1
|
Sishuai S, Lingui G, Pengtao L, Xinjie B, Junji W. Advances in regulating endothelial-mesenchymal transformation through exosomes. Stem Cell Res Ther 2024; 15:391. [PMID: 39482726 PMCID: PMC11529026 DOI: 10.1186/s13287-024-04010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
Endothelial-mesenchymal transformation (EndoMT) is the process through which endothelial cells transform into mesenchymal cells, affecting their morphology, gene expression, and function. EndoMT is a potential risk factor for cardiovascular and cerebrovascular diseases, tumor metastasis, and fibrosis. Recent research has highlighted the role of exosomes, a mode of cellular communication, in the regulation of EndoMT. Exosomes from diseased tissues and microenvironments can promote EndoMT, increase endothelial permeability, and compromise the vascular barrier. Conversely, exosomes derived from stem cells or progenitor cells can inhibit the EndoMT process and preserve endothelial function. By modifying exosome membranes or contents, we can harness the advantages of exosomes as carriers, enhancing their targeting and ability to inhibit EndoMT. This review aims to systematically summarize the regulation of EndoMT by exosomes in different disease contexts and provide effective strategies for exosome-based EndoMT intervention.
Collapse
Affiliation(s)
- Sun Sishuai
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Gu Lingui
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Pengtao
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Bao Xinjie
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Wei Junji
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Qin C, Li T, Lin C, Zhao B, Li Z, Zhao Y, Wang W. The systematic role of pancreatic cancer exosomes: distant communication, liquid biopsy and future therapy. Cancer Cell Int 2024; 24:264. [PMID: 39054529 PMCID: PMC11271018 DOI: 10.1186/s12935-024-03456-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Pancreatic cancer remains one of the most lethal diseases worldwide. Cancer-derived exosomes, benefiting from the protective role of the lipid membrane, exhibit remarkable stability in the circulatory system. These exosomes, released by tumor microenvironment, contain various biomolecules such as proteins, RNAs, and lipids that plays a pivotal role in mediating distant communication between the local pancreatic tumor and other organs or tissues. They facilitate the transfer of oncogenic factors to distant sites, contributing to the compromised body immune system, distant metastasis, diabetes, cachexia, and promoting a microenvironment conducive to tumor growth and metastasis in pancreatic cancer patients. Beyond their intrinsic roles, circulating exosomes in peripheral blood can be detected to facilitate accurate liquid biopsy. This approach offers a novel and promising method for the diagnosis and management of pancreatic cancer. Consequently, circulating exosomes are not only crucial mediators of systemic cell-cell communication during pancreatic cancer progression but also hold great potential as precise tools for pancreatic cancer management and treatment. Exosome-based liquid biopsy and therapy represent promising advancements in the diagnosis and treatment of pancreatic cancer. Exosomes can serve as drug delivery vehicles, enhancing the targeting and efficacy of anticancer treatments, modulating the immune system, and facilitating gene editing to suppress tumor growth. Ongoing research focuses on biomarker identification, drug delivery systems, and clinical trials to validate the safety and efficacy of exosome-based therapies, offering new possibilities for early diagnosis and precision treatment in pancreatic cancer. Leveraging the therapeutic potential of exosomes, including their ability to deliver targeted drugs and modulate immune responses, opens new avenues for innovative treatment strategies.
Collapse
Affiliation(s)
- Cheng Qin
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianyu Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Lin
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bangbo Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeru Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yutong Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weibin Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Shishido SN, Suresh D, Courcoubetis G, Ye B, Lin E, Mason J, Park K, Lewis M, Wang R, Lo SK, Kuhn P, Pandol S. Determining the efficacy of ExThera Seraph100 blood filtration in patients diagnosed with pancreatic cancer through the liquid biopsy. BJC REPORTS 2024; 2:47. [PMID: 39516545 PMCID: PMC11524105 DOI: 10.1038/s44276-024-00069-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Cancer becomes lethal as it spreads from the primary site to the rest of the body. Circulating tumor cells (CTCs) are biomarkers of disease progression and have been associated with decreased overall survival. Blood filtration is a novel concept for removing CTCs from circulation to improve patient prognosis. METHODS This study utilizes liquid biopsy to assess the efficacy of ExThera Medical's Seraph® 100 Microbind® Affinity Blood Filter on the blood of patients with pancreatic ductal adenocarcinoma (PDAC) using the third generation high-definition single cell assay workflow. Blood samples from treatment-naïve PDAC patients were collected and analyzed to characterize the CTCs and other rare cells present before and after filtration. RESULTS Examination of 6 paired portal vein blood (PoVB) samples demonstrated a statistically significant decrease in total rare cells, total cytokeratin (CK)+ cells, and CTCs across all patients due to filtration. Furthermore, analysis of 2 paired peripheral blood (PB) samples showed a decrease in total rare cells, total CK+ cells, and specific phenotypes of rare cells after filtration. DISCUSSION These preliminary results demonstrate initial proof of concept that this filtration device can remove CTCs from circulation and may therefore be useful as a therapy or adjunct in PDAC patient care.
Collapse
Affiliation(s)
- Stephanie N Shishido
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Divya Suresh
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - George Courcoubetis
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Brandon Ye
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Emmeline Lin
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jeremy Mason
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ken Park
- Pancreatic and Biliary Diseases Program, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Michael Lewis
- Departments of Medicine and Pathology, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Pathology, VA Greater Los Angeles Medical Center, Los Angeles, CA, 90073, USA
- Center for Cancer Research and Development, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Ruoxiang Wang
- Pancreatic and Biliary Diseases Program, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Simon K Lo
- Pancreatic and Biliary Diseases Program, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Peter Kuhn
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA.
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Stephen Pandol
- Pancreatic and Biliary Diseases Program, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| |
Collapse
|
4
|
Guo Z, Ashrafizadeh M, Zhang W, Zou R, Sethi G, Zhang X. Molecular profile of metastasis, cell plasticity and EMT in pancreatic cancer: a pre-clinical connection to aggressiveness and drug resistance. Cancer Metastasis Rev 2024; 43:29-53. [PMID: 37453022 DOI: 10.1007/s10555-023-10125-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
The metastasis is a multistep process in which a small proportion of cancer cells are detached from the colony to enter into blood cells for obtaining a new place for metastasis and proliferation. The metastasis and cell plasticity are considered major causes of cancer-related deaths since they improve the malignancy of cancer cells and provide poor prognosis for patients. Furthermore, enhancement in the aggressiveness of cancer cells has been related to the development of drug resistance. Metastasis of pancreatic cancer (PC) cells has been considered one of the major causes of death in patients and their undesirable prognosis. PC is among the most malignant tumors of the gastrointestinal tract and in addition to lifestyle, smoking, and other factors, genomic changes play a key role in its progression. The stimulation of EMT in PC cells occurs as a result of changes in molecular interaction, and in addition to increasing metastasis, EMT participates in the development of chemoresistance. The epithelial, mesenchymal, and acinar cell plasticity can occur and determines the progression of PC. The major molecular pathways including STAT3, PTEN, PI3K/Akt, and Wnt participate in regulating the metastasis of PC cells. The communication in tumor microenvironment can provide by exosomes in determining PC metastasis. The components of tumor microenvironment including macrophages, neutrophils, and cancer-associated fibroblasts can modulate PC progression and the response of cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Zhenli Guo
- Department of Oncology, First Affiliated Hospital, Gannan Medical University, 128 Jinling Road, Ganzhou City, Jiangxi Province, 341000, China
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Gautam Sethi
- Department of Pharmacology, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
5
|
Xie H, Sun Q, Chu X, Zhu S, Xie F. Review of pre-metastatic niches in lung metastasis: From cells to molecules, from mechanism to clinics. Biochim Biophys Acta Rev Cancer 2024; 1879:189081. [PMID: 38280471 DOI: 10.1016/j.bbcan.2024.189081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 01/29/2024]
Abstract
Distant metastasis is responsible for high mortality in most cancer cases and the lung is one of the most common target organs, severely affecting the quality of daily life and overall survival of cancer patients. With relevant research breakthroughs accumulating, scientists have developed a deeper understanding of lung metastasis (LM) from the rudimentary "seed and soil" theory to a more vivid concept of the pre-metastatic niche (PMN). Thus, the mechanisms of PMN formation become considerably complicated, involving various types of cells, chemokines, cytokines, and proteins, providing potential biomarkers for improved LM diagnosis and treatment techniques. Here we summarized the latest findings (in 3 years) of lung PMN and systematically collated it from basic research to clinical application, which clearly exhibited the influences of the primary tumor, stromal, and bone marrow-derived cells (BMDCs) and associated molecules in the formation of lung PMN.
Collapse
Affiliation(s)
- Hongting Xie
- Department of Oncology, Wangjing Hospital of China Academy of Traditional Chinese Medicine, Beijing, China
| | - Quan Sun
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuelei Chu
- Department of Oncology, Wangjing Hospital of China Academy of Traditional Chinese Medicine, Beijing, China
| | - Shijie Zhu
- Department of Oncology, Wangjing Hospital of China Academy of Traditional Chinese Medicine, Beijing, China
| | - Feiyu Xie
- Integrated Traditional Chinese and Western Medicine Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Al-Jipouri A, Eritja À, Bozic M. Unraveling the Multifaceted Roles of Extracellular Vesicles: Insights into Biology, Pharmacology, and Pharmaceutical Applications for Drug Delivery. Int J Mol Sci 2023; 25:485. [PMID: 38203656 PMCID: PMC10779093 DOI: 10.3390/ijms25010485] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles released from various cell types that have emerged as powerful new therapeutic option for a variety of diseases. EVs are involved in the transmission of biological signals between cells and in the regulation of a variety of biological processes, highlighting them as potential novel targets/platforms for therapeutics intervention and/or delivery. Therefore, it is necessary to investigate new aspects of EVs' biogenesis, biodistribution, metabolism, and excretion as well as safety/compatibility of both unmodified and engineered EVs upon administration in different pharmaceutical dosage forms and delivery systems. In this review, we summarize the current knowledge of essential physiological and pathological roles of EVs in different organs and organ systems. We provide an overview regarding application of EVs as therapeutic targets, therapeutics, and drug delivery platforms. We also explore various approaches implemented over the years to improve the dosage of specific EV products for different administration routes.
Collapse
Affiliation(s)
- Ali Al-Jipouri
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
| | - Àuria Eritja
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| | - Milica Bozic
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| |
Collapse
|