1
|
Zhang N, Cai S, Wang M, Hu T, Schneider F, Sun SY, Coskun AF. Graph-Based Spatial Proximity of Super-Resolved Protein-Protein Interactions Predicts Cancer Drug Responses in Single Cells. Cell Mol Bioeng 2024; 17:467-490. [PMID: 39513000 PMCID: PMC11538221 DOI: 10.1007/s12195-024-00822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024] Open
Abstract
Purpose Current bulk molecular assays fail to capture spatial signaling activities in cancers, limiting our understanding of drug resistance mechanisms. We developed a graph-based super-resolution protein-protein interaction (GSR-PPI) technique to spatially resolve single-cell signaling networks and evaluate whether higher resolution microscopy enhances the biological study of PPIs using deep learning classification models. Methods Single-cell spatial proximity ligation assays (PLA, ≤ 9 PPI pairs) were conducted on EGFR mutant (EGFRm) PC9 and HCC827 cells (>10,000 cells) treated with 100 nM Osimertinib. Multiplexed PPI images were obtained using wide-field and super-resolution microscopy (Zeiss Airyscan, SRRF). Graph-based deep learning models analyzed subcellular protein interactions to classify drug treatment states and test GSR-PPI on clinical tissue samples. GSR-PPI triangulated PPI nodes into 3D relationships, predicting drug treatment labels. Biological discriminative ability (BDA) was evaluated using accuracy, AUC, and F1 scores. The method was also applied to 3D spatial proteomic molecular pixelation (PixelGen) data from T cells. Results GSR-PPI outperformed baseline models in predicting drug responses from multiplexed PPI imaging in EGFRm cells. Super-resolution data significantly improved accuracy over localized wide-field imaging. GSR-PPI classified drug treatment states in cancer cells and human lung tissues, with performance improving as imaging resolution increased. It differentiated single and combination drug therapies in HCC827 cells and human tissues. Additionally, GSR-PPI accurately distinguished T-cell stimulation states, identifying key nodes such as CD44, CD45, and CD54. Conclusion The GSR-PPI framework provides valuable insights into spatial protein interactions and drug responses, enhancing the study of signaling biology and drug resistance. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00822-1.
Collapse
Affiliation(s)
- Nicholas Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA USA
| | - Shuangyi Cai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA USA
| | - Mingshuang Wang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA USA
| | - Thomas Hu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Frank Schneider
- Winship Cancer Institute of Emory University, Atlanta, GA 30322 USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Shi-Yong Sun
- Winship Cancer Institute of Emory University, Atlanta, GA 30322 USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Ahmet F. Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA USA
| |
Collapse
|
2
|
Liang H, Xu Y, Zhao J, Chen M, Wang M. Hippo pathway in non-small cell lung cancer: mechanisms, potential targets, and biomarkers. Cancer Gene Ther 2024; 31:652-666. [PMID: 38499647 PMCID: PMC11101353 DOI: 10.1038/s41417-024-00761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Lung cancer is the primary contributor to cancer-related deaths globally, and non-small cell lung cancer (NSCLC) constitutes around 85% of all lung cancer cases. Recently, the emergence of targeted therapy and immunotherapy revolutionized the treatment of NSCLC and greatly improved patients' survival. However, drug resistance is inevitable, and extensive research has demonstrated that the Hippo pathway plays a crucial role in the development of drug resistance in NSCLC. The Hippo pathway is a highly conserved signaling pathway that is essential for various biological processes, including organ development, maintenance of epithelial balance, tissue regeneration, wound healing, and immune regulation. This pathway exerts its effects through two key transcription factors, namely Yes-associated protein (YAP) and transcriptional co-activator PDZ-binding motif (TAZ). They regulate gene expression by interacting with the transcriptional-enhanced associate domain (TEAD) family. In recent years, this pathway has been extensively studied in NSCLC. The review summarizes a comprehensive overview of the involvement of this pathway in NSCLC, and discusses the mechanisms of drug resistance, potential targets, and biomarkers associated with this pathway in NSCLC.
Collapse
Affiliation(s)
- Hongge Liang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Zhao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minjiang Chen
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Chen X, Yu Y, Su Y, Shi L, Xie S, Hong Y, Liu X, Yin F. Low FHL1 expression indicates a good prognosis and drug sensitivity in ovarian cancer. Funct Integr Genomics 2024; 24:25. [PMID: 38324167 DOI: 10.1007/s10142-024-01294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/01/2024] [Accepted: 01/06/2024] [Indexed: 02/08/2024]
Abstract
Chemotherapy resistance is the main reason for the poor prognosis of ovarian cancer (OC). FHL1 is an important tumour regulator, but its relationship with the prognosis, drug resistance, and tumour microenvironment of OC is unknown. Immunohistochemistry was used to determine FHL1 expression in OC. Kaplan‒Meier plotter was used for survival analysis. The value of gene expression in predicting drug resistance was estimated using the area under the curve (AUC). Bivariate correlation was used to determine the coexpression of two genes. Functional cluster and pathway enrichment were used to uncover hidden signalling pathways. The relationship between gene levels and the tumour microenvironment was visualised through the ggstatsplot and pheatmap packages. The mRNA and protein levels of FHL1 were downregulated in 426 and 100 OC tissues, respectively. Low FHL1 expression was correlated with good progression-free survival (PFS), postprogression survival, and overall survival (OS) in 1815 OC patients, and was further confirmed to be associated with good OS by immunohistochemistry in 152 OC tissues. Furthermore, FHL1 was downregulated in drug-sensitive tissues, while its high expression predicted drug resistance (AUC > 0.65). Mechanistically, FHL1 was coexpressed with FLNC, CAV1, PPP1R12B, and FLNA at the mRNA and protein levels in 558 and 174 OC tissues, respectively, and their expression was downregulated in OC. Additionally, very strong coexpression of FHL1 with the four genes was identified in at least 23 different tumours. Low expression of the four genes was associated with good PFS, and the combination of FHL1 with the four genes provided better prognostic power. Meanwhile, the expression of all five genes was strongly and positively associated with the abundance of macrophages. Low FHL1 expression acts as a favourable factor in OC, probably via positive coexpression with FLNC, CAV1, PPP1R12B, and FLNA.
Collapse
Affiliation(s)
- Xiaoying Chen
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yue Yu
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yuting Su
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lizhou Shi
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shanzhou Xie
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yi Hong
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xia Liu
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Key Laboratory of Human Development and Disease Research (Guangxi Medical University), Education Department of Guangxi Zhang Autonomous Region, Nanning, 530021, Guangxi, China.
| | - Fuqiang Yin
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China.
| |
Collapse
|
4
|
Liu K, Zheng J, Wang Y, Li Y, Xiong Y, Wang Y, Cheng J, Huang X, Zhang L, Lin Y. Effect of TEA domain transcription factor 1 ( TEAD1) on the differentiation of intramuscular preadipocytes in goats. Anim Biotechnol 2023; 34:3589-3598. [PMID: 36866843 DOI: 10.1080/10495398.2023.2178932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
TEA domain transcription factor 1 (TEAD1), also called TEF-1, acts as a transcriptional enhancer to regulate muscle-specific gene expression. However, the role of TEAD1 in regulating intramuscular preadipocyte differentiation in goats is unclear. The aim of this study was to obtain the sequence of TEAD1 gene and elucidate the effect of TEAD1 on goat intramuscular preadipocyte differentiation in vitro and its possible mechanism. The results showed that the goat TEAD1 gene CDS region sequence was 1311 bp. TEAD1 gene was widely expressed in goat tissues, with the highest expression in brachial triceps (p < 0.01). The expression of TEAD1 gene in goat intramuscular adipocytes at 72 h was extremely significantly higher than that at 0 h (p < 0.01). Overexpression of goat TEAD1 inhibited the accumulation of lipid droplets in goat intramuscular adipocyte. The relative expression of differentiation marker genes SREBP1, PPARγ, C/EBPβ were significantly down-regulated (all p < 0.01), but PREF-1 was significantly up-regulated (p < 0.01). Binding analysis showed that there were multiple binding sites between the DNA binding domain of goat TEAD1 and the promoter binding region of SREBP1, PPARγ, C/EBPβ and PREF-1. In conclusion, TEAD1 negatively regulates the differentiation of goat intramuscular preadipocytes.
Collapse
Affiliation(s)
- Kehan Liu
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Ministry of Education/Sichuan Province, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| | - Jianying Zheng
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Ministry of Education/Sichuan Province, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| | - Yong Wang
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Ministry of Education/Sichuan Province, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| | - Yanyan Li
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Ministry of Education/Sichuan Province, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| | - Yan Xiong
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Ministry of Education/Sichuan Province, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| | - Youli Wang
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Ministry of Education/Sichuan Province, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| | - Jie Cheng
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Xinzhu Huang
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Liyi Zhang
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Ministry of Education/Sichuan Province, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| |
Collapse
|
5
|
Yoo HB, Moon JW, Kim HR, Lee HS, Miyabayashi K, Park CH, Ge S, Zhang A, Tae YK, Sub Y, Park HW, Gee HY, Notta F, Tuveson DA, Bang S, Kim MY, Roe JS. A TEAD2-Driven Endothelial-Like Program Shapes Basal-Like Differentiation and Metastasis of Pancreatic Cancer. Gastroenterology 2023; 165:133-148.e17. [PMID: 36907523 PMCID: PMC10330865 DOI: 10.1053/j.gastro.2023.02.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDA), with its highly metastatic propensity, is one of the most lethal subtypes of pancreatic cancer. Although recent large-scale transcriptomic studies have demonstrated that heterogeneous gene expressions play an essential role in determining molecular phenotypes of PDA, biological cues for and consequences of distinct transcriptional programs remain unclear. METHODS We developed an experimental model that enforces the transition of PDA cells toward a basal-like subtype. We combined epigenome and transcriptome analyses with extensive in vitro and in vivo evaluations of tumorigenicity to demonstrate the validity of basal-like subtype differentiation in association with endothelial-like enhancer landscapes via TEA domain transcription factor 2 (TEAD2). Finally, we used loss-of-function experiments to investigate the importance of TEAD2 in regulating reprogrammed enhancer landscape and metastasis in basal-like PDA cells. RESULTS Aggressive characteristics of the basal-like subtype are faithfully recapitulated in vitro and in vivo, demonstrating the physiological relevance of our model. Further, we showed that basal-like subtype PDA cells acquire a TEAD2-dependent proangiogenic enhancer landscape. Genetic and pharmacologic inhibitions of TEAD2 in basal-like subtype PDA cells impair their proangiogenic phenotypes in vitro and cancer progression in vivo. Last, we identify CD109 as a critical TEAD2 downstream mediator that maintains constitutively activated JAK-STAT signaling in basal-like PDA cells and tumors. CONCLUSIONS Our findings implicate a TEAD2-CD109-JAK/STAT axis in the basal-like differentiated pancreatic cancer cells and as a potential therapeutic vulnerability.
Collapse
Affiliation(s)
- Hye-Been Yoo
- Department of Biochemistry, Yonsei University, Seoul, Korea
| | - Jin Woo Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Hwa-Ryeon Kim
- Department of Biochemistry, Yonsei University, Seoul, Korea
| | - Hee Seung Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Koji Miyabayashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chan Hee Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sabrina Ge
- Princess Margaret Cancer Center, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Amy Zhang
- Princess Margaret Cancer Center, Toronto, Ontario, Canada; PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Yoo Keung Tae
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yujin Sub
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun-Woo Park
- Department of Biochemistry, Yonsei University, Seoul, Korea
| | - Heon Yung Gee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Faiyaz Notta
- Princess Margaret Cancer Center, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - David A Tuveson
- Lustgarten Foundation Dedicated Laboratory at Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Seungmin Bang
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Mi-Young Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
| | - Jae-Seok Roe
- Department of Biochemistry, Yonsei University, Seoul, Korea.
| |
Collapse
|
6
|
Ma P, Hao Y, Wang W, Zhang YF, Yu KH, Wang WX. AURKB activates EMT through PI3K/AKT signaling axis to promote ICC progression. Discov Oncol 2023; 14:102. [PMID: 37318676 DOI: 10.1007/s12672-023-00707-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a fatal disease and the molecular mechanism of its progression remains unknown. Aurora Kinase B (AURKB) is a central regulator of chromosome separation and cytokinesis and is abnormally expressed in a variety of cancer cells. This research aimed to explore the effect of AURKB in occurrence and metastasis of ICC. We found that AURKB showed a progressive up-regulation pattern from normal bile duct tissue to ICC with high invasion. Our data showed that AURKB significantly promoted ICC cell proliferation, induced epithelial-mesenchymal transition (EMT), migration and invasion through gain- and loss- of function experiments. In vivo results consistently showed that AURKB up-regulation not only promoted tumor growth, but also promoted tumor metastasis. Importantly, we discovered that AURKB regulates the expressions of EMT-related genes via PI3K/AKT signaling axis. Herein, our results suggest that AURKB induced EMT through the activation of PI3K/AKT signaling pathway is critical to the progression of ICC, which may be a prospective therapeutic treatment for overcoming ICC metastasis and progression.
Collapse
Affiliation(s)
- Peng Ma
- Deportment of Hepatobiliary Surgery, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Ying Hao
- Deportment of Hepatobiliary Surgery, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Wei Wang
- Deportment of Hepatobiliary Surgery, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Yue-Feng Zhang
- Deportment of Hepatobiliary Surgery, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Kai-Huan Yu
- Deportment of Hepatobiliary Surgery, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.
| | - Wei-Xing Wang
- Deportment of Hepatobiliary Surgery, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
7
|
Wang C, Chen S, Li X, Fan L, Zhou Z, Zhang M, Shao Y, Shang Z, Niu Y. TEAD3 inhibits the proliferation and metastasis of prostate cancer via suppressing ADRBK2. Biochem Biophys Res Commun 2023; 654:120-127. [PMID: 36907139 DOI: 10.1016/j.bbrc.2023.02.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
TEAD3 acts as a transcription factor in many tumors to promote tumor occurrence and development. But in prostate cancer (PCa), it appears as a tumor suppressor gene. Recent studies have shown that this may be related to subcellular localization and posttranslational modification. We found that TEAD3 was down-expressed in PCa. Immunohistochemistry of clinical PCa specimens confirmed that TEAD3 expression was the highest in benign prostatic hyperplasia (BPH) tissues, followed by primary PCa tissues, and the lowest in metastatic PCa tissues, and its expression level was positively correlated with overall survival. MTT assay, clone formation assay, and scratch assay confirmed that overexpression of TEAD3 could significantly inhibit the proliferation and migration of PCa cells. Next-generation sequencing results indicated that Hedgehog (Hh) signaling pathway was significantly inhibited after overexpression of TEAD3. Rescue assays suggested that ADRBK2 could reverse the proliferation and migration ability caused by overexpression of TEAD3. TEAD3 is downregulated in PCa and associated with poor patient prognosis. Overexpression of TEAD3 inhibits the proliferation and migration ability of PCa cells via restraining the mRNA level of ADRBK2. These results indicate that TEAD3 was down-expressed in PCa patients and was positively correlated with a high Gleason score and poor prognosis. Mechanistically, we found that the upregulation of TEAD3 inhibits the proliferation and metastasis of prostate cancer by inhibiting the expression of ADRBK2.
Collapse
Affiliation(s)
- Chunhui Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Songmao Chen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaoli Li
- Department of Clinical Laboratory, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Lin Fan
- Department of Clinical Laboratory, Tianjin People's Hospital, Tianjin, China
| | - Zhe Zhou
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mingpeng Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yi Shao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhiqun Shang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
8
|
Zhao B, Pobbati AV, Rubin BP, Stauffer S. Leveraging Hot Spots of TEAD-Coregulator Interactions in the Design of Direct Small Molecule Protein-Protein Interaction Disruptors Targeting Hippo Pathway Signaling. Pharmaceuticals (Basel) 2023; 16:ph16040583. [PMID: 37111340 PMCID: PMC10146773 DOI: 10.3390/ph16040583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The Hippo signaling pathway is a highly conserved pathway that plays important roles in the regulation of cell proliferation and apoptosis. Transcription factors TEAD1-4 and transcriptional coregulators YAP/TAZ are the downstream effectors of the Hippo pathway and can modulate Hippo biology. Dysregulation of this pathway is implicated in tumorigenesis and acquired resistance to therapies. The emerging importance of YAP/TAZ-TEAD interaction in cancer development makes it a potential therapeutic target. In the past decade, disrupting YAP/TAZ-TEAD interaction as an effective approach for cancer treatment has achieved great progress. This approach followed a trajectory wherein peptidomimetic YAP-TEAD protein-protein interaction disruptors (PPIDs) were first designed, followed by the discovery of allosteric small molecule PPIDs, and currently, the development of direct small molecule PPIDs. YAP and TEAD form three interaction interfaces. Interfaces 2 and 3 are amenable for direct PPID design. One direct YAP-TEAD PPID (IAG933) that targets interface 3 has entered a clinical trial in 2021. However, in general, strategically designing effective small molecules PPIDs targeting TEAD interfaces 2 and 3 has been challenging compared with allosteric inhibitor development. This review focuses on the development of direct surface disruptors and discusses the challenges and opportunities for developing potent YAP/TAZ-TEAD inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Bin Zhao
- Cleveland Clinic Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Ajaybabu V Pobbati
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Brian P Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Shaun Stauffer
- Cleveland Clinic Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
9
|
Pobbati AV, Kumar R, Rubin BP, Hong W. Therapeutic targeting of TEAD transcription factors in cancer. Trends Biochem Sci 2023; 48:450-462. [PMID: 36709077 DOI: 10.1016/j.tibs.2022.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 01/27/2023]
Abstract
The Hippo signaling pathway inhibits the activity of the oncogenic YAP (Yes-associated protein)/TAZ (transcriptional co-activator with PDZ-binding motif)-TEAD (TEA/ATTS domain) transcriptional complex. In cancers, inactivating mutations in upstream Hippo components and/or enhanced activity of YAP/TAZ and TEAD have been observed. The activity of this transcriptional complex can be effectively inhibited by targeting the TEAD family of transcription factors. The development of TEAD inhibitors has been driven by the discovery that TEAD has druggable hydrophobic pockets, and is currently at the clinical development stage. Three small molecule TEAD inhibitors are currently being tested in Phase I clinical trials. In this review, we highlight the role of TEADs in cancer, discuss various avenues through which TEAD activity can be inhibited, and outline the opportunities for the administration of TEAD inhibitors.
Collapse
Affiliation(s)
- Ajaybabu V Pobbati
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Ramesh Kumar
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138673
| | - Brian P Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138673.
| |
Collapse
|
10
|
Wang W, He Y, Zhai LL, Chen LJ, Yao LC, Wu L, Tang ZG, Ning JZ. m 6A RNA demethylase FTO promotes the growth, migration and invasion of pancreatic cancer cells through inhibiting TFPI-2. Epigenetics 2022; 17:1738-1752. [PMID: 35404184 PMCID: PMC9621031 DOI: 10.1080/15592294.2022.2061117] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 11/03/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most fatal cancers with a very poor prognosis. Here, we found that N6-methyladenosine (m6A) RNA demethylase fat mass and obesity-related protein (FTO) promote the growth, migration and invasion of PC. FTO expression level is increased in human PC and is associated with poor prognosis of PC patients. Knockdown of FTO increases m6A methylation of TFPI-2 mRNA in PC cells, thereby increasing mRNA stability via the m6A reader YTHDF1, resulting in up-regulation of TFPI-2 expression, and inhibits PC proliferation, colony formation, sphere formation, migration and invasion in vitro, as well as tumour growth in vivo. Rescue assay further confirms that FTO facilitates cancer progression by reducing the expression of TFPI-2. Mechanistically, FTO promotes the progression of PC at least partially through reducing m6A/YTHDF1 mediated TFPI-2 mRNA stability. Our findings reveal that FTO, as an m6A demethylase, plays a critical role in promoting PC growth, migration and invasion, suggesting that FTO may be a potential therapeutic target for treating PC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, WuhanHubei Province, China
| | - Ying He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-most) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, WuhanHubei Province, China
| | - Lu-Lu Zhai
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, WuhanHubei Province, China
| | - Long-Jiang Chen
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, WuhanHubei Province, China
| | - Li-Chao Yao
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, WuhanHubei Province, China
| | - Lun Wu
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, WuhanHubei Province, China
| | - Zhi-Gang Tang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, WuhanHubei Province, China
| | - Jin-Zhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, WuhanHubei Province, China
| |
Collapse
|
11
|
Wang W, He Y, Wu L, Zhai L, Chen L, Yao L, Yu K, Tang Z. N 6 -methyladenosine RNA demethylase FTO regulates extracellular matrix-related genes and promotes pancreatic cancer cell migration and invasion. Cancer Med 2022; 12:3731-3743. [PMID: 35879877 PMCID: PMC9939218 DOI: 10.1002/cam4.5054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/06/2022] [Accepted: 07/03/2022] [Indexed: 11/05/2022] Open
Abstract
Pancreatic cancer (PC) is a deadly disease, and its post-transcriptional gene regulation mechanism remains unclear. The abundant extracellular matrix (ECM) in PC plays an important role in tumor progression. This study is the first to focus on the role of N6 -methyladenosine (m6 A) RNA methylation, an emerging post-transcriptional regulatory mechanism, in the regulation of the ECM in PC. Here, we found that ADAMTS2, COL12A1, and THBS2 were associated with the prognosis of PC by comprehensive analysis of differentially expressed genes from two independent GEO expression profile datasets and m6 A-related genes in RMVar database (PAAD). GO and KEGG enrichment analysis found that these m6 A-related targets are chiefly functionally concentrated in the ECM region and participate in ECM signal transduction. Correlation analysis revealed that these genes can be regulated by the demethylase FTO. Cell biology function assays showed that knockdown of FTO-inhibited PC cell abilities to migrate and invade in vitro. qRT-PCR and MeRIP experiments showed that after knockdown of FTO, the mRNA levels of ADAMTS2, COL12A1, and THBS2 and their m6 A modification levels were significantly reduced. These results indicate that m6 A RNA demethylation is associated with the regulation of ECM in PC. In conclusion, m6 A RNA demethylase FTO regulates ECM-related genes and promotes PC cell abilities to migrate and invade, our work provides a new perspective on the molecular mechanism of PC progression.
Collapse
Affiliation(s)
- Wei Wang
- Department of Hepatobiliary Surgery in East HospitalRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ying He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Lun Wu
- Department of Hepatobiliary Surgery, Dongfeng HospitalHubei University of MedicineShiyanChina
| | - Lu‐Lu Zhai
- Department of Pancreatic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Long‐Jiang Chen
- Department of Pancreatic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Li‐Chao Yao
- Department of Pancreatic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Kai‐Huan Yu
- Department of Hepatobiliary Surgery in East HospitalRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhi‐Gang Tang
- Department of Pancreatic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
12
|
Zagiel B, Melnyk P, Cotelle P. Progress with YAP/TAZ-TEAD inhibitors: a patent review (2018-present). Expert Opin Ther Pat 2022; 32:899-912. [PMID: 35768160 DOI: 10.1080/13543776.2022.2096436] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The Hippo pathway represents a new opportunity for the treatment of cancer. Overexpression of Yes-associated protein (YAP) or transcriptional coactivator with PDZ-binding motif (TAZ) or TEAD has been demonstrated in cancers and YAP mediates resistance to cancer drugs. Since 2018, the potential of this pathway has been illustrated by numerous articles and patents and the first drugs entering in clinical trial phase 1. AREAS COVERED This review is limited to published patent applications that have disclosed direct small-molecule inhibitors of the YAP/TAZ-TEAD interaction. EXPERT OPINION The YAP/TAZ-TEAD transcriptional complex is a promising target for the treatment of cancer. Approximately 30 international patents (used database: Sci-finder, query: TEAD; documents: patents; period: from 2017-January 2022) that disclose TEAD transcriptional inhibitors have been filled since 2018. The mechanism of action is not always described in the patents, we can divide the drugs into three different categories: (i) external TEAD ligands; (ii) non-covalent TEAD ligands of the palmitate pocket; (iii) covalent TEAD ligands, which bind into the palmitate pocket. The first molecules in clinical trial phase 1 are non-covalent TEAD ligands. The selective TEAD ligand have also been patented, published and selectivity could be of great interest for personalized medicine.
Collapse
Affiliation(s)
- Benjamin Zagiel
- Lille Neuroscience and Cognition Research Center, University of Lille, INSERM, CHU Lille, UMR-S 1172, Lille, France
| | - Patricia Melnyk
- Lille Neuroscience and Cognition Research Center, University of Lille, INSERM, CHU Lille, UMR-S 1172, Lille, France
| | - Philippe Cotelle
- Lille Neuroscience and Cognition Research Center, University of Lille, INSERM, CHU Lille, UMR-S 1172, Lille, France
| |
Collapse
|
13
|
Wang MH, Li BZ, Chen Y, Wang J. TEADs serve as potential prognostic biomarkers and targets for human gastric cancer. BMC Gastroenterol 2022; 22:308. [PMID: 35739490 PMCID: PMC9229874 DOI: 10.1186/s12876-022-02386-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 05/11/2022] [Indexed: 12/24/2022] Open
Abstract
TEADs are critical transcription factors that participate in the Hippo pathway. Evidence indicates the promotion role of TEADs in cancer progression. However, the role of TEADs and the expression patterns in gastric cancer remains unclear. In this study, we evaluated the expression levels of TEADs in gastric cancer samples, and the clinical outcomes of patients with high TEADs expression were observed. Co-expression and interaction analysis as well as functional enrichment analysis were further conducted to determine the potential role of TEADs in gastric cancer. These results suggested TEADs may serve as the prognostic biomarkers or therapeutic targets for gastric cancer. However, more studies are warranted to verify our findings and promote the application in gastric cancer patients.
Collapse
Affiliation(s)
- Meng-Huan Wang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, 211166, China.,Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Bing-Zhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yue Chen
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, 211166, China.
| | - Jie Wang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
14
|
Liberelle M, Toulotte F, Renault N, Gelin M, Allemand F, Melnyk P, Guichou JF, Cotelle P. Toward the Design of Ligands Selective for the C-Terminal Domain of TEADs. J Med Chem 2022; 65:5926-5940. [PMID: 35389210 DOI: 10.1021/acs.jmedchem.2c00075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Hippo signaling pathway plays a fundamental role in the control of organ growth, cell proliferation, and stem cell characters. TEADs are the main transcriptional output regulators of the Hippo signaling pathway and bind to YAP and TAZ co-activators. TEAD1-4 are expressed differently, depending on the tissue and developmental level, and can be overexpressed in certain pathologies. TEAD ligands mainly target the internal pocket of the C-terminal domain of TEAD, and the first ligands selective for TEAD1 and TEAD3 have been recently reported. In this paper, we focus on the topographic homology of the TEAD C-terminal domain both externally and in the internal pocket to highlight the possibility of rationally designing ligands selective for one of the TEAD family members. We identified a novel TEAD2-specific pocket and reported its first ligand. Finally, AlphaFold2 models of full-length TEADs suggest TEAD autoregulation and emphasize the importance of the interface 2.
Collapse
Affiliation(s)
- Maxime Liberelle
- INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, Université de Lille, F-59000 Lille, France
| | - Florine Toulotte
- INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, Université de Lille, F-59000 Lille, France
| | - Nicolas Renault
- INSERM, CHU Lille, U-1286 - INFINTE - Institute for Translational Research in Inflammation, Université de Lille, F-59000 Lille, France
| | - Muriel Gelin
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Université de Montpellier, F-34090 Montpellier, France
| | - Frédéric Allemand
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Université de Montpellier, F-34090 Montpellier, France
| | - Patricia Melnyk
- INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, Université de Lille, F-59000 Lille, France
| | - Jean-François Guichou
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Université de Montpellier, F-34090 Montpellier, France
| | - Philippe Cotelle
- INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, Université de Lille, F-59000 Lille, France.,CS 90108, ENSCL-Centrale Lille, F-59652 Villeneuve d'Ascq, France
| |
Collapse
|
15
|
Wang XY, Ma TL, Chen KN, Pang ZY, Wang H, Huang JM, Qi GB, Wang CZ, Jiang ZX, Gong LJ, Wang Z, Jiang C, Yan ZQ. Accumulation of LDL/ox-LDL in the necrotic region participates in osteonecrosis of the femoral head: a pathological and in vitro study. Lipids Health Dis 2021; 20:167. [PMID: 34823555 PMCID: PMC8620162 DOI: 10.1186/s12944-021-01601-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/16/2021] [Indexed: 02/08/2023] Open
Abstract
Background Osteonecrosis of the femoral head (ONFH) is a common but intractable disease that appears to involve lipid metabolic disorders. Although numerous studies have demonstrated that high blood levels of low-density lipoprotein (LDL) are closely associated with ONFH, there is limited evidence to explain the pathological role of LDL. Pathological and in vitro studies were performed to investigate the role of disordered metabolism of LDL and oxidized LDL (ox-LDL) in the femoral head in the pathology of ONFH. Methods Nineteen femoral head specimens from patients with ONFH were obtained for immunohistochemistry analysis. Murine long-bone osteocyte Y4 cells were used to study the effects of LDL/ox-LDL on cell viability, apoptosis, and metabolism process of LDL/ox-LDL in osteocytes in normoxic and hypoxic environments. Results In the pathological specimens, marked accumulation of LDL/ox-LDL was observed in osteocytes/lacunae of necrotic regions compared with healthy regions. In vitro studies showed that ox-LDL, rather than LDL, reduced the viability and enhanced apoptosis of osteocytes. Pathological sections indicated that the accumulation of ox-LDL was significantly associated with impaired blood supply. Exposure to a hypoxic environment appeared to be a key factor leading to LDL/ox-LDL accumulation by enhancing internalisation and oxidation of LDL in osteocytes. Conclusions The accumulation of LDL/ox-LDL in the necrotic region may contribute to the pathology of ONFH. These findings could provide new insights into the prevention and treatment of ONFH. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01601-x.
Collapse
Affiliation(s)
- Xin-Yuan Wang
- Department of Orthopaedics, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan Province, China.,Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Tian-Le Ma
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Kang-Ning Chen
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhi-Ying Pang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Hao Wang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jun-Ming Huang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Guo-Bin Qi
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Chen-Zhong Wang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zeng-Xin Jiang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Lin-Jing Gong
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhe Wang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Chang Jiang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Zuo-Qin Yan
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|