis. Abnormal claudin expression is associated with various malignancies, particularly affecting tissue architecture and potentially facilitating tumor invasion and metastasis. In this comprehensive review, we explore the multifaceted functions of claudins: their expression, specific roles in cancer with a focus on hepato-pancreato-biliary malignancies and highlight their potential as therapeutic targets. We discuss current claudin-targeted therapies, including monoclonal antibodies, antibody-drug conjugates, bispecific T-cell engager and chimeric antigen receptor T-cell therapies. These approaches show promise in pre-clinical and clinical studies, particularly in hepato-pancreato-biliary cancers with large unmet needs. Despite these early signs of efficacy, challenges remain in effectively targeting these proteins due to their structural resemblance and overlapping functions.
Collapse
Affiliation(s)
- Hyein Jeon
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| | - Michelle Sterpi
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| | - Christiana Mo
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| | - Fernand Bteich
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
2
|
Du F, Xie Y, Wu S, Ji M, Dong B, Zhu C. Expression and Targeted Application of Claudins Family in Hepatobiliary and Pancreatic Diseases. J Hepatocell Carcinoma 2024; 11:1801-1821. [PMID: 39345937 PMCID: PMC11439345 DOI: 10.2147/jhc.s483861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Hepatobiliary and pancreatic diseases are becoming increasingly common worldwide and associated cancers are prone to recurrence and metastasis. For a more accurate treatment, new therapeutic strategies are urgently needed. The claudins (CLDN) family comprises a class of membrane proteins that are the main components of tight junctions, and are essential for forming intercellular barriers and maintaining cellular polarity. In mammals, the claudin family contains at least 27 transmembrane proteins and plays a major role in mediating cell adhesion and paracellular permeability. Multiple claudin proteins are altered in various cancers, including gastric cancer (GC), esophageal cancer (EC), hepatocellular carcinoma (HCC), pancreatic cancer (PC), colorectal cancer (CRC) and breast cancer (BC). An increasing number of studies have shown that claudins are closely associated with the occurrence and development of hepatobiliary and pancreatic diseases. Interestingly, claudin proteins exhibit different effects on cancer progression in different tumor tissues, including tumor suppression and promotion. In addition, various claudin proteins are currently being studied as potential diagnostic and therapeutic targets, including claudin-3, claudin-4, claudin-18.2, etc. In this article, the functional phenotype, molecular mechanism, and targeted application of the claudin family in hepatobiliary and pancreatic diseases are reviewed, with an emphasis on claudin-1, claudin-4, claudin-7 and claudin-18.2, and the current situation and future prospects are proposed.
Collapse
Affiliation(s)
- Fangqian Du
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yuwei Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Shengze Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Mengling Ji
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
3
|
Łukaszewicz-Zając M, Mroczko B. Claudins-Promising Biomarkers for Selected Gastrointestinal (GI) Malignancies? Cancers (Basel) 2023; 16:152. [PMID: 38201579 PMCID: PMC10778544 DOI: 10.3390/cancers16010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Despite recent() improvements in diagnostic ability() and treatment() strategies for patients() with neoplastic disease(), gastrointestinal (GI) cancers(), such() as colorectal, gastric, pancreatic, and oesophageal cancers(), are still common() malignancies and the leading() cause() of cancer() deaths worldwide(), with a high frequency of recurrence and metastasis as well as poor patient() prognosis. There is a link() between the secretion of proteolytic enzymes that degrade the extracellular matrix and the pathogenesis of GI tumours. Recent() findings have focused() on the potential() significance() of selected claudins (CLDNs) in the pathogenesis and prognosis of GI cancers(). Tight junctions (TJs) have been proven to play an important role() in maintaining cell() polarity and permeability. A number of authors have recently() revealed that TJ proteins, particularly() selected CLDNs, are related() to inflammation and the development() of various tumours, including GI malignancies. This review() presents general() characteristics and the involvement() of selected CLDNs in the progression() of GI malignancies, with a focus() on the potential() application() of these proteins in the diagnosis() and prognosis of colorectal cancer() (CRC), gastric cancer() (GC), pancreatic cancer() (PC), and oesophageal cancer() (EC). Our review() indicates that selected CLDNs, particularly() CLDN1, 2, 4, 7, and 18, play a significant() role() in the development() of GI tumours and in patient() prognosis. Furthermore, selected CLDNs may be of value() in the design() of therapeutic() strategies for the treatment() of recurrent tumours.
Collapse
Affiliation(s)
- Marta Łukaszewicz-Zając
- Department of Biochemical Diagnostics, Medical University, Waszyngtona 15 a, 15-269 Bialystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University, Waszyngtona 15 a, 15-269 Bialystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University, 15-269 Bialystok, Poland
| |
Collapse
|
4
|
Bang C, Park MG, Cho IK, Lee DE, Kim GL, Jang EH, Shim MK, Yoon HY, Lee S, Kim JH. Liposomes targeting the cancer cell-exposed receptor, claudin-4, for pancreatic cancer chemotherapy. Biomater Res 2023; 27:53. [PMID: 37237291 DOI: 10.1186/s40824-023-00394-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Claudin-4 (CLDN4), a tight junction protein, is overexpressed in several types of cancer, and is considered a biomarker for cancer-targeted treatment. CLDN4 is not exposed in normal cells, but becomes accessible in cancer cells, in which tight junctions are weakened. Notably, surface-exposed CLDN4 has recently been found to act as a receptor for Clostridium perfringens enterotoxin (CPE) and fragment of CPE (CPE17) that binds to the second domain of CLDN4. METHODS Here, we sought to develop a CPE17-containing liposome that targets pancreatic cancers through binding to exposed CLDN4. RESULTS Doxorubicin (Dox)-loaded, CPE17-conjugated liposomes (D@C-LPs) preferentially targeted CLDN4-expressing cell lines, as evidenced by greater uptake and cytotoxicity compared with CLDN4-negative cell lines, whereas uptake and cytotoxicity of Dox-loaded liposomes lacking CPE17 (D@LPs) was similar for both CLDN4-positive and negative cell lines. Notably, D@C-LPs showed greater accumulation in targeted pancreatic tumor tissues compared with normal pancreas tissue; in contrast, Dox-loaded liposomes lacking CPE17 (D@LPs) showed little accumulation in pancreatic tumor tissues. Consistent with this, D@C-LPs showed greater anticancer efficacy compared with other liposome formulations and significantly extended survival. CONCLUSIONS We expect our findings will aid in the prevention and treatment of pancreatic cancer and provide a framework for identifying cancer-specific strategies that target exposed receptors.
Collapse
Affiliation(s)
- Chaeeun Bang
- College of Pharmacy and Bionanocomposite Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Min Gyu Park
- College of Pharmacy and Bionanocomposite Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - In Kyung Cho
- College of Pharmacy and Bionanocomposite Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02797, Republic of Korea
| | - Da-Eun Lee
- College of Pharmacy and Bionanocomposite Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Gye Lim Kim
- College of Pharmacy and Bionanocomposite Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Eun Hyang Jang
- College of Pharmacy and Bionanocomposite Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Man Kyu Shim
- College of Pharmacy and Bionanocomposite Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02797, Republic of Korea
| | - Hong Yeol Yoon
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02797, Republic of Korea
| | - Sangmin Lee
- College of Pharmacy and Bionanocomposite Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Regulatory Science, Graduated School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Jong-Ho Kim
- College of Pharmacy and Bionanocomposite Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Regulatory Science, Graduated School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
5
|
Xiao M, Li X, Zhang X, Duan X, Lin H, Liu S, Sui G. Assessment of cancer-related signaling pathways in responses to polystyrene nanoplastics via a kidney-testis microfluidic platform (KTP). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159306. [PMID: 36216064 DOI: 10.1016/j.scitotenv.2022.159306] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
As a new type of environmental pollutants, micro/nano plastics (MPs/NPs) derived from plastic products are commonly contact in daily life and lead to some serious health issues. The toxicity effects of MPs/NPs on the human body have aroused wide concerns. Although MPs/NPs have been reported to be transmitted into the kidney and reproductive organs, the molecular mechanisms of MPs/NPs toxicity remain unclear due to the lack of a physiologically relevant organ-organ linking platform in vitro. Here, we present a kidney-testis microfluidic platform (KTP) with NPs exposure that enables the communication of kidney and testis chambers and reproduces endothelium-linked chambers to simulate the state in vivo. The function of KTP was assessed by cell counting kit (CCK-8), tight junction protein claudin-2 and glucose consumption. Results revealed that MPs/NPs entered the kidney and testis via endocytosis. Immunofluorescence and ELISA analysis were performed on KTP at 200 μg/mL PS-NP to identify the dysregulated proteins on cancer-related signaling pathways, including the MAPK signaling pathway (RTK, RAS, ERK, JNK, P38, NRF2, TNF-α, and TNF-α-R) and the PI3K-AKT signaling pathway (PI3K, AKT, MDM2, P53, and ΒΑD). This multi-organ platform (KTP) contributes to clarifying cancer pathways triggered by MPs/NPs exposure and provides a promising method for assessing diseases induced by environmental pollutants.
Collapse
Affiliation(s)
- Mingming Xiao
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, 200438 Shanghai, China
| | - Xinran Li
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, 200438 Shanghai, China
| | - Xinlian Zhang
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, 200438 Shanghai, China
| | - Xiaoxiao Duan
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, 200438 Shanghai, China
| | - Houwei Lin
- Jiaxing University, Department of Pediatric Surgery, Women and Children Hospital, 2468 East Zhonghuan Road, 314050 Jiaxing, China
| | - Sixiu Liu
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, 200438 Shanghai, China.
| | - Guodong Sui
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, 200438 Shanghai, China.
| |
Collapse
|
6
|
Wang C, Wu N, Pei B, Ma X, Yang W. Claudin and pancreatic cancer. Front Oncol 2023; 13:1136227. [PMID: 36959784 PMCID: PMC10027734 DOI: 10.3389/fonc.2023.1136227] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Due to the lack of timely and accurate screening modalities and treatments, most pancreatic cancer (PCa) patients undergo fatal PCa progression within a short period since diagnosis. The claudin(CLDN) family is expressed specifically as tight junction structure in a variety of tumors, including PCa, and affects tumor progression by changing the cell junctions. Thus far, many of the 27 members of the claudin family, including claudin-18.2 and claudin-4, have significantly aberrantly expression in pancreatic tumors. In addition, some studies have confirmed the role of some claudin proteins in the diagnosis and treatment of pancreatic tumors. By targeting different targets of claudin protein and combining chemotherapy, further enhance tumor cell necrosis and inhibit tumor invasion and metastasis. Claudins can either promote or inhibit the development of pancreatic cancer, which indicates that the diagnosis and treatment of different kinds of claudins require to consider different biological characteristics. This literature summarizes the functional characteristics and clinical applications of various claudin proteins in Pca cells, with a focus on claudin-18.2 and claudin-4.
Collapse
Affiliation(s)
- Chen Wang
- Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Gastroenterology, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Na Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Beibei Pei
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiaoyan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Wenhui Yang
- Department of Gastroenterology, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- *Correspondence: Wenhui Yang,
| |
Collapse
|
7
|
Morphofunctional analysis of human pancreatic cancer cell lines in 2- and 3-dimensional cultures. Sci Rep 2021; 11:6775. [PMID: 33762591 PMCID: PMC7990961 DOI: 10.1038/s41598-021-86028-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/10/2021] [Indexed: 12/18/2022] Open
Abstract
Genetic, transcriptional, and morphological differences have been reported in pancreatic ductal adenocarcinoma (PDAC) cases. We recently found that epithelial or mesenchymal features were enhanced in three-dimensional (3D) cultures compared to two-dimensional (2D) cultures. In this study, we examined the differences in the morphological and functional characteristics of eight PDAC cell lines in 2D and 3D cultures. Most PDAC cells showed similar pleomorphic morphologies in 2D culture. Under 3D culture, PDAC cells with high E-cadherin and low vimentin expression levels (epithelial) formed small round spheres encircled with flat lining cells, whereas those with high vimentin and low E-cadherin expression levels (mesenchymal) formed large grape-like spheres without lining cells and were highly proliferative. In 3D culture, gemcitabine was more effective for the spheres formed by PDAC cells with epithelial features, while abraxane was more effective on those with mesenchymal features. The expression levels of drug transporters were highest PDAC cells with high vimentin expression levels. These findings indicate that PDAC cells possess various levels of epithelial and mesenchymal characteristics. The 3D-culture method is useful for investigating the diversity of PDAC cell lines and may play important roles in the development of personalized early diagnostic methods and anticancer drugs for PDAC.
Collapse
|
8
|
Identification of Key Genes and Prognostic Analysis between Chromophobe Renal Cell Carcinoma and Renal Oncocytoma by Bioinformatic Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4030915. [PMID: 31998788 PMCID: PMC6977339 DOI: 10.1155/2020/4030915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/05/2019] [Indexed: 12/27/2022]
Abstract
The present techniques of clinical and histopathological diagnosis hardly distinguish chromophobe renal cell carcinoma (ChRCC) from renal oncocytoma (RO). To identify differentially expressed genes (DEGs) as effective biomarkers for diagnosis and prognosis of ChRCC and RO, three mRNA microarray datasets (GSE12090, GSE19982, and GSE8271) were downloaded from the GEO database. Functional enrichment analysis of DEGs was performed by DAVID. STRING and Cytoscape were applied to construct the protein-protein interaction (PPI) network and key modules of DEGs. Visualized plots were conducted by the R language. We downloaded clinical data from the TCGA database and the influence of key genes on the overall survival of ChRCC was performed by Kaplan–Meier and Cox analyses. Gene set enrichment analysis (GSEA) was utilized in exploring the function of key genes. A total of 79 DEGs were identified. Enrichment analyses revealed that the DEGs are closely related to tissue invasion and metastasis of cancer. Subsequently, 14 hub genes including ESRP1, AP1M2, CLDN4, and CLDN7 were detected. Kaplan–Meier analysis indicated that the low expression of CLDN7 and GNAS was related to the worse overall survival in patients with ChRCC. Univariate Cox analysis showed that CLDN7 might be a helpful biomarker for ChRCC prognosis. Subgroup analysis revealed that the expression of CLDN7 showed a downtrend with the development of the clinical stage, topography, and distant metastasis of ChRCC. GSEA analysis identified that cell adhesion molecules cams, B cell receptor signaling pathway, T cell receptor signaling pathway, RIG-I like receptor signaling pathway, Toll-like receptor signaling pathway, and apoptosis pathway were associated with the expression of CLDN7. In conclusion, ESRP1, AP1M2, CLDN4, PRSS8, and CLDN7 were found to distinguish ChRCC from RO. Besides, the low expression of CLDN7 was closely related to ChRCC progression and could serve as an independent risk factor for the overall survival in patients with ChRCC.
Collapse
|
9
|
Characterization of the metastatic potential of the floating cell component of MIA PaCa-2, a human pancreatic cancer cell line. Biochem Biophys Res Commun 2019; 522:881-888. [PMID: 31806369 DOI: 10.1016/j.bbrc.2019.11.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022]
Abstract
In pancreatic cancer, morphologically and functionally heterogeneous cancer cells reside within the same patient. The heterogeneity is believed to promote metastasis and resistance to chemoradiotherapy. MIA PaCa-2, an established human pancreatic ductal adenocarcinoma (PDAC) cell line, contains round and spindle-shaped adherent cells, as well as, round floating cells. In this study, we aimed to assess if the floating cells might have greater metastatic potential and/or be more resistant to drug-induced apoptosis compared to adherent cells. Time-lapse analysis revealed that the two types of adherent cells transformed bilaterally, and some of the adherent, round cells converted to floating cells. Flow cytometry and electron microscopy showed that approximately 90% of the floating cells were viable. qRT-PCR analysis revealed that floating cells expressed lower levels of integrins and ATP-binding cassette (ABC) transporters than adherent cells. In contrast, except for vimentin, floating cells expressed more epithelial to mesenchymal transition markers than adherent cells. Floating cells included a larger population of G2/M-phase cells, and migration assays revealed a decreased migration ability by floating cells relative to adherent cells. A cell aggregation assay showed that the aggregative properties of the floating cells were lower than those of the adherent cells. In 3D culture, spheres derived from floating cells were more sensitive to anti-cancer drugs, including gemcitabine, 5-FU, and abraxane, than those derived from adherent cells. Expression levels of stemness markers in the spheres derived from floating cells were lower than those derived from adherent cells. Morphological characterization of human PDAC cell lines may help to clarify the series of alterations cancer cells undergo during the metastatic process and may contribute to the development of new PDAC diagnostics and more patient-specific treatments for those with PDAC.
Collapse
|
10
|
Tian X, He Y, Han Z, Su H, Chu C. The Cytoplasmic Expression Of CLDN12 Predicts An Unfavorable Prognosis And Promotes Proliferation And Migration Of Osteosarcoma. Cancer Manag Res 2019; 11:9339-9351. [PMID: 31807064 PMCID: PMC6830360 DOI: 10.2147/cmar.s229441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
Background To date, the impact and potential molecular mechanisms of CLDN12 and its association with malignancy in osteosarcoma have not been determined. Materials and methods In the present study, the expression profiles of CLDN12 in osteosarcoma cell lines and tissues were explored by immunohistochemistry. A fetal osteoblast cell line was transfected with a eukaryotic expression plasmid, and endogenous CLDN12 in osteosarcoma cells were silenced through an RNA interference (RNAi) method. These transfections were verified, and the activation state of Thr308 site in protein kinase B (Akt) was explored by Western blotting. Moreover, the malignant phenotype of osteosarcoma cells was evaluated by cell counting kit-8 (CCK-8), colony formation, Transwell, and wound-healing assays. Furthermore, osteoblast cells were treated with the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002 to determine the impact of the PI3K/Akt signaling pathway on cell migration ability. Results The results revealed that CLDN12 was overexpressed and localized in the cytoplasm of osteosarcoma cells, and its overexpression was associated with an unfavorable prognosis, irrespective of tumor node metastasis stage. In addition, the knockdown of CLDN12 in cultured osteosarcoma cells markedly attenuated cell proliferation and migration, as indicated by the Cell Counting Kit-8 assay, colony formation assay, scratch wound healing assay and Transwell migration assay. The results also demonstrated that the overexpression of CLDN12 increased the activation of Thr308 site in Akt in fetal osteoblast cells, and the PI3K inhibitor LY294002 partially decreased CLDN12-promoted proliferation and metastasis. Conclusion In conclusion, the results of the present study indicated that CLDN12 promoted cell proliferation and migration through the PI3K/Akt signaling pathway in osteosarcoma cells, suggesting that CLDN12 may be a potential agent in the treatment of patients with osteosarcoma.
Collapse
Affiliation(s)
- Xiaoqing Tian
- Department of Orthopeadic Surgery, Heze Mudan People's Hospital, Heze City, Shandong 274000, People's Republic of China
| | - YinFeng He
- Department of Joint Surgery, Heze Municipal Hospital, Heze City, Shandong 274000, People's Republic of China
| | - Zhe Han
- Department of Traumatic Surgery, Heze Municipal Hospital, Heze City, Shandong 274000, People's Republic of China
| | - HongMin Su
- Department of Spinal Surgery, Heze Municipal Hospital, Heze City, Shandong 274000, People's Republic of China
| | - Chao Chu
- Department of Spinal Surgery, Heze Municipal Hospital, Heze City, Shandong 274000, People's Republic of China
| |
Collapse
|