1
|
Ali N, Debernardi S, Kurotova E, Tajbakhsh J, Gupta NK, Pandol SJ, Wilson P, Pereira SP, Greenhalf B, Blyuss O, Crnogorac-Jurcevic T. Evaluation of urinary C-reactive protein as an early detection biomarker for pancreatic ductal adenocarcinoma. Front Oncol 2024; 14:1450326. [PMID: 39309742 PMCID: PMC11412792 DOI: 10.3389/fonc.2024.1450326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death worldwide. Up to now, no specific screening or diagnostic tests are available for early PDAC detection. As a result, most patients are diagnosed with advanced or metastatic disease, which leads to a poor prognosis. In this study, we aimed to evaluate the diagnostic value of urinary CRP (uCRP) alone and in combination with our previously established urine biomarker panel (REG1B, LYVE1 and TFF1) for early detection of PDAC. A total of 534 urine samples from multiple centres were analysed: 93 from healthy individuals, 265 from patients with benign hepatobiliary diseases and 176 from PDAC patients. The uCRP and the urinary biomarker panel were assessed using commercial ELISA assays, while plasma CA19-9 and blood CRP (bCRP) were measured using Roche Cobas platform. Multiple logistic regression and nonparametric Kruskal-Wallis test were used for statistical analysis. An internal validation approach was applied, and the validated AUC estimators were reported to ensure accuracy. A significant difference was observed in the medians of uCRP between healthy and benign controls and PDAC sample groups (p < 0.001). uCRP levels were not dependent on gender and age, as well as cancer stage. When uCRP was combined with the urinary biomarker panel, it achieved AUCs of 0.878 (95% CI: 0.802-0.931), 0.798 (95% CI: 0.738-0.859) and 0.813 (95% CI: 0.758-0.869) in healthy vs PDAC, benign vs PDAC and healthy and benign vs PDAC sample groups, respectively. However, adding plasma CA19-9 to the urinary biomarker panel yielded a better performance, with AUCs of 0.978 (95% CI: 0.959-0.996), 0.911 (95% CI: 0.873-0.949) and 0.919 (95% CI: 0.883-0.955) in the healthy vs PDAC, benign vs PDAC and healthy and benign vs PDAC comparisons, respectively. In conclusion, we show that measuring CRP in urine is a feasible analytical method, and that uCRP could potentially be a promising biomarker in various diseases including other cancer types.
Collapse
Affiliation(s)
- Nurshad Ali
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Silvana Debernardi
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Evelyn Kurotova
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jian Tajbakhsh
- 3rd Street Diagnostics, Cedars-Sinai, Los Angeles, CA, United States
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai, Los Angeles, CA, United States
| | - Nirdesh K. Gupta
- 3rd Street Diagnostics, Cedars-Sinai, Los Angeles, CA, United States
| | - Stephen J. Pandol
- Department of Medicine, Cedars-Sinai, Los Angeles, CA, United States
| | - Patrick Wilson
- Barts Health, Royal London Hospital, London, United Kingdom
| | - Stephen P. Pereira
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Bill Greenhalf
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Oleg Blyuss
- Centre for Cancer Screening, Prevention and Early Detection, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
- Department of Pediatrics and Pediatric Infectious Diseases, Institute of Child´s Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Tatjana Crnogorac-Jurcevic
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
2
|
Vescio F, Ammendola M, Currò G, Curcio S. Relationship between mast cell, angiogenesis and pancreatic cancer: Our experience. World J Gastroenterol 2024; 30:2927-2930. [PMID: 38946872 PMCID: PMC11212697 DOI: 10.3748/wjg.v30.i23.2927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/04/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
In this editorial, we focus specifically on the mechanisms by which pancreatic inflammation affects pancreatic cancer. Cancer of the pancreas remains one of the deadliest cancer types. The highest incidence and mortality rates of pancreatic cancer are found in developed countries. Trends of pancreatic cancer incidence and mortality vary considerably worldwide. A better understanding of the etiology and identification of the risk factors is essential for the primary prevention of this disease. Pancreatic tumors are characterized by a complex microenvironment that orchestrates metabolic alterations and supports a milieu of interactions among various cell types within this niche. In this editorial, we highlight the foundational studies that have driven our understanding of these processes. In our experimental center, we have carefully studied the mechanisms of that link pancreatic inflammation and pancreatic cancer. We focused on the role of mast cells (MCs). MCs contain pro-angiogenic factors, including tryptase, that are associated with increased angiogenesis in various tumors. In this editorial, we address the role of MCs in angiogenesis in both pancreatic ductal adenocarcinoma tissue and adjacent normal tissue. The assessment includes the density of c-Kit receptor-positive MCs, the density of tryptase-positive MCs, the area of tryptase-positive MCs, and angiogenesis in terms of microvascularization density.
Collapse
Affiliation(s)
- Francesca Vescio
- Science of Health Department, General Surgery Unit, University “Magna Graecia” Medical School, University Hospital “R. Dulbecco”, Catanzaro 88100, Italy
| | - Michele Ammendola
- Science of Health Department, Digestive Surgery Unit, University “Magna Graecia” Medical School, University Hospital “R. Dulbecco”, Catanzaro 88100, Italy
| | - Giuseppe Currò
- Science of Health Department, General Surgery Unit, University “Magna Graecia” Medical School, University Hospital “R. Dulbecco”, Catanzaro 88100, Italy
| | - Silvia Curcio
- Science of Health Department, General Surgery Unit, University “Magna Graecia” Medical School, University Hospital “R. Dulbecco”, Catanzaro 88100, Italy
| |
Collapse
|
3
|
Ferraguti G, Terracina S, Tarani L, Fanfarillo F, Allushi S, Caronti B, Tirassa P, Polimeni A, Lucarelli M, Cavalcanti L, Greco A, Fiore M. Nerve Growth Factor and the Role of Inflammation in Tumor Development. Curr Issues Mol Biol 2024; 46:965-989. [PMID: 38392180 PMCID: PMC10888178 DOI: 10.3390/cimb46020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Nerve growth factor (NGF) plays a dual role both in inflammatory states and cancer, acting both as a pro-inflammatory and oncogenic factor and as an anti-inflammatory and pro-apoptotic mediator in a context-dependent way based on the signaling networks and its interaction with diverse cellular components within the microenvironment. This report aims to provide a summary and subsequent review of the literature on the role of NGF in regulating the inflammatory microenvironment and tumor cell growth, survival, and death. The role of NGF in inflammation and tumorigenesis as a component of the inflammatory system, its interaction with the various components of the respective microenvironments, its ability to cause epigenetic changes, and its role in the treatment of cancer have been highlighted in this paper.
Collapse
Affiliation(s)
- Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Fanfarillo
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Allushi
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Brunella Caronti
- Department of Human Neurosciences, Sapienza University Hospital of Rome, 00185 Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Cavalcanti
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|